Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (925)

Search Parameters:
Keywords = multispectral reflectance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5340 KiB  
Article
Potential of Multi-Source Multispectral vs. Hyperspectral Remote Sensing for Winter Wheat Nitrogen Monitoring
by Xiaokai Chen, Yuxin Miao, Krzysztof Kusnierek, Fenling Li, Chao Wang, Botai Shi, Fei Wu, Qingrui Chang and Kang Yu
Remote Sens. 2025, 17(15), 2666; https://doi.org/10.3390/rs17152666 (registering DOI) - 1 Aug 2025
Abstract
Timely and accurate monitoring of crop nitrogen (N) status is essential for precision agriculture. UAV-based hyperspectral remote sensing offers high-resolution data for estimating plant nitrogen concentration (PNC), but its cost and complexity limit large-scale application. This study compares the performance of UAV hyperspectral [...] Read more.
Timely and accurate monitoring of crop nitrogen (N) status is essential for precision agriculture. UAV-based hyperspectral remote sensing offers high-resolution data for estimating plant nitrogen concentration (PNC), but its cost and complexity limit large-scale application. This study compares the performance of UAV hyperspectral data (S185 sensor) with simulated multispectral data from DJI Phantom 4 Multispectral (P4M), PlanetScope (PS), and Sentinel-2A (S2) in estimating winter wheat PNC. Spectral data were collected across six growth stages over two seasons and resampled to match the spectral characteristics of the three multispectral sensors. Three variable selection strategies (one-dimensional (1D) spectral reflectance, optimized two-dimensional (2D), and three-dimensional (3D) spectral indices) were combined with Random Forest Regression (RFR), Support Vector Machine Regression (SVMR), and Partial Least Squares Regression (PLSR) to build PNC prediction models. Results showed that, while hyperspectral data yielded slightly higher accuracy, optimized multispectral indices, particularly from PS and S2, achieved comparable performance. Among models, SVM and RFR showed consistent effectiveness across strategies. These findings highlight the potential of low-cost multispectral platforms for practical crop N monitoring. Future work should validate these models using real satellite imagery and explore multi-source data fusion with advanced learning algorithms. Full article
(This article belongs to the Special Issue Perspectives of Remote Sensing for Precision Agriculture)
29 pages, 5503 KiB  
Article
Feature Selection Framework for Improved UAV-Based Detection of Solenopsis invicta Mounds in Agricultural Landscapes
by Chun-Han Shih, Cheng-En Song, Su-Fen Wang and Chung-Chi Lin
Insects 2025, 16(8), 793; https://doi.org/10.3390/insects16080793 (registering DOI) - 31 Jul 2025
Abstract
The red imported fire ant (RIFA; Solenopsis invicta) is an invasive species that severely threatens ecology, agriculture, and public health in Taiwan. In this study, the feasibility of applying multispectral imagery captured by unmanned aerial vehicles (UAVs) to detect red fire ant [...] Read more.
The red imported fire ant (RIFA; Solenopsis invicta) is an invasive species that severely threatens ecology, agriculture, and public health in Taiwan. In this study, the feasibility of applying multispectral imagery captured by unmanned aerial vehicles (UAVs) to detect red fire ant mounds was evaluated in Fenlin Township, Hualien, Taiwan. A DJI Phantom 4 multispectral drone collected reflectance in five bands (blue, green, red, red-edge, and near-infrared), derived indices (normalized difference vegetation index, NDVI, soil-adjusted vegetation index, SAVI, and photochemical pigment reflectance index, PPR), and textural features. According to analysis of variance F-scores and random forest recursive feature elimination, vegetation indices and spectral features (e.g., NDVI, NIR, SAVI, and PPR) were the most significant predictors of ecological characteristics such as vegetation density and soil visibility. Texture features exhibited moderate importance and the potential to capture intricate spatial patterns in nonlinear models. Despite limitations in the analytics, including trade-offs related to flight height and environmental variability, the study findings suggest that UAVs are an inexpensive, high-precision means of obtaining multispectral data for RIFA monitoring. These findings can be used to develop efficient mass-detection protocols for integrated pest control, with broader implications for invasive species monitoring. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Figure 1

22 pages, 12611 KiB  
Article
Banana Fusarium Wilt Recognition Based on UAV Multi-Spectral Imagery and Automatically Constructed Enhanced Features
by Ye Su, Longlong Zhao, Huichun Ye, Wenjiang Huang, Xiaoli Li, Hongzhong Li, Jinsong Chen, Weiping Kong and Biyao Zhang
Agronomy 2025, 15(8), 1837; https://doi.org/10.3390/agronomy15081837 - 29 Jul 2025
Viewed by 102
Abstract
Banana Fusarium wilt (BFW, also known as Panama disease) is a highly infectious and destructive disease that threatens global banana production, requiring early recognition for timely prevention and control. Current monitoring methods primarily rely on continuous variable features—such as band reflectances (BRs) and [...] Read more.
Banana Fusarium wilt (BFW, also known as Panama disease) is a highly infectious and destructive disease that threatens global banana production, requiring early recognition for timely prevention and control. Current monitoring methods primarily rely on continuous variable features—such as band reflectances (BRs) and vegetation indices (VIs)—collectively referred to as basic features (BFs)—which are prone to noise during the early stages of infection and struggle to capture subtle spectral variations, thus limiting the recognition accuracy. To address this limitation, this study proposes a discretized enhanced feature (EF) construction method, the automated kernel density segmentation-based feature construction algorithm (AutoKDFC). By analyzing the differences in the kernel density distributions between healthy and diseased samples, the AutoKDFC automatically determines the optimal segmentation threshold, converting continuous BFs into binary features with higher discriminative power for early-stage recognition. Using UAV-based multi-spectral imagery, BFW recognition models are developed and tested with the random forest (RF), support vector machine (SVM), and Gaussian naïve Bayes (GNB) algorithms. The results show that EFs exhibit significantly stronger correlations with BFW’s presence than original BFs. Feature importance analysis via RF further confirms that EFs contribute more to the model performance, with VI-derived features outperforming BR-based ones. The integration of EFs results in average performance gains of 0.88%, 2.61%, and 3.07% for RF, SVM, and GNB, respectively, with SVM achieving the best performance, averaging over 90%. Additionally, the generated BFW distribution map closely aligns with ground observations and captures spectral changes linked to disease progression, validating the method’s practical utility. Overall, the proposed AutoKDFC method demonstrates high effectiveness and generalizability for BFW recognition. Its core concept of “automatic feature enhancement” has strong potential for broader applications in crop disease monitoring and supports the development of intelligent early warning systems in plant health management. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

25 pages, 5776 KiB  
Article
Early Detection of Herbicide-Induced Tree Stress Using UAV-Based Multispectral and Hyperspectral Imagery
by Russell Main, Mark Jayson B. Felix, Michael S. Watt and Robin J. L. Hartley
Forests 2025, 16(8), 1240; https://doi.org/10.3390/f16081240 - 28 Jul 2025
Viewed by 296
Abstract
There is growing interest in the use of herbicide for the silvicultural practice of tree thinning (i.e., chemical thinning or e-thinning) in New Zealand. Potential benefits of this approach include improved stability of the standing crop in high winds, and safer and lower-cost [...] Read more.
There is growing interest in the use of herbicide for the silvicultural practice of tree thinning (i.e., chemical thinning or e-thinning) in New Zealand. Potential benefits of this approach include improved stability of the standing crop in high winds, and safer and lower-cost operations, particularly in steep or remote terrain. As uptake grows, tools for monitoring treatment effectiveness, particularly during the early stages of stress, will become increasingly important. This study evaluated the use of UAV-based multispectral and hyperspectral imagery to detect early herbicide-induced stress in a nine-year-old radiata pine (Pinus radiata D. Don) plantation, based on temporal changes in crown spectral signatures following treatment with metsulfuron-methyl. A staggered-treatment design was used, in which herbicide was applied to a subset of trees in six blocks over several weeks. This staggered design allowed a single UAV acquisition to capture imagery of trees at varying stages of herbicide response, with treated trees ranging from 13 to 47 days after treatment (DAT). Visual canopy assessments were carried out to validate the onset of visible symptoms. Spectral changes either preceded or coincided with the development of significant visible canopy symptoms, which started at 25 DAT. Classification models developed using narrow band hyperspectral indices (NBHI) allowed robust discrimination of treated and non-treated trees as early as 13 DAT (F1 score = 0.73), with stronger results observed at 18 DAT (F1 score = 0.78). Models that used multispectral indices were able to classify treatments with a similar accuracy from 18 DAT (F1 score = 0.78). Across both sensors, pigment-sensitive indices, particularly variants of the Photochemical Reflectance Index, consistently featured among the top predictors at all time points. These findings address a key knowledge gap by demonstrating practical, remote sensing-based solutions for monitoring and characterising herbicide-induced stress in field-grown radiata pine. The 13-to-18 DAT early detection window provides an operational baseline and a target for future research seeking to refine UAV-based detection of chemical thinning. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

18 pages, 5229 KiB  
Article
Exploring the Spectral Variability of Estonian Lakes Using Spaceborne Imaging Spectroscopy
by Alice Fabbretto, Mariano Bresciani, Andrea Pellegrino, Kersti Kangro, Anna Joelle Greife, Lodovica Panizza, François Steinmetz, Joel Kuusk, Claudia Giardino and Krista Alikas
Appl. Sci. 2025, 15(15), 8357; https://doi.org/10.3390/app15158357 - 27 Jul 2025
Viewed by 257
Abstract
This study investigates the potential of spaceborne imaging spectroscopy to support the analysis of the status of two major Estonian lakes, i.e., Lake Peipsi and Lake Võrtsjärv, using data from the PRISMA and EnMAP missions. The study encompasses nine specific applications across 12 [...] Read more.
This study investigates the potential of spaceborne imaging spectroscopy to support the analysis of the status of two major Estonian lakes, i.e., Lake Peipsi and Lake Võrtsjärv, using data from the PRISMA and EnMAP missions. The study encompasses nine specific applications across 12 satellite scenes, including the validation of remote sensing reflectance (Rrs), optical water type classification, estimation of phycocyanin concentration, detection of macrophytes, and characterization of reflectance for lake ice/snow coverage. Rrs validation, which was performed using in situ measurements and Sentinel-2 and Sentinel-3 as references, showed a level of agreement with Spectral Angle < 16°. Hyperspectral imagery successfully captured fine-scale spatial and spectral features not detectable by multispectral sensors, in particular it was possible to identify cyanobacterial pigments and optical variations driven by seasonal and meteorological dynamics. Through the combined use of in situ observations, the study can serve as a starting point for the use of hyperspectral data in northern freshwater systems, offering new insights into ecological processes. Given the increasing global concern over freshwater ecosystem health, this work provides a transferable framework for leveraging new-generation hyperspectral missions to enhance water quality monitoring on a global scale. Full article
Show Figures

Figure 1

23 pages, 4324 KiB  
Article
Monitoring Nitrogen Uptake and Grain Quality in Ponded and Aerobic Rice with the Squared Simplified Canopy Chlorophyll Content Index
by Gonzalo Carracelas, John Hornbuckle and Carlos Ballester
Remote Sens. 2025, 17(15), 2598; https://doi.org/10.3390/rs17152598 - 25 Jul 2025
Viewed by 384
Abstract
Remote sensing tools have been proposed to assist with rice crop monitoring but have been developed and validated on ponded rice. This two-year study was conducted on a commercial rice farm with irrigation automation technology aimed to (i) understand how canopy reflectance differs [...] Read more.
Remote sensing tools have been proposed to assist with rice crop monitoring but have been developed and validated on ponded rice. This two-year study was conducted on a commercial rice farm with irrigation automation technology aimed to (i) understand how canopy reflectance differs between high-yielding ponded and aerobic rice, (ii) validate the feasibility of using the squared simplified canopy chlorophyll content index (SCCCI2) for N uptake estimates, and (iii) explore the SCCCI2 and similar chlorophyll-sensitive indices for grain quality monitoring. Multispectral images were collected from an unmanned aerial vehicle during both rice-growing seasons. Above-ground biomass and nitrogen (N) uptake were measured at panicle initiation (PI). The performance of single-vegetation-index models in estimating rice N uptake, as previously published, was assessed. Yield and grain quality were determined at harvest. Results showed that canopy reflectance in the visible and near-infrared regions differed between aerobic and ponded rice early in the growing season. Chlorophyll-sensitive indices showed lower values in aerobic rice than in the ponded rice at PI, despite having similar yields at harvest. The SCCCI2 model (RMSE = 20.52, Bias = −6.21 Kg N ha−1, and MAPE = 11.95%) outperformed other models assessed. The SCCCI2, squared normalized difference red edge index, and chlorophyll green index correlated at PI with the percentage of cracked grain, immature grain, and quality score, suggesting that grain milling quality parameters could be associated with N uptake at PI. This study highlights canopy reflectance differences between high-yielding aerobic (averaging 15 Mg ha−1) and ponded rice at key phenological stages and confirms the validity of a single-vegetation-index model based on the SCCCI2 for N uptake estimates in ponded and non-ponded rice crops. Full article
Show Figures

Figure 1

18 pages, 2644 KiB  
Article
Multispectral and Chlorophyll Fluorescence Imaging Fusion Using 2D-CNN and Transfer Learning for Cross-Cultivar Early Detection of Verticillium Wilt in Eggplants
by Dongfang Zhang, Shuangxia Luo, Jun Zhang, Mingxuan Li, Xiaofei Fan, Xueping Chen and Shuxing Shen
Agronomy 2025, 15(8), 1799; https://doi.org/10.3390/agronomy15081799 - 25 Jul 2025
Viewed by 132
Abstract
Verticillium wilt is characterized by chlorosis in leaves and is a devastating disease in eggplant. Early diagnosis, prior to the manifestation of symptoms, enables targeted management of the disease. In this study, we aim to detect early leaf wilt in eggplant leaves caused [...] Read more.
Verticillium wilt is characterized by chlorosis in leaves and is a devastating disease in eggplant. Early diagnosis, prior to the manifestation of symptoms, enables targeted management of the disease. In this study, we aim to detect early leaf wilt in eggplant leaves caused by Verticillium dahliae by integrating multispectral imaging with machine learning and deep learning techniques. Multispectral and chlorophyll fluorescence images were collected from leaves of the inbred eggplant line 11-435, including data on image texture, spectral reflectance, and chlorophyll fluorescence. Subsequently, we established a multispectral data model, fusion information model, and multispectral image–information fusion model. The multispectral image–information fusion model, integrated with a two-dimensional convolutional neural network (2D-CNN), demonstrated optimal performance in classifying early-stage Verticillium wilt infection, achieving a test accuracy of 99.37%. Additionally, transfer learning enabled us to diagnose early leaf wilt in another eggplant variety, the inbred line 14-345, with an accuracy of 84.54 ± 1.82%. Compared to traditional methods that rely on visible symptom observation and typically require about 10 days to confirm infection, this study achieved early detection of Verticillium wilt as soon as the third day post-inoculation. These findings underscore the potential of the fusion model as a valuable tool for the early detection of pre-symptomatic states in infected plants, thereby offering theoretical support for in-field detection of eggplant health. Full article
Show Figures

Figure 1

31 pages, 20437 KiB  
Article
Satellite-Derived Bathymetry Using Sentinel-2 and Airborne Hyperspectral Data: A Deep Learning Approach with Adaptive Interpolation
by Seung-Jun Lee, Han-Saem Kim, Hong-Sik Yun and Sang-Hoon Lee
Remote Sens. 2025, 17(15), 2594; https://doi.org/10.3390/rs17152594 - 25 Jul 2025
Viewed by 274
Abstract
Accurate coastal bathymetry is critical for navigation, environmental monitoring, and marine resource management. This study presents a deep learning-based approach that fuses Sentinel-2 multispectral imagery with airborne hyperspectral-derived reference data to generate high-resolution satellite-derived bathymetry (SDB). To address the spatial resolution mismatch between [...] Read more.
Accurate coastal bathymetry is critical for navigation, environmental monitoring, and marine resource management. This study presents a deep learning-based approach that fuses Sentinel-2 multispectral imagery with airborne hyperspectral-derived reference data to generate high-resolution satellite-derived bathymetry (SDB). To address the spatial resolution mismatch between Sentinel-2 (10 m) and LiDAR reference data (1 m), three interpolation methods—Inverse Distance Weighting (IDW), Natural Neighbor (NN), and Spline—were employed to resample spectral reflectance data to a 1 m grid. Two spectral input configurations were evaluated: the log-ratio of Bands 2 and 3, and raw RGB composite reflectance (Bands 2, 3, and 4). A Fully Convolutional Neural Network (FCNN) was trained under each configuration and validated using LiDAR-based depth. The RGB + NN combination yielded the best performance, achieving an RMSE of 1.2320 m, MAE of 0.9381 m, bias of +0.0315 m, and R2 of 0.6261, while the log-ratio + IDW configuration showed lower accuracy. Visual and statistical analyses confirmed the advantage of the RGB + NN approach in preserving spatial continuity and spectral-depth relationships. This study demonstrates that both interpolation strategy and input configuration critically affect SDB model accuracy and generalizability. The integration of spatially adaptive interpolation with airborne hyperspectral reference data represents a scalable and efficient solution for high-resolution coastal bathymetry mapping. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

23 pages, 4594 KiB  
Article
Ensemble Machine Learning Approaches for Bathymetry Estimation in Multi-Spectral Images
by Kazi Aminul Islam, Omar Abul-Hassan, Hongfang Zhang, Victoria Hill, Blake Schaeffer, Richard Zimmerman and Jiang Li
Geomatics 2025, 5(3), 34; https://doi.org/10.3390/geomatics5030034 - 22 Jul 2025
Viewed by 247
Abstract
Traditional bathymetry measures require a large number of human hours, and many bathymetry records are obsolete or missing. Automated measures of bathymetry would reduce costs and increase accessibility for research and applications. In this paper, we optimized a recent machine learning model, named [...] Read more.
Traditional bathymetry measures require a large number of human hours, and many bathymetry records are obsolete or missing. Automated measures of bathymetry would reduce costs and increase accessibility for research and applications. In this paper, we optimized a recent machine learning model, named CatBoostOpt, to estimate bathymetry based on high-resolution WorldView-2 (WV-2) multi-spectral optical satellite images. CatBoostOpt was demonstrated across the Florida Big Bend coastline, where the model learned correlations between in situ sound Navigation and Ranging (Sonar) bathymetry measurements and the corresponding multi-spectral reflectance values in WV-2 images to map bathymetry. We evaluated three different feature transformations as inputs for bathymetry estimation, including raw reflectance, log-linear, and log-ratio transforms of the raw reflectance value in WV-2 images. In addition, we investigated the contribution of each spectral band and found that utilizing all eight spectral bands in WV-2 images offers the best solution for handling complex water quality conditions. We compared CatBoostOpt with linear regression (LR), support vector machine (SVM), random forest (RF), AdaBoost, gradient boosting, and deep convolutional neural network (DCNN). CatBoostOpt with log-ratio transformed reflectance achieved the best performance with an average root mean square error (RMSE) of 0.34 and coefficient of determination (R2) of 0.87. Full article
(This article belongs to the Special Issue Advances in Ocean Mapping and Hydrospatial Applications)
Show Figures

Figure 1

20 pages, 2236 KiB  
Article
Designing Quadcolor Cameras with Conventional RGB Channels to Improve the Accuracy of Spectral Reflectance and Chromaticity Estimation
by Senfar Wen and Yu-Che Wen
Optics 2025, 6(3), 32; https://doi.org/10.3390/opt6030032 - 15 Jul 2025
Viewed by 169
Abstract
Quadcolor cameras with conventional RGB channels were studied. The fourth channel was designed to improve the estimation of the spectral reflectance and chromaticity from the camera signals. The RGB channels of the quadcolor cameras considered were assumed to be the same as those [...] Read more.
Quadcolor cameras with conventional RGB channels were studied. The fourth channel was designed to improve the estimation of the spectral reflectance and chromaticity from the camera signals. The RGB channels of the quadcolor cameras considered were assumed to be the same as those of the Nikon D5100 camera. The fourth channel was assumed to be a silicon sensor with an optical filter (band-pass filter or notch filter). The optical filter was optimized to minimize a cost function consisting of the spectral reflectance error and the weighted chromaticity error, where the weighting factor controls the contribution of the chromaticity error. The study found that using a notch filter is more effective than a band-pass filter in reducing both the mean reflectance error and the chromaticity error. The reason is that the notch filter (1) improves the fit of the quadcolor camera sensitivities to the color matching functions and (2) provides sensitivity in the wavelength region where the sensitivities of RGB channels are small. Munsell color chips under illuminant D65 were used as samples. Compared with the case without the filter, the mean spectral reflectance rms error and the mean color difference (ΔE00) using the quadcolor camera with the optimized notch filter reduced from 0.00928 and 0.3062 to 0.0078 and 0.2085, respectively; compared with the case of using the D5100 camera, these two mean metrics reduced by 56.3%. Full article
Show Figures

Figure 1

23 pages, 3492 KiB  
Article
A Multimodal Deep Learning Framework for Accurate Biomass and Carbon Sequestration Estimation from UAV Imagery
by Furkat Safarov, Ugiloy Khojamuratova, Misirov Komoliddin, Xusinov Ibragim Ismailovich and Young Im Cho
Drones 2025, 9(7), 496; https://doi.org/10.3390/drones9070496 - 14 Jul 2025
Viewed by 323
Abstract
Accurate quantification of above-ground biomass (AGB) and carbon sequestration is vital for monitoring terrestrial ecosystem dynamics, informing climate policy, and supporting carbon neutrality initiatives. However, conventional methods—ranging from manual field surveys to remote sensing techniques based solely on 2D vegetation indices—often fail to [...] Read more.
Accurate quantification of above-ground biomass (AGB) and carbon sequestration is vital for monitoring terrestrial ecosystem dynamics, informing climate policy, and supporting carbon neutrality initiatives. However, conventional methods—ranging from manual field surveys to remote sensing techniques based solely on 2D vegetation indices—often fail to capture the intricate spectral and structural heterogeneity of forest canopies, particularly at fine spatial resolutions. To address these limitations, we introduce ForestIQNet, a novel end-to-end multimodal deep learning framework designed to estimate AGB and associated carbon stocks from UAV-acquired imagery with high spatial fidelity. ForestIQNet combines dual-stream encoders for processing multispectral UAV imagery and a voxelized Canopy Height Model (CHM), fused via a Cross-Attentional Feature Fusion (CAFF) module, enabling fine-grained interaction between spectral reflectance and 3D structure. A lightweight Transformer-based regression head then performs multitask prediction of AGB and CO2e, capturing long-range spatial dependencies and enhancing generalization. Proposed method achieves an R2 of 0.93 and RMSE of 6.1 kg for AGB prediction, compared to 0.78 R2 and 11.7 kg RMSE for XGBoost and 0.73 R2 and 13.2 kg RMSE for Random Forest. Despite its architectural complexity, ForestIQNet maintains a low inference cost (27 ms per patch) and generalizes well across species, terrain, and canopy structures. These results establish a new benchmark for UAV-enabled biomass estimation and provide scalable, interpretable tools for climate monitoring and forest management. Full article
(This article belongs to the Special Issue UAVs for Nature Conservation Tasks in Complex Environments)
Show Figures

Figure 1

18 pages, 8486 KiB  
Article
An Efficient Downwelling Light Sensor Data Correction Model for UAV Multi-Spectral Image DOM Generation
by Siyao Wu, Yanan Lu, Wei Fan, Shengmao Zhang, Zuli Wu and Fei Wang
Drones 2025, 9(7), 491; https://doi.org/10.3390/drones9070491 - 11 Jul 2025
Viewed by 210
Abstract
The downwelling light sensor (DLS) is the industry-standard solution for generating UAV-based digital orthophoto maps (DOMs). Current mainstream DLS correction methods primarily rely on angle compensation. However, due to the temporal mismatch between the DLS sampling intervals and the exposure times of multispectral [...] Read more.
The downwelling light sensor (DLS) is the industry-standard solution for generating UAV-based digital orthophoto maps (DOMs). Current mainstream DLS correction methods primarily rely on angle compensation. However, due to the temporal mismatch between the DLS sampling intervals and the exposure times of multispectral cameras, as well as external disturbances such as strong wind gusts and abrupt changes in flight attitude, DLS data often become unreliable, particularly at UAV turning points. Building upon traditional angle compensation methods, this study proposes an improved correction approach—FIM-DC (Fitting and Interpolation Model-based Data Correction)—specifically designed for data collection under clear-sky conditions and stable atmospheric illumination, with the goal of significantly enhancing the accuracy of reflectance retrieval. The method addresses three key issues: (1) field tests conducted in the Qingpu region show that FIM-DC markedly reduces the standard deviation of reflectance at tie points across multiple spectral bands and flight sessions, with the most substantial reduction from 15.07% to 0.58%; (2) it effectively mitigates inconsistencies in reflectance within image mosaics caused by anomalous DLS readings, thereby improving the uniformity of DOMs; and (3) FIM-DC accurately corrects the spectral curves of six land cover types in anomalous images, making them consistent with those from non-anomalous images. In summary, this study demonstrates that integrating FIM-DC into DLS data correction workflows for UAV-based multispectral imagery significantly enhances reflectance calculation accuracy and provides a robust solution for improving image quality under stable illumination conditions. Full article
Show Figures

Figure 1

23 pages, 3434 KiB  
Article
Spatial Variability in Soil Attributes and Multispectral Indices in a Forage Cactus Field Irrigated with Wastewater in the Brazilian Semiarid Region
by Eric Gabriel Fernandez A. da Silva, Thayná Alice Brito Almeida, Raví Emanoel de Melo, Mariana Caroline Gomes de Lima, Lizandra de Barros de Sousa, Jeferson Antônio dos Santos da Silva, Marcos Vinícius da Silva and Abelardo Antônio de Assunção Montenegro
AgriEngineering 2025, 7(7), 221; https://doi.org/10.3390/agriengineering7070221 - 8 Jul 2025
Viewed by 318
Abstract
Multispectral images obtained from Unmanned Aerial Vehicles (UAVs) have become strategic tools in precision agriculture, particularly for analyzing spatial variability in soil attributes. This study aimed to evaluate the spatial distribution of soil electrical (EC) and total organic carbon (TOC) in irrigated forage [...] Read more.
Multispectral images obtained from Unmanned Aerial Vehicles (UAVs) have become strategic tools in precision agriculture, particularly for analyzing spatial variability in soil attributes. This study aimed to evaluate the spatial distribution of soil electrical (EC) and total organic carbon (TOC) in irrigated forage cactus areas in the Brazilian semiarid region, using field measurements and UAV-based multispectral imagery. The study was conducted in a communal agricultural settlement located in the Mimoso Alluvial Valley (MAV), where EC and TOC were measured at 96 points, and seven biophysical indices were derived from UAV multispectral imagery. Geostatistical models, including cokriging with spectral indices (NDVI, EVI, GDVI, SAVI, and NDSI), were applied to map soil attributes at different spatial scales. Cokriging improved the spatial prediction of EC and TOC by reducing uncertainty and increasing mapping accuracy. The standard deviation of EC decreased from 1.39 (kriging) to 0.67 (cokriging with EVI), and for TOC from 15.55 to 8.78 (cokriging with NDVI and NDSI), reflecting a 43.5% reduction in uncertainty. The indices, EVI, NDVI, and NDSI, showed strong potential in representing and enhancing the spatial variability in soil attributes. NDVI and NDSI were particularly effective at finer grid resolutions, supporting more efficient irrigation strategies and sustainable agricultural practices. Full article
Show Figures

Figure 1

25 pages, 3640 KiB  
Article
Ensemble Learning-Driven and UAV Multispectral Analysis for Estimating the Leaf Nitrogen Content in Winter Wheat
by Yu Han, Jiaxue Zhang, Yan Bai, Zihao Liang, Xinhui Guo, Yu Zhao, Meichen Feng, Lujie Xiao, Xiaoyan Song, Meijun Zhang, Wude Yang, Guangxin Li, Sha Yang, Xingxing Qiao and Chao Wang
Agronomy 2025, 15(7), 1621; https://doi.org/10.3390/agronomy15071621 - 2 Jul 2025
Viewed by 377
Abstract
The aim of this study is to develop a rapid method for monitoring leaf nitrogen content (LNC) in winter wheat, which is essential for precise field management and accurate crop growth assessment. This study used a natural winter wheat population at Shanxi Agricultural [...] Read more.
The aim of this study is to develop a rapid method for monitoring leaf nitrogen content (LNC) in winter wheat, which is essential for precise field management and accurate crop growth assessment. This study used a natural winter wheat population at Shanxi Agricultural University’s experimental base as the subject. UAV-mounted multispectral sensors collected images at jointing, heading, pre-grouting, and late grouting stages. Canopy spectral reflectance was extracted using image segmentation, and vegetation indices were calculated. Correlation analysis identified highly relevant indices with LNC. Support Vector Regression (SVR), Random Forest (RF), Ridge Regression (RR), K-Nearest Neighbors (K-NN), and ensemble learning algorithms (Voting and Stacking) were employed to model the relationship between selected vegetation indices and LNC. Model performance was evaluated using the coefficient of determination (R2) and root mean square error (RMSE). Results showed that the Voting-based ensemble learning model outperformed other models. At the pre-grouting stage, this model achieved an R2 of 0.85 and an RMSE of 1.57 for the training set, and an R2 of 0.82 and an RMSE of 1.64 for the testing set. This study provides a theoretical basis and technical reference for monitoring LNC in winter wheat at key growth stages using low-altitude multispectral sensors, supporting precision agriculture and variety evaluation. Full article
Show Figures

Figure 1

26 pages, 2479 KiB  
Article
UAV-Based Yield Prediction Based on LAI Estimation in Winter Wheat (Triticum aestivum L.) Under Different Nitrogen Fertilizer Types and Rates
by Jinjin Guo, Xiangtong Zeng, Qichang Ma, Yong Yuan, Nv Zhang, Zhizhao Lin, Pengzhou Yin, Hanran Yang, Xiaogang Liu and Fucang Zhang
Plants 2025, 14(13), 1986; https://doi.org/10.3390/plants14131986 - 29 Jun 2025
Viewed by 398
Abstract
The rapid and accurate prediction of crop yield and the construction of optimal yield prediction models are important for guiding field-scale agronomic management practices in precision agriculture. This study selected the leaf area index (LAI) of winter wheat (Triticum aestivum L.) at [...] Read more.
The rapid and accurate prediction of crop yield and the construction of optimal yield prediction models are important for guiding field-scale agronomic management practices in precision agriculture. This study selected the leaf area index (LAI) of winter wheat (Triticum aestivum L.) at four different stages, and collected canopy spectral information and extracted vegetation indexes through unmanned aerial vehicle (UAV) multi-spectral sensors to establish the yield prediction model under the condition of slow-release nitrogen fertilizer and proposed optimal fertilization strategies for sustainable yield increase in wheat. The prediction results were evaluated using random forest (RF), support vector machine (SVM) and back propagation neural network (BPNN) methods to select the optimal spectral index and establish yield prediction models. The results showed that LAI has a significantly positive correlation with yield across four growth stages of winter wheat, and the correlation coefficient at the anthesis stage reached 0.96 in 2018–2019 and 0.83 in 2019–2020. Therefore, yield prediction for winter wheat could be achieved through a remote sensing estimation of LAI at the anthesis stage. Six vegetation indexes calculated from UAV-derived reflectance data were modeled against LAI, demonstrating that the red-edge vegetation index (CIred edge) achieved superior accuracy in estimating LAI for winter wheat yield prediction. RF, SVM and BPNN models were used to evaluate the accuracy and precision of CIred edge in predicting yield, respectively. It was found that RF outperformed both SVM and BPNN in predicting yield accuracy. The CIred edge of the anthesis stage was the best vegetation index and stage for estimating yield of winter wheat based on UAV remote sensing. Under different N application rates, both predicted and measured yields exhibited a consistent trend that followed the order of SRF (slow-release N fertilizer) > SRFU1 (mixed TU and SRF at a ratio of 2:8) > SRFU2 (mixed TU and SRF at a ratio of 3:7) > TU (traditional urea). The optimum N fertilizer rate and N fertilizer type for winter wheat in this study were 220 kg ha−1 and SRF, respectively. The results of this study will provide significant technical support for regional crop growth monitoring and yield prediction. Full article
Show Figures

Figure 1

Back to TopTop