Cell Signaling Pathway Reporters in Adult Hematopoietic Stem Cells
Abstract
1. Introduction
2. General Cell Signaling in HSCs
3. Reporter Systems
4. Wnt Signaling
5. Notch Signaling
6. Transforming Growth Factor Beta (TGF-beta) Family
7. Hedgehog Signaling
8. Improved Reporter Models
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dreesen, O.; Brivanlou, A.H. Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev. 2007, 3, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.; Trumpp, A. Bone-marrow haematopoietic-stem-cell niches. Nat. Rev. Immunol. 2006, 6, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Taoudi, S.; Medvinsky, A. Functional identification of the hematopoietic stem cell niche in the ventral domain of the embryonic dorsal aorta. Proc. Natl. Acad. Sci. USA 2007, 104, 9399–9403. [Google Scholar] [CrossRef] [PubMed]
- Lessard, J.; Faubert, A.; Sauvageau, G. Genetic programs regulating HSC specification, maintenance and expansion. Oncogene 2004, 23, 7199–7209. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bowie, M.B.; McKnight, K.D.; Kent, D.G.; McCaffrey, L.; Hoodless, P.A.; Eaves, C.J. Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J. Clin. Invest. 2006, 116, 2808–2816. [Google Scholar] [CrossRef] [PubMed]
- Barolo, S.; Posakony, J.W. Three habits of highly effective signaling pathways: Principles of transcriptional control by developmental cell signaling. Gene Dev. 2002, 16, 1167–1181. [Google Scholar] [CrossRef]
- Karuna, E.P.; Choi, S.S.; Scales, M.K.; Hum, J.; Cohen, M.; Fierro, F.A.; Ho, H.H. Identification of a WNT5A-Responsive Degradation Domain in the Kinesin Superfamily Protein KIF26B. Genes (Basel) 2018, 9. [Google Scholar] [CrossRef]
- Lustig, B.; Jerchow, B.; Sachs, M.; Weiler, S.; Pietsch, T.; Karsten, U.; van de Wetering, M.; Clevers, H.; Schlag, P.M.; Birchmeier, W.; et al. Negative feedback loop of Wnt signaling through upregulation of conductin/Axin2 in colorectal and liver tumors. Mol. Cell. Biol. 2002, 22, 1184–1193. [Google Scholar] [CrossRef]
- Korinek, V.; Barker, N.; Morin, P.J.; vanWichen, D.; deWeger, R.; Kinzler, K.W.; Vogelstein, B.; Clevers, H. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC(-/-) colon carcinoma. Science 1997, 275, 1784–1787. [Google Scholar] [CrossRef]
- DasGupta, R.; Fuchs, E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 1999, 126, 4557–4568. [Google Scholar]
- Maretto, S.; Cordenonsi, M.; Dupont, S.; Braghetta, P.; Broccoli, V.; Hassan, A.B.; Volpin, D.; Bressan, G.M.; Piccolo, S. Mapping Wnt/beta-catenin signaling during mouse development and in colorectal tumors. Proc. Natl. Acad. Sci. USA 2003, 100, 3299–3304. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, O.A.; Clarke, H.J.; Dufort, D. Beta-catenin signaling marks the prospective site of primitive streak formation in the mouse embryo. Dev. Dyn. 2004, 231, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Vaquer, A.; Piliszek, A.; Tian, G.N.; Aho, R.J.; Dufort, D.; Hadjantonakis, A.K. A sensitive and bright single-cell resolution live imaging reporter of Wnt/beta-catenin signaling in the mouse. BMC Dev. Biol. 2010, 10. [Google Scholar] [CrossRef] [PubMed]
- Vassar, R.; Rosenberg, M.; Ross, S.; Tyner, A.; Fuchs, E. Tissue-Specific and Differentiation-Specific Expression of a Human K14 Keratin Gene in Transgenic Mice. Proc. Natl. Acad. Sci. USA 1989, 86, 1563–1567. [Google Scholar] [CrossRef]
- Moriyama, A.; Kii, I.; Sunabori, T.; Kurihara, S.; Takayama, I.; Shimazaki, M.; Tanabe, H.; Oginuma, M.; Fukayama, M.; Matsuzaki, Y.; et al. GFP transgenic mice reveal active canonical Wnt signal in neonatal brain and in adult liver and spleen. Genesis 2007, 45, 90–100. [Google Scholar] [CrossRef]
- Jho, E.H.; Zhang, T.; Domon, C.; Joo, C.K.; Freund, J.N.; Costantini, F. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol. 2002, 22, 1172–1183. [Google Scholar] [CrossRef] [PubMed]
- Al Alam, D.; Green, M.; Irani, R.T.; Parsa, S.; Danopoulos, S.; Sala, F.G.; Branch, J.; El Agha, E.; Tiozzo, C.; Voswinckel, R.; et al. Contrasting Expression of Canonical Wnt Signaling Reporters TOPGAL, BATGAL and Axin2(LacZ) during Murine Lung Development and Repair. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- de Roo, J.J.D.; Breukel, C.; Chhatta, A.R.; Linssen, M.M.; Vloemans, S.A.; Salvatori, D.; Mikkers, H.M.M.; Verbeek, S.J.; Staal, F.J.T. Axin2-mTurquoise2: A novel reporter mouse model for the detection of canonical Wnt signalling. Genesis 2017, 55. [Google Scholar] [CrossRef]
- van Amerongen, R.; Bowman, A.N.; Nusse, R. Developmental Stage and Time Dictate the Fate of Wnt/beta-Catenin-Responsive Stem Cells in the Mammary Gland. Cell Stem Cell 2012, 11, 387–400. [Google Scholar] [CrossRef]
- van de Moosdijk, A.A.A.; van de Grift, Y.B.C.; de Man, S.M.A.; Zeeman, A.L.; van Amerongen, R. A novel Axin2 knock-in mouse model for visualization and lineage tracing of WNT/CTNNB1 responsive cells. Genesis 2020. [Google Scholar] [CrossRef]
- Sonnen, K.F.; Lauschke, V.M.; Uraji, J.; Falk, H.J.; Petersen, Y.; Funk, M.C.; Beaupeux, M.; Francois, P.; Merten, C.A.; Aulehla, A. Modulation of Phase Shift between Wnt and Notch Signaling Oscillations Controls Mesoderm Segmentation. Cell 2018, 172, 1079–1090. [Google Scholar] [CrossRef]
- Currier, N.; Chea, K.; Hlavacova, M.; Sussman, D.J.; Seldin, D.C.; Dominguez, I. Dynamic expression of a LEF-EGFP Wnt reporter in mouse development and cancer. Genesis 2010, 48, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Z.; Yamagami, T.; Gan, Q.; Wang, Y.; Zhao, T.; Hamad, S.; Lott, P.; Schnittke, N.; Schwob, J.E.; Zhou, C.J. Canonical Wnt signaling promotes the proliferation and neurogenesis of peripheral olfactory stem cells during postnatal development and adult regeneration. J. Cell Sci. 2011, 124, 1553–1563. [Google Scholar] [CrossRef] [PubMed]
- Duncan, A.W.; Rattis, F.M.; DiMascio, L.N.; Congdon, K.L.; Pazianos, G.; Zhao, C.; Yoon, K.; Cook, J.M.; Willert, K.; Gaiano, N.; et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat. Immunol. 2005, 6, 314–322. [Google Scholar] [CrossRef]
- Souilhol, C.; Cormier, S.; Monet, M.; Vandormael-Pournin, S.; Joutel, A.; Babinet, C.; Cohen-Tannoudji, M. NAS transgenic mouse line allows visualization of Notch pathway activity in vivo. Genesis 2006, 44, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Nowotschin, S.; Xenopoulos, P.; Schrode, N.; Hadjantonakis, A.K. A bright single-cell resolution live imaging reporter of Notch signaling in the mouse. BMC Dev. Biol. 2013, 13. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuka, T.; Imayoshi, I.; Shimojo, H.; Nishi, E.; Kageyama, R.; McConnell, S.K. Visualization of embryonic neural stem cells using Hes promoters in transgenic mice. Mol. Cell Neurosci. 2006, 31, 109–122. [Google Scholar] [CrossRef]
- Fre, S.; Hannezo, E.; Sale, S.; Huyghe, M.; Lafkas, D.; Kissel, H.; Louvi, A.; Greve, J.; Louvard, D.; Artavanis-Tsakonas, S. Notch Lineages and Activity in Intestinal Stem Cells Determined by a New Set of Knock-In Mice. PLoS ONE 2011, 6. [Google Scholar] [CrossRef]
- Neptune, E.R.; Frischmeyer, P.A.; Arking, D.E.; Myers, L.; Bunton, T.E.; Gayraud, B.; Ramirez, F.; Sakai, L.Y.; Dietz, H.C. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 2003, 33, 407–411. [Google Scholar] [CrossRef]
- Lin, A.H.; Luo, J.; Mondshein, L.H.; ten Dijke, P.; Vivien, D.; Contag, C.H.; Wyss-Coray, T. Global analysis of Smad2/3-dependent TGF-beta signaling in living mice reveals prominent tissue-specific responses to injury. J. Immunol. 2005, 175, 547–554. [Google Scholar] [CrossRef]
- Luo, J.; Ho, P.P.; Buckwalter, M.S.; Hsu, T.; Lee, L.Y.; Zhang, H.; Kim, D.K.; Kim, S.J.; Gambhir, S.S.; Steinman, L.; et al. Glia-dependent TGF-beta signaling, acting independently of the TH17 pathway, is critical for initiation of murine autoimmune encephalomyelitis. J. Clin. Investig. 2007, 117, 3306–3315. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, R.M.; de Sousa Lopes, S.M.; Korchynskyi, O.; ten Dijke, P.; Mummery, C.L. Spatio-temporal activation of Smad1 and Smad5 in vivo: Monitoring transcriptional activity of Smad proteins. J. Cell Sci. 2004, 117, 4653–4663. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, R.M.; Lopes, S.M.C.D.; Bialecka, M.; de Boer, S.; Zwijsen, A.; Mummery, C.L. Real time monitoring of BMP Smads transcriptional activity during mouse development. Genesis 2008, 46, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Blank, U.; Seto, M.L.; Adams, D.C.; Wojchowski, D.M.; Karolak, M.J.; Oxburgh, L. An in vivo reporter of BMP signaling in organogenesis reveals targets in the developing kidney. BMC Dev. Biol. 2008, 8. [Google Scholar] [CrossRef]
- Javier, A.L.; Doan, L.T.; Luong, M.; de Mochel, N.S.R.; Sun, A.X.; Monuki, E.S.; Cho, K.W.Y. Bmp Indicator Mice Reveal Dynamic Regulation of Transcriptional Response. PLoS ONE 2012, 7. [Google Scholar] [CrossRef]
- Bai, C.B.; Auerbach, W.; Lee, J.S.; Stephen, D.; Joyner, A.L. Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development 2002, 129, 4753–4761. [Google Scholar]
- Merchant, A.; Joseph, G.; Wang, Q.J.; Brennan, S.; Matsui, W. Gli1 regulates the proliferation and differentiation of HSCs and myeloid progenitors. Blood 2010, 115, 2391–2396. [Google Scholar] [CrossRef]
- Abbasi, A.A.; Minhas, R.; Schmidt, A.; Koch, S.; Grzeschik, K.H. Cis-regulatory underpinnings of human GLI3 expression in embryonic craniofacial structures and internal organs. Dev. Growth Differ. 2013, 55, 699–709. [Google Scholar] [CrossRef]
- Haraguchi, R.; Kitazawa, R.; Imai, Y.; Kitazawa, S. Growth plate-derived hedgehog-signal-responsive cells provide skeletal tissue components in growing bone. Histochem. Cell Biol. 2018, 149, 365–373. [Google Scholar] [CrossRef]
- Kunisato, A.; Chiba, S.; Nakagami-Yamaguchi, E.; Kumano, K.; Saito, T.; Masuda, S.; Yamaguchi, T.; Osawa, M.; Kageyama, R.; Nakauchi, H.; et al. HES-1 preserves, purified hematopoietic stem cells ex vivo and accumulates side population cells in vivo. Blood 2003, 101, 1777–1783. [Google Scholar] [CrossRef]
- Varnum-Finney, B.; Xu, L.W.; Brashem-Stein, C.; Nourigat, C.; Flowers, D.; Bakkour, S.; Pear, W.S.; Bernstein, I.D. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat. Med. 2000, 6, 1278–1281. [Google Scholar] [CrossRef] [PubMed]
- Oh, P.; Lobry, C.; Gao, J.; Tikhonova, A.; Loizou, E.; Manent, J.; van Handel, B.; Ibrahim, S.; Greve, J.; Mikkola, H.; et al. In Vivo Mapping of Notch Pathway Activity in Normal and Stress Hematopoiesis. Cell Stem Cell 2013, 13, 256. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, W.; Li, X.; Wang, M.; Boyce, B.F.; Hilton, M.J.; Xing, L.P. Use of Hes1-GFP reporter mice to assess activity of the Hes1 promoter in bone cells under chronic inflammation. Bone 2016, 90, 80–89. [Google Scholar] [CrossRef]
- Vilas-Boas, F.; Fior, R.; Swedlow, J.R.; Storey, K.G.; Henrique, D. A novel reporter of notch signalling indicates regulated and random notch activation during vertebrate neurogenesis. BMC Biol. 2011, 9. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, A.; Kale, V.P. TGF-beta signaling and its role in the regulation of hematopoietic stem cells. Syst. Synth. Biol. 2015, 9, 1–10. [Google Scholar] [CrossRef]
- Keeton, M.R.; Curriden, S.A.; van Zonneveld, A.J.; Loskutoff, D.J. Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor beta. J. Biol. Chem. 1991, 266, 23048–23052. [Google Scholar]
- Dennler, S.; Itoh, S.; Vivien, D.; ten Dijke, P.; Huet, S.; Gauthier, J.M. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 1998, 17, 3091–3100. [Google Scholar] [CrossRef]
- Smaldone, S.; Bigarella, C.L.; Del Solar, M.; Ghaffari, S.; Ramirez, F. Fibrillin-1 microfibrils influence adult bone marrow hematopoiesis. Matrix Biol. 2016, 52-54, 88–94. [Google Scholar] [CrossRef]
- Snyder, A.; Fraser, S.T.; Baron, M.H. Bone morphogenetic proteins in vertebrate hematopoietic development. J. Cell Biochem. 2004, 93, 224–232. [Google Scholar] [CrossRef]
- Arnold, S.J.; Maretto, S.; Islam, A.; Bikoff, E.K.; Robertson, E.J. Dose-dependent Smad1, Smad5 and Smad8 signaling in the early mouse embryo. Dev. Biol. 2006, 296, 104–118. [Google Scholar] [CrossRef]
- Korchynskyi, O.; ten Dijke, P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J. Biol. Chem. 2002, 277, 4883–4891. [Google Scholar] [CrossRef] [PubMed]
- Utsugisawa, T.; Moody, J.L.; Aspling, M.; Nilsson, E.; Carlsson, L.; Karlsson, S. A road map toward defining the role of Smad signaling in hematopoietic stem cells. Stem Cells 2006, 24, 1128–1136. [Google Scholar] [CrossRef] [PubMed]
- Crisan, M.; Kartalaei, P.S.; Vink, C.S.; Yamada-Inagawa, T.; Bollerot, K.; van IJcken, W.; van der Linden, R.; Lopes, S.M.C.D.; Monteiro, R.; Mummery, C.; et al. BMP signalling differentially regulates distinct haematopoietic stem cell types (vol 6, 8040, 2015). Nat. Commun. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Crisan, M.; Kartalaei, P.S.; Neagu, A.; Karkanpouna, S.; Yamada-Inagawa, T.; Purini, C.; Vink, C.S.; van der Linden, R.; van Ijcken, W.; Lopes, S.M.C.D.; et al. BMP and Hedgehog Regulate Distinct AGM Hematopoietic Stem Cells Ex Vivo. Stem Cell Rep. 2016, 6, 383–395. [Google Scholar] [CrossRef] [PubMed]
- Warsi, S.; Blank, U.; Andradottir, S.; Karlsson, S. Non-Canonical Bmp Signaling Is Required for Postnatal Hematopoietic Stem Cell Self-Renewal. Exp. Hematol. 2016, 44, S107. [Google Scholar] [CrossRef]
- Falkenstein, K.N.; Vokes, S.A. Transcriptional regulation of graded Hedgehog signaling. Semin. Cell Dev. Biol. 2014, 33, 73–80. [Google Scholar] [CrossRef]
- Bai, C.Y.B.; Joyner, A.L. Gli1 can rescue the in vivo function of Gli2. Development 2001, 128, 5161–5172. [Google Scholar]
- Bai, C.B.; Stephen, D.; Joyner, A.L. All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Dev. Cell 2004, 6, 103–115. [Google Scholar] [CrossRef]
- Mo, R.; Freer, A.M.; Zinyk, D.L.; Crackower, M.A.; Michaud, J.; Heng, H.H.Q.; Chik, K.W.; Shi, X.M.; Tsui, L.C.; Cheng, S.H.; et al. Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development 1997, 124, 113–123. [Google Scholar]
- Park, H.L.; Bai, C.; Platt, K.A.; Matise, M.P.; Beeghly, A.; Hui, C.C.; Nakashima, M.; Joyner, A.L. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 2000, 127, 1593–1605. [Google Scholar]
- Nolan-Stevaux, O.; Lau, J.; Truitt, M.L.; Chu, G.C.; Hebrok, M.; Fernandez-Zapico, M.E.; Hanahan, D. GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev. 2009, 23, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Noubissi, F.K.; Goswami, S.; Sanek, N.A.; Kawakami, K.; Minamoto, T.; Moser, A.; Grinblat, Y.; Spiegelman, V.S. Wnt signaling stimulates transcriptional outcome of the Hedgehog pathway by stabilizing GLI1 mRNA. Cancer Res. 2009, 69, 8572–8578. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.; Thomaschewski, M.; Warlich, M.; Volz, T.; Cornils, K.; Niebuhr, B.; Tager, M.; Lutgehetmann, M.; Pollok, J.M.; Stocking, C.; et al. RGB marking facilitates multicolor clonal cell tracking. Nat. Med. 2011, 17, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Yu, V.W.C.; Yusuf, R.Z.; Oki, T.; Wu, J.; Saez, B.; Wang, X.; Cook, C.; Baryawno, N.; Ziller, M.J.; Lee, E.; et al. Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells. Cell 2017, 168, 944–945. [Google Scholar] [CrossRef]
- Livet, J.; Weissman, T.A.; Kang, H.; Draft, R.W.; Lu, J.; Bennis, R.A.; Sanes, J.R.; Lichtman, J.W. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 2007, 450, 56–62. [Google Scholar] [CrossRef]
- Malide, D.; Metais, J.Y.; Dunbar, C.E. Dynamic clonal analysis of murine hematopoietic stem and progenitor cells marked by 5 fluorescent proteins using confocal and multiphoton microscopy. Blood 2012, 120, E105–E116. [Google Scholar] [CrossRef]
- Loulier, K.; Barry, R.; Mahou, P.; Le Franc, Y.; Supatto, W.; Matho, K.S.; Ieng, S.; Fouquet, S.; Dupin, E.; Benosman, R.; et al. Multiplex cell and lineage tracking with combinatorial labels. Neuron 2014, 81, 505–520. [Google Scholar] [CrossRef]
- Li, H.; Zhao, C.; Xu, J.; Xu, Y.; Cheng, C.; Liu, Y.; Wang, T.; Du, Y.; Xie, L.; Zhao, J.; et al. Rapid generation of gene-targeted EPS-derived mouse models through tetraploid complementation. Protein Cell 2019, 10, 20–30. [Google Scholar] [CrossRef]
- Cai, D.; Cohen, K.B.; Luo, T.; Lichtman, J.W.; Sanes, J.R. Improved tools for the Brainbow toolbox. Nat. Methods 2013, 10, 540–547. [Google Scholar] [CrossRef]
- Jun, Y.W.; Kim, H.R.; Reo, Y.J.; Dai, M.; Ahn, K.H. Addressing the autofluorescence issue in deep tissue imaging by two-photon microscopy: The significance of far-red emitting dyes. Chem. Sci. 2017, 8, 7696–7704. [Google Scholar] [CrossRef]
- Hulspas, R.; O’Gorman, M.R.; Wood, B.L.; Gratama, J.W.; Sutherland, D.R. Considerations for the control of background fluorescence in clinical flow cytometry. Cytometry B Clin. Cytom. 2009, 76, 355–364. [Google Scholar] [CrossRef]
- Hohn, A.; Grune, T. Lipofuscin: Formation, effects and role of macroautophagy. Redox Biol. 2013, 1, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Snapp, E. Design and use of fluorescent fusion proteins in cell biology. Curr. Protoc. Cell Biol. 2005, 27, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Balleza, E.; Kim, J.M.; Cluzel, P. Systematic characterization of maturation time of fluorescent proteins in living cells. Nat. Methods 2018, 15, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Goedhart, J.; von Stetten, D.; Noirclerc-Savoye, M.; Lelimousin, M.; Joosen, L.; Hink, M.A.; van Weeren, L.; Gadella, T.W., Jr.; Royant, A. Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat. Commun. 2012, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Pan, S.T.; Luo, Q.M.; Zhang, Z.H. Monitoring of dual bio-molecular events using FRET biosensors based on mTagBFP/sfGFP and mVenus/mKO kappa fluorescent protein pairs. Biosens. Bioelectron. 2013, 46, 97–101. [Google Scholar] [CrossRef]
- Mastop, M.; Bindels, D.S.; Shaner, N.C.; Postma, M.; Gadella, T.W.J., Jr.; Goedhart, J. Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2. Sci. Rep. 2017, 7, 1–18. [Google Scholar] [CrossRef]
- Tsutsui, H.; Karasawa, S.; Okamura, Y.; Miyawaki, A. Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat. Methods 2008, 5, 683–685. [Google Scholar] [CrossRef]
- Bindels, D.S.; Haarbosch, L.; van Weeren, L.; Postma, M.; Wieser, K.E.; Mastop, M.; Aumonier, S.; Gotthard, G.; Royant, A.; Hink, M.A.; et al. mScarlet: A bright monomeric red fluorescent protein for cellular imaging. Nat. Methods 2017, 14, 53–56. [Google Scholar] [CrossRef]
- Bruno, E.; Horrigan, S.K.; Van Den Berg, D.; Rozler, E.; Fitting, P.R.; Moss, S.T.; Westbrook, C.; Hoffman, R. The Smad5 gene is involved in the intracellular signaling pathways that mediate the inhibitory effects of transforming growth factor-beta on human hematopoiesis. Blood 1998, 91, 1917–1923. [Google Scholar] [CrossRef]
- Liu, B.; Sun, Y.X.; Jiang, F.Z.; Zhang, S.X.; Wu, Y.; Lan, Y.; Yang, X.; Mao, N. Disruption of Smad5 gene leads to enhanced proliferation of high-proliferative potential precursors during embryonic hematopoiesis. Blood 2003, 101, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Singbrant, S.; Karlsson, G.; Ehinger, M.; Olsson, K.; Jaako, P.; Miharada, K.; Stadtfeld, M.; Graf, T.; Karlsson, S. Canonical BMP signaling is dispensable for hematopoietic stem cell function in both adult and fetal liver hematopoiesis, but essential to preserve colon architecture. Blood 2010, 115, 4689–4698. [Google Scholar] [CrossRef] [PubMed]
- Shaner, N.C.; Lambert, G.G.; Chammas, A.; Ni, Y.H.; Cranfill, P.J.; Baird, M.A.; Sell, B.R.; Allen, J.R.; Day, R.N.; Israelsson, M.; et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 2013, 10, 407–409. [Google Scholar] [CrossRef] [PubMed]
- de Roo, J.J.D.; Vloemans, S.A.; Vrolijk, H.; de Haas, E.F.E.; Staal, F.J.T. Development of an in vivo model to study clonal lineage relationships in hematopoietic cells using Brainbow2.1/Confetti mice. Futur. Sci. OA 2019, 5. [Google Scholar] [CrossRef]
- Erard, M.; Fredj, A.; Pasquier, H.; Beltolngar, D.B.; Bousmah, Y.; Derrien, V.; Vincent, P.; Merola, F. Minimum set of mutations needed to optimize cyan fluorescent proteins for live cell imaging. Mol. Biosyst. 2013, 9, 258–267. [Google Scholar] [CrossRef]
- Bajar, B.T.; Wang, E.S.; Zhang, S.; Lin, M.Z.; Chu, J. A Guide to Fluorescent Protein FRET Pairs. Sensors (Basel) 2016, 16. [Google Scholar] [CrossRef]
- Tajer, P.; Pike-Overzet, K.; Arias, S.; Havenga, M.; Staal, F.J.T. Ex Vivo Expansion of Hematopoietic Stem Cells for Therapeutic Purposes: Lessons from Development and the Niche. Cells-Basel 2019, 8. [Google Scholar] [CrossRef]
- Wiekmeijer, A.S.; Pike-Overzet, K.; Brugman, M.H.; van Eggermond, M.C.J.A.; Cordes, M.; de Haas, E.F.E.; Li, Y.L.; Oole, E.; van IJcken, W.F.J.; Egeler, R.M.; et al. Overexpression of LMO2 causes aberrant human T-Cell development in vivo by three potentially distinct cellular mechanisms. Exp. Hematol. 2016, 44, 838–849. [Google Scholar] [CrossRef]
Signaling Pathway | Reporter Name | Promoter | Gene Construct | Reporter Protein | Hematopoietic Studies | Reference |
---|---|---|---|---|---|---|
Wnt | TOPGAL | minimal c-fos | 3x TCF/Lef binding sites | LacZ (β-galactosidase) | Yes, HSCs | [10] |
Conductin+/LacZ | Axin2 endogenous | Axin2 (8x TCF/Lef binding sites) | nuclear LacZ (β-galactosidase) | Yes, adult HSC biology | [8] | |
Ax2/d2EGFP | Axin2 endogenous | Axin2 (8x TCF/Lef binding sites) | d2EGFP | No | [16] | |
BAT-gal | minimal-TATA box siamois | 7x TCF/Lef binding sites | LacZ (β-galactosidase) | No | [11] | |
TCF/Lef-LacZ | minimal hsp68 | 6x TCF/Lef binding sites | LacZ (β-galactosidase) | No | [12] | |
ins-TOPEGFP and ins-TOPGAL | minimal thymidine kinase (TK) | 6x TCF/Lef binding sites-β-globin HS4 insulators | enhanced GFP or nuclear LacZ (β-galactosidase) | Yes, splenic mature T cells during inflammation state | [15] | |
LEF-EGFP | minimal c-fos | 7 Lef-1 binding sites | enhanced GFP | No | [22] | |
TCF/Lef:H2B-GFP | minimal hsp68 | 6x TCF/Lef binding sites | H2B-GFP | Partial; embryonic primitive erythroid cells; postnatal thymic medulla | [13] | |
Axin2-mTurquoise2 | Axin2 endogenous | Axin2 (8x TCF/Lef binding sites) | mTurquoise2 | No | [18] | |
Axin2P2A-rtTA3-T2A-3xNLS-SGFP2 | Axin2 endogenous | Axin2 (8x TCF/Lef binding sites) | nuclear SGFP2 | No | [20] | |
TOPeGFP | Minimal thymidine kinase (TK) | 6x TCF/Lef binding sites | Enhanced GFP | No | [23] | |
Notch | TNR (Transgenic Notch reporter) | basal SV40 (simian virus) | 4x CBF binding sites | enhanced GFP | Yes, adult HSC biology | [24] |
NAS (Notch Activity Sensor) | minimal TPI (Epstein Barr virus) | 12x CBF binding sites | nuclear LacZ (β-galactosidase) | No, absent signaling in lymphoid tissues | [25] | |
CBF:H2B-Venus | minimal SV40 (simian virus) | 4x CBF binding sites | H2B-Venus | No | [26] | |
Hes1 and Hes5-GFP | Hes1 or Hes5 endogenous | 2x CBF binding sites | destabilized enhanced GFP | No | [27] | |
Hes1-EmGFPSAT | Hes1 endogenous | 2x CBF binding sites | emerald GFP | Yes | [28] | |
TGF-β | CAGA12-eGFP | adenovirus major late promoter (MLP) | 12x CAGA repeats (PAI-1 promoter) | enhanced GFP | No | [29] |
SBE-luc | thymidine kinase (TK) | 12x CAGA repeats (PAI-1 promoter) | Luciferase | No | [30] | |
SBE-lucRT | thymidine kinase (TK) | 12x CAGA repeats (PAI-1 promoter) | Luciferase, RFP and thymidine kinase (trifusion protein) | No | [31] | |
BMP | BRE-lac1, BRE-lac2 and BRE-luc | minimal MLP (adenoviral major late promoter) | 2x BRE binding sites (Id1 promoter) | LacZ (β-galactosidase) or Luciferase | No | [32] |
BRE:gfp | CMV (cytomegalovirus) | 2x BRE binding sites (Id1 promoter) | enhanced GFP | Yes, adult HSC biology | [33] | |
BRE-LacZ | minimal Hspa1a | 2x BRE binding sites (Id1 promoter) | LacZ (β-galactosidase) | No | [34] | |
BRE-GAL | Id3 (Xenopus) | 7x BRE binding sites (Id3 promoter) | nuclear LacZ (β-galactosidase) | No | [35] | |
Hedgehog | Gli1Lz | Gli1 endogenous | Gli1 (Zinc finger) | LacZ (β-galactosidase) | Yes, adult HSC biology | [36,37] |
CNE1, 6, 9, 10 | Human β-globin | Gli3 intronic CNEs | LacZ (β-galactosidase) | No | [38] | |
Gli1CreERT x Rosa26-EGFP | Gli1 endogenous | Gli1 (Zinc finger) | enhanced GFP | No | [39] |
Signaling Pathway | Fluorescent Protein | Oligomerization | Quantum Yield | Maturation Time (minutes) | FRET Pair | Reference |
---|---|---|---|---|---|---|
Wnt | mTurquoise2 | Monomer | 0.93 | 33.5 | mTurquoise2-mVenus | [75,85] |
Notch | mVenus | Monomer | 0.64 | 17.6 | mVenus-mKOκ | [76,86] |
BMP | mKOκ | Monomer | 0.61 | 108 | mKOκ-mTurquoise2 | [77,78] |
TFG-β | mScarlet-I | Monomer | 0.7 | 36 | mTurquoise2-mScarlet-I | [77,79] |
Hedgehog | mNeonGreen | Monomer | 0.8 | 10 | mNeonGreen-mTurquoise2 | [77,83] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Roo, J.J.D.; Staal, F.J.T. Cell Signaling Pathway Reporters in Adult Hematopoietic Stem Cells. Cells 2020, 9, 2264. https://doi.org/10.3390/cells9102264
de Roo JJD, Staal FJT. Cell Signaling Pathway Reporters in Adult Hematopoietic Stem Cells. Cells. 2020; 9(10):2264. https://doi.org/10.3390/cells9102264
Chicago/Turabian Stylede Roo, Jolanda. J.D., and Frank. J.T. Staal. 2020. "Cell Signaling Pathway Reporters in Adult Hematopoietic Stem Cells" Cells 9, no. 10: 2264. https://doi.org/10.3390/cells9102264
APA Stylede Roo, J. J. D., & Staal, F. J. T. (2020). Cell Signaling Pathway Reporters in Adult Hematopoietic Stem Cells. Cells, 9(10), 2264. https://doi.org/10.3390/cells9102264