Mapping Local Synergies: Spatio-Temporal Analysis of Switzerland’s Waste Heat Potentials vs. Heat Demand
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Framework and System Boundaries
2.2. Assessment of the Heat Demand
2.2.1. Industries
2.2.2. Waste-to-Energy Facilities
2.2.3. Wastewater Treatment Plants
2.2.4. Space Heating
2.2.5. Hot Water
2.3. Assessment of Waste Heat Supply Potentials
2.3.1. Industries
2.3.2. Waste-to-Energy Facilities
2.3.3. Wastewater Treatment Plants
3. Results
3.1. Heat Demand
3.2. Waste Heat Supply Potentials
3.3. Heat Balance
3.3.1. Overall Heat Balance
3.3.2. Seasonal Heat Balance
3.3.3. Heat Balance Patterns across Different Temperature Ranges
4. Discussion
4.1. Exploring Waste Heat Potentials and Heat Demand Dynamics
4.2. Practical Implications of Our Methodology and Results
4.3. Limitations and Future Research Needs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forman, C.; Muritala, I.K.; Pardemann, R.; Meyer, B. Estimating the global waste heat potential. Renew. Sustain. Energy Rev. 2016, 57, 1568–1579. [Google Scholar] [CrossRef]
- UNFCCC, S. Report of the Conference of the Parties on its Twenty-First Session, Held in Paris from 30 November to 13 December 2015. Addendum. Part Two: Action Taken by the Conference of the Parties at its Twenty-First Session; United Nations Office at Geneva: Geneva, Switzerland, 2016.
- Garofalo, E.; Bevione, M.; Cecchini, L.; Mattiussi, F.; Chiolerio, A. Waste heat to power: Technologies, current applications, and future potential. Energy Technol. 2020, 8, 2000413. [Google Scholar] [CrossRef]
- Miró, L.; Brückner, S.; Cabeza, L.F. Mapping and discussing Industrial Waste Heat (IWH) potentials for different countries. Renew. Sustain. Energy Rev. 2015, 51, 847–855. [Google Scholar] [CrossRef]
- Brueckner, S.; Miró, L.; Cabeza, L.F.; Pehnt, M.; Laevemann, E. Methods to estimate the industrial waste heat potential of regions–A categorization and literature review. Renew. Sustain. Energy Rev. 2014, 38, 164–171. [Google Scholar] [CrossRef]
- Luberti, M.; Gowans, R.; Finn, P.; Santori, G. An estimate of the ultralow waste heat available in the European Union. Energy 2022, 238, 121967. [Google Scholar] [CrossRef]
- Hammond, G.; Norman, J. Heat recovery opportunities in UK industry. Appl. Energy 2014, 116, 387–397. [Google Scholar] [CrossRef]
- Larrinaga, P.; Campos-Celador, A.; Legarreta, J.; Diarce, G. Evaluation of the theoretical, technical and economic potential of industrial waste heat recovery in the Basque Country. J. Clean. Prod. 2021, 312, 127494. [Google Scholar] [CrossRef]
- Giordano, L.; Benedetti, M.; Salvio, M. Estimating the Potential for Waste Heat Recovery in Italian Dairy Sector Using a Bottom-Up Approach and Data from Energy Audits. Sustainability 2023, 15, 9719. [Google Scholar] [CrossRef]
- Moser, S.; Jauschnik, G. Using Industrial Waste Heat in District Heating: Insights on Effective Project Initiation and Business Models. Sustainability 2023, 15, 10559. [Google Scholar] [CrossRef]
- Albert, M.D.; Bennett, K.O.; Adams, C.A.; Gluyas, J.G. Waste heat mapping: A UK study. Renew. Sustain. Energy Rev. 2022, 160, 112230. [Google Scholar] [CrossRef]
- Dénarié, A.; Fattori, F.; Spirito, G.; Macchi, S.; Cirillo, V.F.; Motta, M.; Persson, U. Assessment of waste and renewable heat recovery in DH through GIS mapping: The national potential in Italy. Smart Energy 2021, 1, 100008. [Google Scholar] [CrossRef]
- SFOE. Swiss Overall Energy Statistics 2022. 2023, p. 72. Available online: https://www.bfe.admin.ch/bfe/en/home/supply/statistics-and-geodata/energy-statistics/overall-energy-statistics.html (accessed on 1 July 2023).
- Arpagaus, C.; Bertsch, S. Industrial Heat Pumps in Switzerland-Application Potentials and Case Studies. Bern CH Swiss Fed. Off. Energy 2020, 74p. Available online: https://www.aramis.admin.ch/Default?DocumentID=66033&Load=true (accessed on 1 December 2023).
- Zuberi, M.J.S.; Bless, F.; Chambers, J.; Arpagaus, C.; Bertsch, S.S.; Patel, M.K. Excess heat recovery: An invisible energy resource for the Swiss industry sector. Appl. Energy 2018, 228, 390–408. [Google Scholar] [CrossRef]
- Chambers, J.; Zuberi, S.; Jibran, M.; Narula, K.; Patel, M.K. Spatiotemporal analysis of industrial excess heat supply for district heat networks in Switzerland. Energy 2020, 192, 116705. [Google Scholar] [CrossRef]
- Mahon, H.; O’Connor, D.; Friedrich, D.; Hughes, B. A review of thermal energy storage technologies for seasonal loops. Energy 2022, 239, 122207. [Google Scholar] [CrossRef]
- Sres, A.; Nussbaumer, T. Weissbuch Fernwärme Schweiz–VFS Strategie Langfristperspektiven für erneuerbare und energieeffiziente Nah-und Fernwärme in der Schweiz. Schlussber. Phase 2014, 2, 109372. [Google Scholar]
- FSO. SwissBOUNDARIES3D, Administrative Units of Switzerland, Municipal Boundaries. In ag-b-00.03-875-gg23 ed. 2023. Available online: https://www.swisstopo.admin.ch/en/geodata/landscape/boundaries3d.html (accessed on 1 December 2023).
- Mohr, L.; Burg, V.; Thees, O.; Trutnevyte, E. Spatial hot spots and clusters of bioenergy combined with socio-economic analysis in Switzerland. Renew. Energy 2019, 140, 840–851. [Google Scholar] [CrossRef]
- KEZO. Hinwil, Fernwärme Zürcher Oberland. Press Release. 2022. Available online: https://2028.kezo.ch/fileadmin/user_upload/KEZO2028/Downloads/Medienmitteilung_Fernwaerme_Zuercher_Oberland.pdf (accessed on 1 December 2023).
- SFOE Analyse des Schweizerischen Energieverbrauchs 2000–2021 Nach Verwendungszwecken. 2022, p. 101. Available online: https://www.bfe.admin.ch/bfe/de/home/versorgung/statistik-und-geodaten/energiestatistiken/energieverbrauch-nach-verwendungszweck.exturl.html/aHR0cHM6Ly9wdWJkYi5iZmUuYWRtaW4uY2gvZGUvcHVibGljYX/Rpb24vZG93bmxvYWQvMTExNDQ=.html (accessed on 1 December 2023).
- SFOE. Energieverbrauch in der Industrie Und Im Dienstleistungssektor. 2022, p. 80. Available online: https://pubdb.bfe.admin.ch/de/publication/download/10988 (accessed on 1 December 2023).
- FSO. STATENT—Statistik der Unternehmensstruktur, Beschäftigte und Arbeitsstätten: Geodata 2020. Available online: https://www.bfs.admin.ch/bfs/de/home/dienstleistungen/geostat/geodaten-bundesstatistik/arbeitsstaetten-beschaeftigung/statistik-unternehmensstruktur-statent-ab-2011.html (accessed on 1 December 2023).
- Cemsuisse. Jahresbericht und Kennzahlen 2023. 2023, p. 19. Available online: https://www.cemsuisse.ch/jahresberichte/ (accessed on 1 December 2023).
- Rytec, A. Einheitliche Heizwert- und Energiekennzahlenberechnung der Schweizer KVA Nach Europäischem Standardverfahren. 2022, p. 30. Available online: https://rytec.ch/kva-bericht-2022-veroeffentlicht/ (accessed on 1 December 2023).
- Buffat, R.; Froemelt, A.; Heeren, N.; Raubal, M.; Hellweg, S. Big data GIS analysis for novel approaches in building stock modelling. Appl. Energy 2017, 208, 277–290. [Google Scholar] [CrossRef]
- Buffat, R. Pyheat: A Library to Model the Heat Demand of Buildings. 2020. Available online: https://github.com/rbuffat/pyheat (accessed on 1 December 2023).
- Nussbaumer, T.; Thalmann, S.; Jenni, A.; Ködel, J. Handbook on Planning of District Heating Networks; Swiss Federal Office of Energy: Bern, Switzerland, 2020.
- FSO. Population and Household Statistics (STATPOP). Spatial Data. 2021. Available online: https://www.bfs.admin.ch/bfs/en/home/statistics/population/surveys/statpop.html (accessed on 1 December 2023).
- Engelbrecht, J.; Ritchie, M.J.; Booysen, M. Optimal schedule and temperature control of stratified water heaters. Energy Sustain. Dev. 2021, 62, 67–81. [Google Scholar] [CrossRef]
- Pehnt, M.; Bödeker, J.; Arens, M.; Jochem, E.; Idrissova, F. Die Nutzung Industrieller Abwärme-Technisch-Wirtschaftliche Potenziale und Energiepolitische Umsetzung. 2010, p. 49. Available online: https://www.ifeu.de/fileadmin/uploads/Nutzung_industrieller_Abwaerme.pdf (accessed on 1 December 2023).
- Sollesnes, G.; Helgerud, H.E. Survey of Potentials for Exploitation of Waste Heat from Norwegian Industry; Potensialstudie for Utnyttelse av Spillvarme fra Norsk Industri. 2009; p. 73. Available online: https://www.osti.gov/etdeweb/biblio/952328 (accessed on 1 December 2023).
- Hepberger, M. Energiegewinnung aus Abwärme im Zementwerk Untervaz. 2012, p. 16. Available online: https://ethikforum.files.wordpress.com/2012/12/ethik-forum-2012_hepberger.pdf (accessed on 1 December 2023).
- Hochwartner, R. Innovative Niedertemperatur– und Abwärmenutzung im Zementherstellungsprozess unter Einsatz der Absorptionstechnik. 2020, p. 36. Available online: https://energieforschung.at/projekt/inazement-innovative-niedertemperatur-und-abwaermenutzung-im-zementherstellungsprozess-unter-einsatz-der-absorptionstechnik/ (accessed on 1 December 2023).
- KEZO, A. Produkte: KEZO Hinwil. 2023. Available online: https://www.kezo.ch/technik/produkte (accessed on 1 December 2023).
- Rytec, E. Transformation der Abfallverwertung Schweiz für Eine Hohe und Zeitlich Optimierte Energieausnutzung. 2014, p. 115. Available online: https://pubdb.bfe.admin.ch/de/publication/download/7543 (accessed on 1 December 2023).
- SFOE. Swiss Renewable Energy Statistics 2022. 2023, p. 85. Available online: https://www.bfe.admin.ch/bfe/de/home/versorgung/statistik-und-geodaten/energiestatistiken/teilstatistiken.exturl.html/aHR0cHM6Ly9wdWJkYi5iZmUuYWRtaW4uY2gvZGUvcHVibGljYX/Rpb24vZG93bmxvYWQvMTE1MDk=.html (accessed on 1 December 2023).
- SFOE. Biogas Plants. 2020. Available online: https://opendata.swiss/de/dataset/biogasanlagen (accessed on 1 December 2023).
- Utiger, A.; Wellinger, A.; Trachsel, D.; Scharfy, D.; Leon, J.; Schaller, L.; Zeyer, S.; Anspach, V.; Membrez, Y. Leitfaden «Abwärmenutzung auf Biogasanlagen»; Im Auftrag von Energieschweiz: 2019. 2019, p. 60. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi_s7LU55yDAxX_SPEDHYfaDsAQFnoECBYQAQ&url=https%3A%2F%2Fpubdb.bfe.admin.ch%2Fde%2Fpublication%2Fdownload%2F9745&usg=AOvVaw0eVdikTLu9qHbmU2hlg9HK&opi=89978449 (accessed on 1 December 2023).
- Burg, V.; Rolli, C.; Schnorf, V.; Scharfy, D.; Anspach, V.; Bowman, G. Agricultural biogas plants as a hub to foster circular economy and bioenergy: An assessment using substance and energy flow analysis. Resour. Conserv. Recycl. 2023, 190, 106770. [Google Scholar] [CrossRef]
- VSA Kosten und Leistungen der Abwasserentsorgung. 2023, p. 60. Available online: https://vsa.ch/Mediathek/kosten-und-leistungen-der-abwasserentsorgung-2 (accessed on 1 December 2023).
- SFOE. Potential Heat Recovery from Wastewater Treatment Plants. 2022, p. 1. Available online: https://www.bfe.admin.ch/bfe/en/home/supply/statistics-and-geodata/geoinformation/geodata/water/potential-heat-recovery-from-wwtps.html (accessed on 1 December 2023).
- Hungerbühler, E. Anleitung zur Analyse des Energieverbrauchs in Abwasserreinigungsanlagen des Kantons Zürich. 2009, p. 33. Available online: https://www.zh.ch/content/dam/zhweb/bilder-dokumente/themen/umwelt-tiere/energie/grossverbraucher/energieanalyse-ara/anleitung_zur_analyse_des_energieverbrauchs_in_abwassreinigungsanlagen.pdf (accessed on 1 December 2023).
- Rezaei, F.; Burg, V.; Pfister, S.; Hellweg, S.; Roshandel, R. Spatial Optimization of Industrial Symbiosis for Heat Supply of Agricultural greenhouses. 2023. Under review. [Google Scholar]
- Eicher&Pauli. Abwärmenutzung von Rechenzentren: Potenzialstudie und Empfehlungen für Betreiber und Gemeinden. 2023, p. 46. Available online: https://infrawatt.ch/abwaermenutzung-von-rechenzentren-potenzialstudie-und-empfehlungen-fuer-betreiber-und-gemeinden/ (accessed on 1 December 2023).
- Kanton Aargau, Baudirektion. Abwasserwärmenutzung im Kanton Aargau, Potentiale in den Einzugsgebieten Geeigneter Abwasserreinigungsanlagen. 2015, p. 25. Available online: https://www.ag.ch/media/kanton-aargau/bvu/umwelt-natur/abwasser/afu-bericht-abwasserwaermenutzung.pdf (accessed on 1 December 2023).
- Kanton Zürich, Baudirektion. Energieeffizienz auf Zürcher ARA. 2020, p. 26. Available online: https://www.zh.ch/content/dam/zhweb/bilder-dokumente/themen/umwelt-tiere/wasser-gewaesser/gewaesserschutz/abwasserreinigungsanlagen-ara/themen-und-projekte/energie_auf_zuercher_ara_2020.pdf (accessed on 1 December 2023).
- Alt-Harnack, C.; Fanegas, A.; Loy, D.; Schalk, C.; Zumbusch, M.; Mecke, M.; Funk Albancando, Y.; Priem, M.; Jansen, U.; Nanning, S. Empfehlung zur Weiterentwicklung des Berliner Energie-und Klimaschutzprogramms 2030; Umsetzungszeitraum 2022 bis 2026. 2023. Available online: https://epub.wupperinst.org/frontdoor/index/index/docId/8149 (accessed on 1 December 2023).
- Hadengue, B.; Joshi, P.; Figueroa, A.; Larsen, T.A.; Blumensaat, F. In-building heat recovery mitigates adverse temperature effects on biological wastewater treatment: A network-scale analysis of thermal-hydraulics in sewers. Water Res. 2021, 204, 117552. [Google Scholar] [CrossRef] [PubMed]
- SBV. Statistische Erhebungen und Schätzungen über Landwirtschaft und Ernährung; Agristat. 2021; p. 256. Available online: https://www.sbv-usp.ch/fileadmin/user_upload/SES_2021-98.pdf (accessed on 1 December 2023).
- Camps, C.; Tran, D.; Farinet, R. Culture décalée de tomates en serre; Évaluation de l’éclairage LED et de la consommation énergétique. Agroscope Sci. 2023, 153, 1–16. [Google Scholar]
- SFOE. Energieperspektiven 2050+. 2020, p. 112. Available online: https://www.bfe.admin.ch/bfe/fr/home/politik/energieperspektiven-2050-plus.exturl.html/aHR0cHM6Ly9wdWJkYi5iZmUuYWRtaW4uY2gvZnIvcHVibGljYX/Rpb24vZG93bmxvYWQvMTAzMjM=.html (accessed on 1 December 2023).
- Lutz, L.M.; Lang, D.J.; von Wehrden, H. Facilitating Regional Energy Transition Strategies: Toward a Typology of Regions. Sustainability 2017, 9, 1560. [Google Scholar] [CrossRef]
- CREM. Identification des Rejets Thermiques Industriels en Valais. 2012, p. 62. Available online: https://www.vs.ch/documents/87616/667843/Identification+des+rejets+thermiques+industriels+en+Valais.pdf/bda20dba-1230-45e0-a5f5-ba2a96bbd553?t=1374651579036&v=1.0 (accessed on 1 December 2023).
- Swissinfo. Tamoil Schliesst Voraussichtlich Raffinerie im Wallis. Keystone-SDA. Press Release. 2015. Available online: https://www.swissinfo.ch/ger/alle-news-in-kuerze/tamoil-schliesst-voraussichtlich-raffinerie-im-wallis/41214126 (accessed on 1 December 2023).
- U.S. Department of Energy’s. Energy Intensity Baselining and Tracking Guidance. 2015; p. 56. Available online: https://www.energy.gov/eere/amo/articles/energy-intensity-baselining-and-tracking-guidance (accessed on 1 December 2023).
- Ramsheva, Y.K.; Prosman, E.J.; Wæhrens, B.V. Dare to make investments in industrial symbiosis? A conceptual framework and research agenda for developing trust. J. Clean. Prod. 2019, 223, 989–997. [Google Scholar] [CrossRef]
- Trutnevyte, E.; Stauffacher, M.; Schlegel, M.; Scholz, R.W. Context-specific energy strategies: Coupling energy system visions with feasible implementation scenarios. Environ. Sci. Technol. 2012, 46, 9240–9248. [Google Scholar] [CrossRef]
- Holcim Zementwerk Untervaz. Available online: www.holcim.ch/de/zementwerk-untervaz (accessed on 1 December 2023).
- Holcim. Umweltdaten 2020. 2020. 15p. Available online: https://www.holcim.ch/de (accessed on 1 December 2023).
- Holcim Zementwerk Siggenthal. Available online: https://www.holcim.ch/de/zementwerk-siggenthal (accessed on 1 December 2023).
- Jura Zement Ist Unsere Leidenschaft: Portrait Jura Cement. Available online: https://www.juramaterials.ch/de/ueber-uns/standorte-kontakte/jura-cement-fabriken-ag/portraet/portraet-juracement.html (accessed on 1 December 2023).
- Jura Nachhaltigkeit in der Produktion. Available online: https://www.juramaterials.ch/de/nachhaltigkeit/nachhaltigkeit-produktion/energie.html (accessed on 1 December 2023).
- Vigier, C. Lösungen aus Leidenschaft. Available online: https://www.vigier-ciment.ch (accessed on 1 December 2023).
- Jura Zement ist unsere Leidenschaft: Portrait Juracime S.A. Available online: https://www.juramaterials.ch/de/uns/standorte-kontakte/juracime-s-a/portraet/portraet-juracime.html (accessed on 1 December 2023).
- Holcim Cimenterie Eclépens. Available online: https://www.holcim.ch/fr/cimenterie-eclepens (accessed on 1 December 2023).
- Biomasse Suisse, A.U. Wärme aus Biogas—Naheliegend. In 7. Bioenergie-Forum; Biomasse Suisse: Bern, Switzerland, 2019. [Google Scholar]
<70 °C [TWh] | 70–150 °C [TWh] | 150–400 °C [TWh] | >400 °C [TWh] | Total [TWh] | ||
---|---|---|---|---|---|---|
Space heating | Total | 0 | 69.34 | 0 | 0 | 69.34 |
Share | 87% | 0% | 0% | 78% | ||
Water heating | Total | 0 | 7.34 | 0 | 0 | 7.34 |
Share | 9% | 0% | 0% | 8% | ||
Industries | Total | 0 | 2.92 | 1.57 | 7.69 | 12.18 |
Share | 4% | 100% | 100% | 14% | ||
Waste-To- Energy Plants (MSWIs) | Total | 0 | 0 | 0 | 0.02 | 0.02 |
Share | 0 | 0 | 0 | 0 | ||
WWTPs | Total | 0 | 0.06 | 0 | 0 | 0.06 |
Share | 0% | 0% | 0% | 0% | ||
Total | Total | 0 | 79.67 | 1.57 | 7.71 | 88.95 |
Share | 100% | 100% | 100% | 100% |
<45 °C [TWh] | 45–70 °C [TWh] | 70–150 °C [TWh] | 150–400 °C [TWh] | Total [TWh] | ||
---|---|---|---|---|---|---|
Industries | Other industries | 1.78 | 3.13 | 1.67 | 3.35 | 9.94 |
Cement plants | 0 | 0.05 | 0.28 | 0.32 | 0.64 | |
Total | 1.78 | 3.18 | 1.95 | 3.67 | 10.58 | |
Share | 11% | 28% | 49% | 81% | 29% | |
Waste-to-energy plants | MSWIs | 0 | 7.87 | 1.97 | 0.87 | 10.7 |
Biogas facilities | 0 | 0.16 | 0.05 | 0 | 0.21 | |
Total | 0 | 8.03 | 2.02 | 0.87 | 10.92 | |
Share | 0% | 72% | 51% | 19% | 30% | |
WWTPs | Total | 15 | 0 | 0.03 | 0 | 15.03 |
Share | 89% | 0% | 1% | 0% | 41% | |
Total | Total | 16.78 | 11.21 | 4 | 4.53 | 36.52 |
Share | 100% | 100% | 100% | 100% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burg, V.; Richardet, F.; Wälty, S.; Roshandel, R.; Hellweg, S. Mapping Local Synergies: Spatio-Temporal Analysis of Switzerland’s Waste Heat Potentials vs. Heat Demand. Energies 2024, 17, 106. https://doi.org/10.3390/en17010106
Burg V, Richardet F, Wälty S, Roshandel R, Hellweg S. Mapping Local Synergies: Spatio-Temporal Analysis of Switzerland’s Waste Heat Potentials vs. Heat Demand. Energies. 2024; 17(1):106. https://doi.org/10.3390/en17010106
Chicago/Turabian StyleBurg, Vanessa, Florent Richardet, Severin Wälty, Ramin Roshandel, and Stefanie Hellweg. 2024. "Mapping Local Synergies: Spatio-Temporal Analysis of Switzerland’s Waste Heat Potentials vs. Heat Demand" Energies 17, no. 1: 106. https://doi.org/10.3390/en17010106
APA StyleBurg, V., Richardet, F., Wälty, S., Roshandel, R., & Hellweg, S. (2024). Mapping Local Synergies: Spatio-Temporal Analysis of Switzerland’s Waste Heat Potentials vs. Heat Demand. Energies, 17(1), 106. https://doi.org/10.3390/en17010106