Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = municipal solid waste incineration plant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 14135 KiB  
Article
Investigation of the Properties of Low Water-to-Solid Ratio Vibro-Press-Formed Alkali-Activated Municipal Solid Waste Incineration Bottom-Ash Concrete
by Gintautas Tamošaitis, Danutė Vaičiukynienė and Diana Bajare
Materials 2025, 18(13), 2926; https://doi.org/10.3390/ma18132926 - 20 Jun 2025
Viewed by 269
Abstract
This work focuses on the use of municipal waste incineration bottom ash (MSWI) for the development and production of products suitable for use as construction products. The generation of these ashes is increasing every year due to the incineration of municipal waste. There [...] Read more.
This work focuses on the use of municipal waste incineration bottom ash (MSWI) for the development and production of products suitable for use as construction products. The generation of these ashes is increasing every year due to the incineration of municipal waste. There are currently three incineration plants operating in major cities in Lithuania. The non-hazardous bottom ash remaining from the incineration process is stored in dedicated sorting and aging sites until it is used as an inert form of aggregate for the installation of road foundations. However, it has been observed that these ashes have a tendency to bind and cement when exposed to atmospheric precipitation at the storage site. Based on this characteristic, it was decided in this study to use alkaline activation of the ash to accelerate the bonding process and to create a dense, non-porous composite concrete structure. This activation method is known to create another problem during ash bonding, where the presence of metallic aluminum particles in the ash leads to the release of hydrogen gas and makes the structure of the cured samples porous. For the purposes of the study, it was decided to create a completely different mixture structure and not to use additional water in the mixtures tested. A very low water/solids ratio (W/S) of <0.08 was used for the alkaline activation of the mixtures. All the water required for ash activation was obtained from sodium silicate and sodium hydroxide solution. Metakaolin waste (MKW) was used to adjust the SiO2/Na2O/Al2O3 ratio of the mixtures. Vibro-pressing was used to form and increase the density of the samples. And for the formation of the concrete structure, 0/4 fraction sand was used as aggregate. The final alkali-activated sample obtained had properties similar to those of the very widely used vibro-pressed cementitious paving tiles and did not exhibit hydrogen evolution during alkali activation due to the very low W/S ratio. The best results were achieved by samples with a highest compressive strength of 40.0 MPa and a tensile strength of 5.60 MPa, as well as a density of 1950 kg/m3. It is believed that this alkaline activation and vibro-pressing method can expand the use of MSWI ash in the development of building products. Full article
(This article belongs to the Special Issue Low-Carbon Construction and Building Materials)
Show Figures

Figure 1

25 pages, 4660 KiB  
Article
CO Emission Prediction Based on Kernel Feature Space Semi-Supervised Concept Drift Detection in Municipal Solid Waste Incineration Process
by Runyu Zhang, Jian Tang and Tianzheng Wang
Sustainability 2025, 17(13), 5672; https://doi.org/10.3390/su17135672 - 20 Jun 2025
Viewed by 321
Abstract
Carbon monoxide (CO) is a toxic pollutant emitted by municipal solid waste incineration (MSWI), which has a strong correlation with dioxins. In terms of the sustainable development of an ecological environment, CO emission concentration is strictly controlled by the environmental departments of various [...] Read more.
Carbon monoxide (CO) is a toxic pollutant emitted by municipal solid waste incineration (MSWI), which has a strong correlation with dioxins. In terms of the sustainable development of an ecological environment, CO emission concentration is strictly controlled by the environmental departments of various countries in the world. The construction of its prediction model is conducive to pollution reduction control. The MSWI process is affected by multi-factors such as MSW component fluctuation, equipment wear and maintenance, and seasonal change, and has complex nonlinear and time-varying characteristics, which makes it difficult for the CO prediction model based on offline historical data to adapt to the above changes. In addition, the continuous emission monitoring system (CEMS) used for conventional pollutant detection has unavoidable misalignment and failure problems. In this article, a novel prediction model of CO emission from the MSWI process based on semi-supervised concept drift (CD) detection in kernel feature space is proposed. Firstly, the CO emission deep prediction model and the kernel feature space detection model are constructed based on offline batched historical data, and the historical data set for the real-time construction of the pseudo-labeling model is obtained. Secondly, the drift detection for the CO emission prediction model is carried out based on real-time data by using unsupervised kernel principal component analysis (KPCA) in terms of feature space. If CD occurs, the pseudo-label model is constructed, the pseudo-truth value is obtained, and the drift sample is confirmed and selected based on the Page–Hinkley (PH) test. If no CD occurs, the CO emission concentration is predicted based on the historical prediction model. Then, the updated data set of the CO emission prediction model and kernel feature space detection is obtained by combining historical samples and drift samples. Finally, the offline history model is updated with a new data set when the preset conditions are met. Based on the real data set of an MSWI power plant in Beijing, the validity of the proposed method is verified. Full article
(This article belongs to the Special Issue Novel and Scalable Technologies for Sustainable Waste Management)
Show Figures

Figure 1

20 pages, 2778 KiB  
Article
Enhancing Utilization of Municipal Solid Waste Bottom Ash by the Stabilization of Heavy Metals
by Filip Kokalj, Vesna Alivojvodić, Luka Lešnik, Nela Petronijević, Dragana Radovanović and Niko Samec
Sustainability 2025, 17(3), 1078; https://doi.org/10.3390/su17031078 - 28 Jan 2025
Cited by 1 | Viewed by 1239
Abstract
Waste-to-energy (WtE) is a key part of modern waste management. In the European Union, approximately 500 WtE plants process more than 100 million tons of waste yearly, while globally, more than 2700 plants handle over 500 million tons. Roughly 20% of the waste [...] Read more.
Waste-to-energy (WtE) is a key part of modern waste management. In the European Union, approximately 500 WtE plants process more than 100 million tons of waste yearly, while globally, more than 2700 plants handle over 500 million tons. Roughly 20% of the waste processed is bottom ash (BA). However, this ash can contain heavy metals in concentrations that may render it hazardous. This paper presents a study focusing on stabilizing municipal solid waste incineration BA using simple and industrially viable treatments. The Slovenian WtE plant operator wishes to install the stabilization process; thus, the samples obtained from the plant were treated (1) with a CO2 gas flow, (2) with water spraying, and (3) with a combination of water spraying and a CO2 gas flow under laboratory conditions. Thermodynamic calculations were applied to define potential reactions during the treatment processes in the temperature range from 0 to 100 °C and to define the equilibrium composition of the treated ash with additions of CO2 and water. The standard leaching test EN 12457-4 of treated ash shows a reduction of over 40% in barium concentration and over 30% in lead concentration in leachates. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

23 pages, 3423 KiB  
Article
Application of a Mixture of Fly Ash and Solid Waste from Gas Treatment from Municipal Solid Waste Incineration in Cement Mortar
by Alina Pietrzak, Malgorzata Ulewicz, Ewa Kozień and Jacek Pietraszek
Materials 2025, 18(3), 481; https://doi.org/10.3390/ma18030481 - 21 Jan 2025
Cited by 2 | Viewed by 907
Abstract
This paper analyzes the effective use of a mixture of fly ash (MSWI-FA) and solid waste from flue gas treatment (MSWI-SW), which are by-products of the municipal waste incineration process. MSWI-FA (19 01 13*) and MSWI-SW (19 01 07*) are classified as hazardous [...] Read more.
This paper analyzes the effective use of a mixture of fly ash (MSWI-FA) and solid waste from flue gas treatment (MSWI-SW), which are by-products of the municipal waste incineration process. MSWI-FA (19 01 13*) and MSWI-SW (19 01 07*) are classified as hazardous waste due to their toxic metal content and leaching potential, and currently lack practical applications, unlike slag and bottom ash (19 01 12). This study tested these wastes as partial substitutes for natural sand within a range of 0–20% of cement mass. Statistical analysis of the experimental results allowed the creation of good quality models predicting the effect of substitution additives on compressive strength and flexural strength (correlation 0.91 and 0.93, respectively). The mixture with the highest share of substitution additives (40% = 20% + 20%) was characterized by a decrease in compressive strength by 1.3% and flexural strength by 25.8%. Cement mortars synthesized with the waste mixture (up to 20% of each component) showed slightly lower consistency and water absorption than the control mortars. After the frost resistance tests (25 cycles), the flexural and compressive strength showed ambiguous behavior, showing both increases and decreases, indicating that the percentage of waste components alone is an insufficient set of factors for predicting these strength properties. The concentration of metal ions, i.e., Zn, Cu, Pb, Ni, Cu, and Cr, in the eluate after the leaching tests did not exceed the legal levels of pollutants introduced into waters, with the exception of barium. However, its content did not exceed the permissible levels required for waste intended for landfill. Using the mixing plant for this waste in the amount of 20% each, we save about EUR 10 in the cost of purchasing sand (which is 13% of the production costs of 1 m3) and EUR 8 in the cost of environmental fees when producing 1 m3 of mortar. The proposed technology is compatible with the objectives of a sustainable economy. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

27 pages, 22816 KiB  
Article
Aqueous Carbonation of Waste Incineration Residues: Comparing BA, FA, and APCr Across Production Scenarios
by Quentin Wehrung, Davide Bernasconi, Enrico Destefanis, Caterina Caviglia, Nadia Curetti, Sara Di Felice, Erica Bicchi, Alessandro Pavese and Linda Pastero
Minerals 2024, 14(12), 1269; https://doi.org/10.3390/min14121269 - 13 Dec 2024
Cited by 1 | Viewed by 2151
Abstract
This study investigates the reactivity of municipal solid waste incineration residues to aqueous carbonation, focusing on CO2 absorption rates, uptakes, and heavy metal (HM) leachability. Various combinations of boiler, electrofilter, and bag filter residues were assessed under typical incineration conditions. Bag filter [...] Read more.
This study investigates the reactivity of municipal solid waste incineration residues to aqueous carbonation, focusing on CO2 absorption rates, uptakes, and heavy metal (HM) leachability. Various combinations of boiler, electrofilter, and bag filter residues were assessed under typical incineration conditions. Bag filter residues from lime-sorbent plants exhibited the highest CO2 uptake (244.5 gCO2/kg), while bottom ash (BA) fine fraction, boiler/electrofilter fly ash (FA), and other mixed air pollution control residue (APCr) demonstrated uptakes of 101, 0, 93, and 167 gCO2/kg, respectively. Carbonation kinetics revealed that high calcium content FA and APCr, followed similar CO2 absorption trends. Notably, BA carbonation was predominantly driven by Ca-aluminates rather than lime. Carbonation reduces leaching of Al, As, Cd, Co, Cu, Ni, Pb and Zn compared to water washing, though significant concerns arise with anions such as Sb and Cr. In BA, critical behaviours of Cr, Mn, and Fe were observed, with Cr leaching likely controlled by Fe-Mn-Cr oxide particle dissolution. These findings highlight the potential of integrating enhanced metal recovery (EMR) through density or magnetic separation in BA prior to carbonation to reduce HM leaching and recycle critical metals (Ag, Cu, Cr, Ni, Mn, etc). Full article
(This article belongs to the Special Issue CO2 Mineralization and Utilization)
Show Figures

Figure 1

20 pages, 11818 KiB  
Article
Destructive Effects of Slag from Municipal Waste Incineration Plants on Cement Composites
by Marta Sybis, Jacek Mądrawski, Wojciech Kostrzewski, Emilia Konował, Zbigniew Walczak and Ireneusz Laks
Materials 2024, 17(22), 5559; https://doi.org/10.3390/ma17225559 - 14 Nov 2024
Viewed by 964
Abstract
The increasing production of solid waste and the scarcity of natural aggregates as a matter of fact have made waste recycling a necessity. One such waste, which is generated in large quantities, is slag. However, slag from incineration plants may contain harmful elements [...] Read more.
The increasing production of solid waste and the scarcity of natural aggregates as a matter of fact have made waste recycling a necessity. One such waste, which is generated in large quantities, is slag. However, slag from incineration plants may contain harmful elements that adversely affect the physical, chemical and mechanical properties of cement composites. This study presents laboratory research results on the effect of slag from the Poznan Municipal Waste Thermal Conversion Plant (Poland) on the physicochemical properties of cement composites. The samples were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It was shown that the slag analyzed contained significant amounts of aluminum, which had a direct effect on the structure of the concrete. An example of this influence is the release of hydrogen during reactions, which causes swelling and cracking of the concrete and reduces its mechanical strength. The authors emphasize that waste aggregate (slag) can be effectively used in the production of concrete after appropriate processing that reduces the risk of adverse effects. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 4731 KiB  
Review
Low-Temperature NH3-SCR Technology for Industrial Application of Waste Incineration: An Overview of Research Progress
by Qiannan Guo, Minghu Zhao, Hongzhao Fan, Rongshu Zhu, Rigang Zhong and Xianxiang Bai
Catalysts 2024, 14(11), 766; https://doi.org/10.3390/catal14110766 - 30 Oct 2024
Cited by 2 | Viewed by 1599
Abstract
Selective catalytic reduction of nitrogen oxides with NH3 (NH3-SCR) was investigated deeper and deeper with poisoning factors such as H2O, SO2, heavy metals, etc. In order to remove the reheating process before the SCR reactor, the [...] Read more.
Selective catalytic reduction of nitrogen oxides with NH3 (NH3-SCR) was investigated deeper and deeper with poisoning factors such as H2O, SO2, heavy metals, etc. In order to remove the reheating process before the SCR reactor, the application trend of NH3-SCR technology in the non-power industry is concentrated on the condition of low temperature even ultra-low temperature. The present study summarizes the research process of SO2 and H2O resistance of NH3-SCR catalysts under low temperatures related to the working conditions of municipal solid waste incineration plants. In detail, the effects of a high content of H2O and low concentration of SO2 are reviewed. Other factors such as heavy metals, alkali, or alkaline earth metals in the reaction system, synergistic removal of NOx, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are addressed. Finally, the catalytic performance of assembled monolithic catalysts and pilot-scale experiments are also analyzed for the possibility of industrial application. Hopefully, in view of the questions outlined in this study, valuable insights could be taken into consideration for the development of NH3-SCR in waste incineration. Full article
(This article belongs to the Special Issue Recent Advances in Environment and Energy Catalysis)
Show Figures

Figure 1

15 pages, 1375 KiB  
Article
Assessing the Environmental Impact of Municipal Waste on Energy Incineration Technology for Power Generation Using Life Cycle Assessment Methodology
by Yiting Luo, Mingqiang Ye, Yihui Zhou, Rongkui Su, Shunhong Huang, Hangqing Wang and Xiangrong Dai
Toxics 2024, 12(11), 786; https://doi.org/10.3390/toxics12110786 - 29 Oct 2024
Cited by 8 | Viewed by 3240
Abstract
The life cycle assessment methodology is a comprehensive environmental impact evaluation approach rooted in the “cradle-to-grave” concept. This study takes a municipal solid waste incineration power plant in central China as an example to comprehensively explore the potential ecological and environmental impacts of [...] Read more.
The life cycle assessment methodology is a comprehensive environmental impact evaluation approach rooted in the “cradle-to-grave” concept. This study takes a municipal solid waste incineration power plant in central China as an example to comprehensively explore the potential ecological and environmental impacts of municipal solid waste incineration power generation through life cycle assessment methods. Burning one ton of waste can recover 7342 joules of thermal energy. Compared with traditional landfill, incineration can reduce greenhouse gas emissions by about 30%, with a potential global warming impact of −0.69 kg of carbon dioxide equivalent. Amongst environmental impacts, land, freshwater, and marine ecosystems possess the greatest potential toxicity, followed by the harmful effects on human health and the influence of ozone-producing photochemical pollution. Lastly, there comes terrestrial acidification, whereas other types of effects can be relatively disregarded in comparison. In the process of waste incineration power generation, the potential impacts of global warming, ionizing radiation, and fossil resource scarcity are less than zero, indicating that this is an environmentally friendly process. In response to the above-mentioned environmental impacts, it is necessary to pay attention to improving incineration efficiency, optimizing leachate treatment, reducing coal use, and controlling acidic gas emissions in the process of urban solid waste incineration power generation. This research offers insights into advancing environmentally sustainable technologies for utilizing waste as an energy resource. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Figure 1

19 pages, 6691 KiB  
Article
Utilization of Municipal Solid Waste Incineration (MSWIFA) in Geopolymer Concrete: A Study on Compressive Strength and Leaching Characteristics
by Qiyong Xu, Ning Shang and Jae Hac Ko
Materials 2024, 17(18), 4609; https://doi.org/10.3390/ma17184609 - 20 Sep 2024
Cited by 1 | Viewed by 1381
Abstract
This study explores the utilization of municipal solid waste incineration fly ash (MSWIFA) in geopolymer concrete, focusing on compressive strength and heavy metal leachability. MSWIFA was sourced from a Shenzhen waste incineration plant and pretreated by washing to remove soluble salts. Geopolymer concrete [...] Read more.
This study explores the utilization of municipal solid waste incineration fly ash (MSWIFA) in geopolymer concrete, focusing on compressive strength and heavy metal leachability. MSWIFA was sourced from a Shenzhen waste incineration plant and pretreated by washing to remove soluble salts. Geopolymer concrete was prepared incorporate with washed or unwashed MSWIFA and tested under different pH conditions (2.88, 4.20, and 10.0). Optimal compressive strength was achieved with a Si/Al ratio of 1.5, water/Na ratio of 10, and sand-binder ratio of 0.6. The washing pretreatment significantly enhanced compressive strength, particularly under alkaline conditions, with GP-WFA (washed MSWIFA) exhibiting a 49.6% increase in compressive strength, compared to a 21.3% increase in GP-FA (unwashed MSWIFA). Additionally, GP-WFA’s compressive strength reached 41.7 MPa, comparable to that of the control (GP-control) at 43.7 MPa. Leaching tests showed that acidic conditions (pH 2.88) promoted heavy metal leaching, which increased over the leaching time, while an alkaline environment significantly reduced the leachability of heavy metals. These findings highlight the potential of using washed MSWIFA in geopolymer concrete, promoting sustainable construction practices, particularly in alkaline conditions. Full article
Show Figures

Figure 1

12 pages, 1505 KiB  
Article
Techno-Economic Assessment of Municipal Solid Waste (MSW) Incineration in Ghana
by Noah Yakah, Augustine Akuoko Kwarteng, Cyrus Addy, Michael Yirenkyi, Andrew Martin and Anthony Simons
Processes 2024, 12(7), 1286; https://doi.org/10.3390/pr12071286 - 21 Jun 2024
Cited by 2 | Viewed by 2500
Abstract
Waste incineration with energy recovery is a matured Waste-to-Energy (WtE) technology which has contributed immensely to the disposal and management of Municipal Solid Waste (MSW) in industrialised nations. The adoption of this technology in developing countries is currently gaining momentum due to the [...] Read more.
Waste incineration with energy recovery is a matured Waste-to-Energy (WtE) technology which has contributed immensely to the disposal and management of Municipal Solid Waste (MSW) in industrialised nations. The adoption of this technology in developing countries is currently gaining momentum due to the numerous benefits that can be derived from its use. In this study, a techno-economic assessment of MSW incineration in proposed waste incineration facilities for use in Ghana was carried out. The technical assessment was conducted by determining the plant capacity and annual electricity production based on the combustible residues of MSW collected from various population sizes in the country, while the economic assessment was carried out by determining two key economic indicators, Net Present Value (NPV) and Levelised Cost of Energy (LCOE). It was found that a total of about 400 MW of electricity can be generated from the total of about 14,000 tonnes of MSW generated in the country daily. The NPV for a 35.81 MW installed capacity of waste incineration facility was found to be USD 166,410,969.24. However, the LCOE for the 35.81 MW capacity and all others considered was greater than the tariff of electricity for their respective capacities, which means waste incineration facilities are not economically viable ventures in Ghana. The implementation of these facilities in the country would, therefore, need governmental support in the form of subsidies and tax rebates. Three locations were proposed for the piloting of waste incineration facilities in the country, and these locations are in the Accra Metropolitan, Asokore-Mampong Metropolitan, and Sekondi-Takoradi Metropolitan Assemblies. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

19 pages, 2537 KiB  
Article
Energy Efficiency Analysis of Waste-to-Energy Plants in Poland
by Marian Banaś, Tadeusz Pająk, Jakub Bator, Wojciech Wróbel and Józef Ciuła
Energies 2024, 17(10), 2390; https://doi.org/10.3390/en17102390 - 16 May 2024
Cited by 8 | Viewed by 3134
Abstract
The issue of enhancing energy recovery efficiency is a key concern within the European Union’s climate protection efforts. In particular, it applies to all processes and plants for the harvesting, gathering, and conversion of energy. The abandonment of fossil fuels in favour of [...] Read more.
The issue of enhancing energy recovery efficiency is a key concern within the European Union’s climate protection efforts. In particular, it applies to all processes and plants for the harvesting, gathering, and conversion of energy. The abandonment of fossil fuels in favour of alternative energy sources, and the increasing of energy efficiency and its recovery, is now a widely accepted direction of energy development. This study focuses on facilities that recover and process energy from municipal waste left after recycling processes, known as waste-to-energy (WtE) plants. These plants’ energy recovery efficiency is governed by the R1 Formula in EU countries. This report is based on an analysis of four years of operational data from selected Polish municipal waste incinerators, supplemented by a discussion of various studies on energy recovery efficiency. The primary objective of this report is to evaluate the effectiveness of these plants in contributing to sustainable waste management and energy recovery. The main effect of the developed report is the set of results of the energy recovery efficiency factor values, determined based on the R1 formula valid in the EU legislation, tabulated and graphically illustrated, and calculated for five selected Polish waste-to-energy plants. The presented results, with their graphical interpretation, discussion, and conclusions, provide insights into several factors influencing the value of the R1 efficiency factor. They can be a valuable contribution to operators of waste-to-energy plants, especially those operating in countries outside the EU. Full article
(This article belongs to the Collection Energy Efficiency and Environmental Issues)
Show Figures

Figure 1

17 pages, 2531 KiB  
Article
Prediction and Feed-In Tariffs of Municipal Solid Waste Generation in Beijing: Based on a GRA-BiLSTM Model
by Xia Zhang and Bingchun Liu
Sustainability 2024, 16(9), 3579; https://doi.org/10.3390/su16093579 - 24 Apr 2024
Cited by 3 | Viewed by 2316
Abstract
To cope with the increasing energy demand of people and solve the problem of a “Garbage Siege”, most cities have begun to adopt waste power generation (WTE). Compared to other WTE technologies, incineration has proven to be the most efficient technology for municipal [...] Read more.
To cope with the increasing energy demand of people and solve the problem of a “Garbage Siege”, most cities have begun to adopt waste power generation (WTE). Compared to other WTE technologies, incineration has proven to be the most efficient technology for municipal solid waste (MSW) treatment. Therefore, to further explore the economic feasibility of MSW incineration plant construction, this study established a multi-factor prediction of MSW generation based on the GRA-BiLSTM model. By fully considering the relationship between the change in feed-in tariff (FIT) and the building of an incineration plant in Beijing, the economic feasibility of building an incineration plant is discussed based on the three scenarios set. The experimental results showed that (1) the combined model based on the GRA-BiLSTM showed good applicability for predicting MSW generation in Beijing, with MAE, MAPE, RMSE, and R2 values of 12.47, 5.97%, 18.5580, and 0.8950, respectively. (2) Based on the three scenarios set, the incineration power generation of Beijing MSW will show varying degrees of growth in 2022–2035. In order to meet future development, Beijing needs to build seven new incinerators, and the incineration rate should reach 100%. (3) According to setting different feed-in tariffs, based on the economic feasibility analysis, it is found that the feed-in tariff of MSW incineration for power generation in Beijing should be no less than $0.522/kWh. The government should encourage the construction of incineration plants and give policy support to enterprises that build incineration plants. Full article
Show Figures

Figure 1

20 pages, 5835 KiB  
Article
Utilization of Municipal Solid Waste Incineration Bottom Ash in Cement-Bound Mixtures
by Szymon Węgliński and Gabriel Martysz
Sustainability 2024, 16(5), 1865; https://doi.org/10.3390/su16051865 - 24 Feb 2024
Cited by 3 | Viewed by 2377
Abstract
In order to protect the natural resources, it is beneficial for the environment when materials that are not valuable, such as waste or recycled materials, are used in engineering. This article presents laboratory studies on the use of mixtures of incineration bottom ash [...] Read more.
In order to protect the natural resources, it is beneficial for the environment when materials that are not valuable, such as waste or recycled materials, are used in engineering. This article presents laboratory studies on the use of mixtures of incineration bottom ash (IBA) from municipal waste incinerators with natural, fine grain and uniform aggregate in cement-bound layers. The mechanical and engineering properties of aggregates were studied, their usefulness was assessed and possible applications are indicated. The chemical composition of the material was found to be consistent with typical IBA from other incineration plants, and leachability studies were carried out, confirming lack of any environmental impact. The authors’ own mixtures were prepared based on optimal water content and maximal dry densities of solid particles, and the compressive strength was calculated after 7 and 28 days of hardening. The results indicate that replacing natural aggregates with IBA permits an increase in the compressive values for the specimens using the same amount of CEM I 42.5R while improving the frost resistance of cement–aggregate mixtures. Full article
Show Figures

Figure 1

21 pages, 4317 KiB  
Article
Mapping Local Synergies: Spatio-Temporal Analysis of Switzerland’s Waste Heat Potentials vs. Heat Demand
by Vanessa Burg, Florent Richardet, Severin Wälty, Ramin Roshandel and Stefanie Hellweg
Energies 2024, 17(1), 106; https://doi.org/10.3390/en17010106 - 24 Dec 2023
Cited by 5 | Viewed by 2012
Abstract
As nations transition to renewable energy, making use of waste heat becomes crucial to combat climate change. This study focused on quantifying Switzerland’s waste heat potential from industrial processes and waste-to-energy facilities, using diverse methodologies tailored to facility characteristics and data availability. We [...] Read more.
As nations transition to renewable energy, making use of waste heat becomes crucial to combat climate change. This study focused on quantifying Switzerland’s waste heat potential from industrial processes and waste-to-energy facilities, using diverse methodologies tailored to facility characteristics and data availability. We assessed potential waste heat utilization by comparing local heat supply and demand, creating comprehensive heat-balance maps considering different temperature levels and seasonal fluctuations. Results revealed a substantial annual waste heat potential of 37 TWh, with almost half (17 TWh) below 45 °C, primarily from wastewater. Heat between 45 °C and 70 °C, ideal, e.g., for greenhouse heating, is mainly available from solid waste incineration plants, while industries contributed to waste heat supply exceeding 150 °C. In contrast to heat demand, seasonal variations in heat supply were small, with a 12% winter decrease. Analyzing heat demand versus supply unveiled local and seasonal disparities. Most municipalities had a net excess heat demand (totaling 89 TWh). Additionally, waste heat could not satisfy 8 TWh of industrial process heat demand exceeding 400 °C, emphasizing reliance on primary energy sources for higher-temperature heat. Targeted strategies are essential for effective waste heat utilization, especially tapping into low-temperature sources. Integrating these sources with low-carbon technologies can pave the way to a sustainable energy future. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

11 pages, 1200 KiB  
Article
Assessment of Zn, Pb and Cd in Soil around an MSW Incineration Plant: Using Risk Assessment and Multivariate Statistical Techniques
by Chunmei Wei, Yanfei Zhang, Xinxin Zuo, Chunyan Wan and Zijian Wang
Processes 2023, 11(11), 3175; https://doi.org/10.3390/pr11113175 - 7 Nov 2023
Cited by 2 | Viewed by 1281
Abstract
To investigate and evaluate the spatial distribution of Zn, Pb and Cd in the soil around a municipal solid waste incineration plant and its ecological risks, Zn, Pb and Cd were analyzed in soil samples around a municipal solid waste incineration plant in [...] Read more.
To investigate and evaluate the spatial distribution of Zn, Pb and Cd in the soil around a municipal solid waste incineration plant and its ecological risks, Zn, Pb and Cd were analyzed in soil samples around a municipal solid waste incineration plant in Chengdu, Sichuan Province, China. The results revealed that the average content of Zn and Pb did not exceed the soil environmental quality value for the risk control standard for soil contamination of agricultural land (GB15618-2018), but the average content of Cd in the soil was higher than this standard. Multivariate statistical analysis indicated that Cd was the predominant pollutant and had strong correlations with Zn and Pb. The Cd content was most impacted by human activities, which also explained that this municipal solid waste incineration plant has little effect on Zn, Pb and Cd in the surrounding soil. The geo-accumulation index decreased in the order of Cd > Zn > Pb, and the geo-accumulation index of Cd was greater than 5, indicating that the pollution level for Cd was extremely heavy. The comprehensive potential ecological risk index (RI) of various heavy metals was greater than 1200, And the potential ecological risk level of the study area was high. The contribution rate of Cd to RI was relatively large, and Cd pollution should be paid more attention to. Full article
(This article belongs to the Special Issue Advances in Waste Management and Treatment of Biodegradable Waste)
Show Figures

Figure 1

Back to TopTop