Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = multiplex gene editing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1542 KiB  
Review
Genome-Editing Tools for Lactic Acid Bacteria: Past Achievements, Current Platforms, and Future Directions
by Leonid A. Shaposhnikov, Aleksei S. Rozanov and Alexey E. Sazonov
Int. J. Mol. Sci. 2025, 26(15), 7483; https://doi.org/10.3390/ijms26157483 - 2 Aug 2025
Viewed by 148
Abstract
Lactic acid bacteria (LAB) are central to food, feed, and health biotechnology, yet their genomes have long resisted rapid, precise manipulation. This review charts the evolution of LAB genome-editing strategies from labor-intensive RecA-dependent double-crossovers to state-of-the-art CRISPR and CRISPR-associated transposase systems. Native homologous [...] Read more.
Lactic acid bacteria (LAB) are central to food, feed, and health biotechnology, yet their genomes have long resisted rapid, precise manipulation. This review charts the evolution of LAB genome-editing strategies from labor-intensive RecA-dependent double-crossovers to state-of-the-art CRISPR and CRISPR-associated transposase systems. Native homologous recombination, transposon mutagenesis, and phage-derived recombineering opened the door to targeted gene disruption, but low efficiencies and marker footprints limited throughput. Recent phage RecT/RecE-mediated recombineering and CRISPR/Cas counter-selection now enable scar-less point edits, seamless deletions, and multi-kilobase insertions at efficiencies approaching model organisms. Endogenous Cas9 systems, dCas-based CRISPR interference, and CRISPR-guided transposases further extend the toolbox, allowing multiplex knockouts, precise single-base mutations, conditional knockdowns, and payloads up to 10 kb. The remaining hurdles include strain-specific barriers, reliance on selection markers for large edits, and the limited host-range of recombinases. Nevertheless, convergence of phage enzymes, CRISPR counter-selection and high-throughput oligo recombineering is rapidly transforming LAB into versatile chassis for cell-factory and therapeutic applications. Full article
(This article belongs to the Special Issue Probiotics in Health and Disease)
Show Figures

Figure 1

34 pages, 1227 KiB  
Review
Beyond Cutting: CRISPR-Driven Synthetic Biology Toolkit for Next-Generation Microalgal Metabolic Engineering
by Limin Yang and Qian Lu
Int. J. Mol. Sci. 2025, 26(15), 7470; https://doi.org/10.3390/ijms26157470 - 2 Aug 2025
Viewed by 279
Abstract
Microalgae, with their unparalleled capabilities for sunlight-driven growth, CO2 fixation, and synthesis of diverse high-value compounds, represent sustainable cell factories for a circular bioeconomy. However, industrial deployment has been hindered by biological constraints and the inadequacy of conventional genetic tools. The advent [...] Read more.
Microalgae, with their unparalleled capabilities for sunlight-driven growth, CO2 fixation, and synthesis of diverse high-value compounds, represent sustainable cell factories for a circular bioeconomy. However, industrial deployment has been hindered by biological constraints and the inadequacy of conventional genetic tools. The advent of CRISPR-Cas systems initially provided precise gene editing via targeted DNA cleavage. This review argues that the true transformative potential lies in moving decisively beyond cutting to harness CRISPR as a versatile synthetic biology “Swiss Army Knife”. We synthesize the rapid evolution of CRISPR-derived tools—including transcriptional modulators (CRISPRa/i), epigenome editors, base/prime editors, multiplexed systems, and biosensor-integrated logic gates—and their revolutionary applications in microalgal engineering. These tools enable tunable gene expression, stable epigenetic reprogramming, DSB-free nucleotide-level precision editing, coordinated rewiring of complex metabolic networks, and dynamic, autonomous control in response to environmental cues. We critically evaluate their deployment to enhance photosynthesis, boost lipid/biofuel production, engineer high-value compound pathways (carotenoids, PUFAs, proteins), improve stress resilience, and optimize carbon utilization. Persistent challenges—species-specific tool optimization, delivery efficiency, genetic stability, scalability, and biosafety—are analyzed, alongside emerging solutions and future directions integrating AI, automation, and multi-omics. The strategic integration of this CRISPR toolkit unlocks the potential to engineer robust, high-productivity microalgal cell factories, finally realizing their promise as sustainable platforms for next-generation biomanufacturing. Full article
(This article belongs to the Special Issue Developing Methods and Molecular Basis in Plant Biotechnology)
Show Figures

Figure 1

18 pages, 4083 KiB  
Article
Multiplex CRISPR/Cas9 Editing of Rice Prolamin and GluA Glutelin Genes Reveals Subfamily-Specific Effects on Seed Protein Composition
by María H. Guzmán-López, Susana Sánchez-León, Miriam Marín-Sanz and Francisco Barro
Plants 2025, 14(15), 2355; https://doi.org/10.3390/plants14152355 - 31 Jul 2025
Viewed by 119
Abstract
Rice seed storage proteins (SSPs) play a critical role in determining the nutritional quality, cooking properties, and digestibility of rice. To enhance seed quality, CRISPR/Cas9 genome editing was applied to modify SSP composition by targeting genes encoding 13 kDa prolamins and type A [...] Read more.
Rice seed storage proteins (SSPs) play a critical role in determining the nutritional quality, cooking properties, and digestibility of rice. To enhance seed quality, CRISPR/Cas9 genome editing was applied to modify SSP composition by targeting genes encoding 13 kDa prolamins and type A glutelins. Three CRISPR/Cas9 constructs were designed: one specific to the 13 kDa prolamin subfamily and two targeting conserved GluA glutelin regions. Edited T0 and T1 lines were generated and analyzed using InDel analysis, SDS-PAGE, Bradford assay, and RP-HPLC. Insertions were more frequent than deletions, accounting for 56% and 74% of mutations in prolamin and glutelin genes, respectively. Editing efficiency varied between sgRNAs. All lines with altered protein profiles contained InDels in target genes. SDS-PAGE confirmed the absence or reduction in bands corresponding to 13 kDa prolamins or GluA subunits, showing consistent profiles among lines carrying the same construct. Quantification revealed significant shifts in SSP composition, including increased albumin and globulin content. Prolamin-deficient lines showed reduced prolamins, while GluA-deficient lines exhibited increased prolamins. Total protein content was significantly elevated in all edited lines, suggesting enrichment in lysine-rich fractions. These findings demonstrate that CRISPR/Cas9-mediated editing of SSP genes can effectively reconfigure the rice protein profile and enhance its nutritional value. Full article
(This article belongs to the Special Issue Advances and Applications of Genome Editing in Plants)
Show Figures

Figure 1

11 pages, 2422 KiB  
Article
Cross-Activity Analysis of CRISPR/Cas9 Editing in Gene Families of Solanum lycopersicum Detected by Long-Read Sequencing
by Ofri Kutchinsky, Dongqi Li, Guy Assa, Asaph Aharoni and Zohar Yakhini
Curr. Issues Mol. Biol. 2025, 47(7), 507; https://doi.org/10.3390/cimb47070507 - 2 Jul 2025
Viewed by 292
Abstract
CRISPR/Cas9 genome editing holds promise for precise genetic modifications, yet off-target effects remain a concern—particularly in gene families with high sequence similarity. In this study, we present a computational framework for analyzing editing specificity and cross-reactivity in gene families using long-read sequencing data. [...] Read more.
CRISPR/Cas9 genome editing holds promise for precise genetic modifications, yet off-target effects remain a concern—particularly in gene families with high sequence similarity. In this study, we present a computational framework for analyzing editing specificity and cross-reactivity in gene families using long-read sequencing data. The pipeline integrates multiplex PCR, NGS, and CRISPECTOR-based analysis to detect and quantify on- and off-target events with high sensitivity. As a use case, we applied this framework to Solanum lycopersicum, evaluating on-target editing in thirteen gene families and analyzing off-target cross-reactivity in five representative families. While the biological results are illustrative, the primary contribution lies in the generalizable analysis approach, which can support genome editing studies in complex plant genomes and beyond. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

20 pages, 3868 KiB  
Article
Engineering High-Amylose and High-Dietary-Fibre Barley Grains Through Multiplex Genome Editing of Four Starch-Synthetic Genes
by Qiang Yang, Jean-Philippe Ral, Qiantao Jiang and Zhongyi Li
Foods 2025, 14(13), 2319; https://doi.org/10.3390/foods14132319 - 30 Jun 2025
Viewed by 307
Abstract
Barley, rich in beneficial ingredients, has been recognised as a healthy food and is widely used in the production of healthy foods for humans. The current study identified a new barley mutant with the SSIIa, SSIIIa, SBEIIa, and SBEIIb genes [...] Read more.
Barley, rich in beneficial ingredients, has been recognised as a healthy food and is widely used in the production of healthy foods for humans. The current study identified a new barley mutant with the SSIIa, SSIIIa, SBEIIa, and SBEIIb genes inactivated in the genome-edited offspring of targeted mutagenesis of starch synthetic genes using multiplex genome editing. The grain compositions and starch properties of the ssIIa/ssIIIa/sbeIIa/sbeIIb mutant were analysed and compared with the corresponding parameters of ssIIa, ssIIIa, sbeIIa/sbeIIb, ssIIa/sbeIIa/sbeIIb, and non-genome-edited lines (NE), respectively. ssIIa/ssIIIa/sbeIIa/sbeIIb exhibited the highest contents of β-glucan and amylose content among all mutants and NE, but not the most prominent in resistant starch, fructan, and fibre contents. The loss of SSIIa, SSIIIa, SBEIIa, and SBEIIb genes also resulted in significant changes in starch properties. This study enriched the genotypes of healthy barley and provided a theoretical basis for improving barley quality. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

18 pages, 535 KiB  
Review
Overcoming Immune Barriers in Allogeneic CAR-NK Therapy: From Multiplex Gene Editing to AI-Driven Precision Design
by Hyunyoung Kim
Biomolecules 2025, 15(7), 935; https://doi.org/10.3390/biom15070935 - 26 Jun 2025
Viewed by 889
Abstract
Chimeric antigen receptor (CAR)-engineered natural killer (NK) cells are a promising platform for off-the-shelf immunotherapy due to their safety advantages over CAR-T cells, including lower risk of graft-versus-host disease, cytokine release syndrome, and neurotoxicity. However, their persistence and efficacy are limited by immunological [...] Read more.
Chimeric antigen receptor (CAR)-engineered natural killer (NK) cells are a promising platform for off-the-shelf immunotherapy due to their safety advantages over CAR-T cells, including lower risk of graft-versus-host disease, cytokine release syndrome, and neurotoxicity. However, their persistence and efficacy are limited by immunological challenges such as host T-cell-mediated rejection, NK cell fratricide, and macrophage-mediated clearance. This review summarizes gene editing strategies to overcome these barriers, including β2-microglobulin (B2M) knockout and HLA-E overexpression to evade T and NK cell attacks, CD47 overexpression to inhibit phagocytosis, and TIGIT deletion to enhance cytotoxicity. In addition, we discuss functional enhancements such as IL-15 pathway activation, KIR modulation, and transcriptional reprogramming (e.g., FOXO1 knockout) to improve persistence and antitumor activity. We also highlight the role of induced pluripotent stem cell (iPSC)-derived NK platforms, enabling standardized, scalable, and multiplex gene-edited products. Finally, we explore artificial intelligence (AI) applications in immunogenomic profiling and predictive editing to tailor NK cell therapies to patient-specific HLA/KIR/SIRPα contexts. By integrating immune evasion, functional reinforcement, and computational design, we propose a unified roadmap for next-generation CAR-NK development, supporting durable and broadly applicable cell-based therapies. Full article
(This article belongs to the Section Bio-Engineered Materials)
Show Figures

Figure 1

13 pages, 1519 KiB  
Article
Multiplexed CRISPR Assay for Amplification-Free Detection of miRNAs
by P. I. Thilini De Silva, Keshani Hiniduma, Rachelle Canete, Ketki S. Bhalerao, Sherif M. Shawky, Hansana Gunathilaka, Jessica L. Rouge, Islam M. Mosa, David C. Steffens, Kevin Manning, Breno S. Diniz and James F. Rusling
Biosensors 2025, 15(6), 346; https://doi.org/10.3390/bios15060346 - 29 May 2025
Viewed by 852
Abstract
CRISPR-Cas proteins from bacteria are powerful tools for gene editing and molecular diagnostics. Expanding capacity of CRISPR to low cost, multiplexed assays of biomarkers is a key to future disease diagnostics, since multiple biomarker detection is essential for reliable diagnostics. Herein we describe [...] Read more.
CRISPR-Cas proteins from bacteria are powerful tools for gene editing and molecular diagnostics. Expanding capacity of CRISPR to low cost, multiplexed assays of biomarkers is a key to future disease diagnostics, since multiple biomarker detection is essential for reliable diagnostics. Herein we describe a multiplexed assay in a 3D-printed 96-well plate with CRISPR-Cas13a immobilized in each well to target three circulating blood biomarker microRNAs (miRNAs 34c-5p, 200c-3p, and 30e-5p) for Alzheimer’s disease (ALZ). Immobilized Cas13a is equipped with different crRNAs complementary to each miRNA target. MiRNA binding to crRNA complements activates the collateral RNase activity of Cas13a, cleaving a quenched fluorescent reporter (RNaseAlert) with fluorophore and quencher connected by an RNA oligonucleotide to enable fluorescence measurements. We achieved ultralow limits of detection (LOD) of 0.74 fg/mL for miRNA 34c-5p, 0.70 fg/mL for miRNA 30e-5p, and 7.4 fg/mL for miRNA 200c-3p, with dynamic ranges from LODs up to about 1800 pg/mL. The accuracy of the assay was validated by spike-recovery studies and good correlation of levels of patient plasma samples vs. a referee method. This new approach provides selective, sensitive multiplex miRNA biosensing, and simultaneously accommodates analysis of standards and controls. Full article
(This article belongs to the Special Issue Biosensors for Monitoring and Diagnostics)
Show Figures

Figure 1

23 pages, 1754 KiB  
Article
Genomic and Phenotypic Characterization of CHO 4BGD Cells with Quad Knockout and Overexpression of Two Housekeeping Genes That Allow for Metabolic Selection and Extended Fed-Batch Culturing
by Nadezhda Alexandrovna Orlova, Maria Valerievna Sinegubova, Denis Eduardovich Kolesov, Yulia Alexandrovna Khodak, Victor Vyacheslavovich Tatarskiy and Ivan Ivanovich Vorobiev
Cells 2025, 14(10), 692; https://doi.org/10.3390/cells14100692 - 11 May 2025
Viewed by 1369
Abstract
Re-engineering of CHO cells using genome editing and the overexpression of multiple helper genes is the central track for obtaining better cell lines for the production of biopharmaceuticals. Using two subsequent rounds of genome editing of the CHO S cells, we have developed [...] Read more.
Re-engineering of CHO cells using genome editing and the overexpression of multiple helper genes is the central track for obtaining better cell lines for the production of biopharmaceuticals. Using two subsequent rounds of genome editing of the CHO S cells, we have developed the cell line CHO 4BGD with four knockouts of two pro-apoptotic genes bak1 and bax, and two common selection markers genes—glul (GS) and dhfr, and additional copies of genes bcl-2 and beclin-1 used for enhancement of macroautophagy. The NGS sequencing of 4BGD cells revealed that all eight targeted alleles were successfully disrupted. Two edited loci out of eight contained large inserts of non-relevant DNA. Further data analysis shows that cells have no off-target DNA editing events, and all known CHO genes are preserved. The cells obtained are completely resistant to the induction of apoptosis, and they are suitable for the generation of stably transfected cell lines with the dhfr selection marker. They also properly undergo the target gene amplification. The 4BGD-derived clonal cell line that secretes the monoclonal antibody retains the ability for prolonged fed-batch culturing. The method of obtaining multiply edited CHO cells using the multiplex CRISPR/Cas9 editing and simultaneous stable transfection of plasmids, coding for the housekeeping genes, is suitable for the rapid generation of massively edited CHO cells. Full article
(This article belongs to the Special Issue Crosstalk of Autophagy and Apoptosis: Recent Advances)
Show Figures

Figure 1

15 pages, 8553 KiB  
Article
Highly Efficient Homozygous CRISPR/Cas9 Gene Editing Based on Single-Cell-Originated Somatic Embryogenesis in Liriodendron tulipifera
by Cairong Li, Pengshuo Jiang, Jiaji Zhang, Dingjie Yang, Lu Lu, Zhaodong Hao, Yingxuan Ma, Jisen Shi and Jinhui Chen
Plants 2025, 14(3), 472; https://doi.org/10.3390/plants14030472 - 5 Feb 2025
Cited by 1 | Viewed by 1157
Abstract
The clustered, regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system is the most widely used gene-editing tool to date. However, its application in the genetic improvement of forestry trees has been largely limited. Here, we first established a highly efficient multi-target editing [...] Read more.
The clustered, regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system is the most widely used gene-editing tool to date. However, its application in the genetic improvement of forestry trees has been largely limited. Here, we first established a highly efficient multi-target editing system in the magnoliid woody plant Liriodendron tulipifera. Using phytoene desaturase gene (PDS) as an example, we systematically compared CRISPR/Cas9 and CRSPR/Cpf1 expression systems for loss-of-function analysis and conducted genetic transformations using transient and stable transformation. Ultimately, our findings indicated that the CRISPR/Cas9 system, when applied to transformation based on single-cell-originated somatic embryogenesis, yielded the highest gene-editing efficiency, with mutation rates of nearly 100%. Furthermore, we obtained a total of 137 regeneration plantlets via somatic embryogenesis, of which 82.48% exhibited an albino phenotype. The Illumina sequencing results of albino seedlings and the callus tissue obtained from dedifferentiation of mutant plants revealed that the mutation at the T1 target site was homozygous. These results indicate that CRISPR/Cas9-based multiplex genome-editing technology can not only accelerate the identification of gene function but also be incorporated into the genetic improvement and breeding of tulip trees, supporting the scale propagation of genome-edited plantlets via somatic embryogenesis. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

16 pages, 2299 KiB  
Article
Comparison Between Electroporation at Different Voltage Levels and Microinjection to Generate Porcine Embryos with Multiple Xenoantigen Knock-Outs
by Juan Pablo Fernández, Björn Petersen, Petra Hassel, Andrea Lucas Hahn, Paul Kielau, Johannes Geibel and Wilfried A. Kues
Int. J. Mol. Sci. 2024, 25(22), 11894; https://doi.org/10.3390/ijms252211894 - 5 Nov 2024
Cited by 2 | Viewed by 1581
Abstract
In the context of xenotransplantation, the production of genetically modified pigs is essential. For several years, knock-out pigs were generated through somatic cell nuclear transfer employing donor cells with the desired genetic modifications, which resulted in a lengthy and cumbersome procedure. The CRISPR/Cas9 [...] Read more.
In the context of xenotransplantation, the production of genetically modified pigs is essential. For several years, knock-out pigs were generated through somatic cell nuclear transfer employing donor cells with the desired genetic modifications, which resulted in a lengthy and cumbersome procedure. The CRISPR/Cas9 system enables direct targeting of specific genes in zygotes directly through microinjection or electroporation. However, these techniques require improvement to minimize mosaicism and low mutation rates without compromising embryo survival. This study aimed to determine the gene editing potential of these two techniques to deliver multiplexed ribonucleotide proteins (RNPs) to generate triple-knock-out porcine embryos with a multi-transgenic background. We designed RNP complexes targeting the major porcine xenoantigens GGTA1, CMAH, and B4GALNT2. We then compared the development of mosaicism and gene editing efficiencies between electroporation and microinjection. Our results indicated a significant effect of voltage increase on molecule intake in electroporated embryos, without it notably affecting the blastocyst formation rate. Our gene editing analysis revealed differences among delivery approaches and gene loci. Notably, employing electroporation at 35 V yielded the highest frequency of biallelic disruptions. However, mosaicism was the predominant genetic variant in all RNP delivery methods, underscoring the need for further research to optimize multiplex genome editing in porcine zygotes. Full article
(This article belongs to the Topic Genetic Engineering in Agriculture)
Show Figures

Figure 1

25 pages, 1356 KiB  
Review
Applications of CRISPR Technologies in Forestry and Molecular Wood Biotechnology
by Hieu Xuan Cao, David Michels, Giang Thi Ha Vu and Oliver Gailing
Int. J. Mol. Sci. 2024, 25(21), 11792; https://doi.org/10.3390/ijms252111792 - 2 Nov 2024
Cited by 2 | Viewed by 3416
Abstract
Forests worldwide are under increasing pressure from climate change and emerging diseases, threatening their vital ecological and economic roles. Traditional breeding approaches, while valuable, are inherently slow and limited by the long generation times and existing genetic variation of trees. CRISPR technologies offer [...] Read more.
Forests worldwide are under increasing pressure from climate change and emerging diseases, threatening their vital ecological and economic roles. Traditional breeding approaches, while valuable, are inherently slow and limited by the long generation times and existing genetic variation of trees. CRISPR technologies offer a transformative solution, enabling precise and efficient genome editing to accelerate the development of climate-resilient and productive forests. This review provides a comprehensive overview of CRISPR applications in forestry, exploring its potential for enhancing disease resistance, improving abiotic stress tolerance, modifying wood properties, and accelerating growth. We discuss the mechanisms and applications of various CRISPR systems, including base editing, prime editing, and multiplexing strategies. Additionally, we highlight recent advances in overcoming key challenges such as reagent delivery and plant regeneration, which are crucial for successful implementation of CRISPR in trees. We also delve into the potential and ethical considerations of using CRISPR gene drive for population-level genetic alterations, as well as the importance of genetic containment strategies for mitigating risks. This review emphasizes the need for continued research, technological advancements, extensive long-term field trials, public engagement, and responsible innovation to fully harness the power of CRISPR for shaping a sustainable future for forests. Full article
(This article belongs to the Special Issue Genomic Perspective on Forest Genetics and Phytopathobiomes)
Show Figures

Figure 1

18 pages, 7550 KiB  
Article
Construction and Stability of All-in-One Adenovirus Vectors Simultaneously Expressing Four and Eight Multiplex Guide RNAs and Cas9 Nickase
by Tomomi Nakahara, Hirotaka Tabata, Yuya Kato, Ryoko Fuse, Mariko Nakamura, Megumi Yamaji, Nobutaka Hattori, Tohru Kiyono, Izumu Saito and Tomoko Nakanishi
Int. J. Mol. Sci. 2024, 25(16), 8783; https://doi.org/10.3390/ijms25168783 - 12 Aug 2024
Viewed by 1790
Abstract
CRISPR/Cas9 technology is expected to offer novel genome editing-related therapies for various diseases. We previously showed that an adenovirus vector (AdV) possessing eight expression units of multiplex guide RNAs (gRNAs) was obtained with no deletion of these units. Here, we attempted to construct [...] Read more.
CRISPR/Cas9 technology is expected to offer novel genome editing-related therapies for various diseases. We previously showed that an adenovirus vector (AdV) possessing eight expression units of multiplex guide RNAs (gRNAs) was obtained with no deletion of these units. Here, we attempted to construct “all-in-one” AdVs possessing expression units of four and eight gRNAs with Cas9 nickase, although we expected obstacles to obtain complete all-in-one AdVs. The first expected obstacle was that extremely high copies of viral genomes during replication may cause severe off-target cleavages of host cells and induce homologous recombination. However, surprisingly, four units in the all-in-one AdV genome were maintained completely intact. Second, for the all-in-one AdV containing eight gRNA units, we enlarged the E3 deletion in the vector backbone and shortened the U6 promoter of the gRNA expression units to shorten the AdV genome within the adenovirus packaging limits. The final size of the all-in-one AdV genome containing eight gRNA units still slightly exceeded the reported upper limit. Nevertheless, approximately one-third of the eight units remained intact, even upon preparation for in vivo experiments. Third, the genome editing efficiency unexpectedly decreased upon enlarging the E3 deletion. Our results suggested that complete all-in-one AdVs containing four gRNA units could be obtained if the problem of the low genome editing efficiency is solved, and those containing even eight gRNA units could be obtained if the obstacle of the vector size is also removed. Full article
Show Figures

Figure 1

16 pages, 4997 KiB  
Article
Improvement of Flowering Stage in Japonica Rice Variety Jiahe212 by Using CRISPR/Cas9 System
by Dengmei He, Ran Zhou, Chenbo Huang, Yanhui Li, Zequn Peng, Dian Li, Wenjing Duan, Nuan Huang, Liyong Cao, Shihua Cheng, Xiaodeng Zhan, Lianping Sun and Shiqiang Wang
Plants 2024, 13(15), 2166; https://doi.org/10.3390/plants13152166 - 5 Aug 2024
Cited by 3 | Viewed by 1511
Abstract
The flowering period of rice significantly impacts variety adaptability and yield formation. Properly shortening the reproductive period of rice varieties can expand their ecological range without significant yield reduction. Targeted genome editing, like CRISPR/Cas9, is an ideal tool to fine-tune rice growth stages [...] Read more.
The flowering period of rice significantly impacts variety adaptability and yield formation. Properly shortening the reproductive period of rice varieties can expand their ecological range without significant yield reduction. Targeted genome editing, like CRISPR/Cas9, is an ideal tool to fine-tune rice growth stages and boost yield synergistically. In this study, we developed a CRISPR/Cas9-mediated multiplex genome-editing vector containing five genes related to three traits, Hd2, Ghd7, and DTH8 (flowering-stage genes), along with the recessive rice blast resistance gene Pi21 and the aromatic gene BADH2. This vector was introduced into the high-quality japonica rice variety in Zhejiang province, Jiahe212 (JH212), resulting in 34 T0 plants with various effective mutations. Among the 17 mutant T1 lines, several displayed diverse flowering dates, but most exhibited undesirable agronomic traits. Notably, three homozygous mutant lines (JH-C15, JH-C18, and JH-C31) showed slightly earlier flowering dates without significant differences in yield-related traits compared to JH212. Through special Hyg and Cas marker selection of T2 plants, we identified seven, six, and two fragrant glutinous plants devoid of transgenic components. These single plants will serve as sib lines of JH212 and potential resources for breeding applications, including maintenance lines for indicajaponica interspecific three-line hybrid rice. In summary, our research lays the foundation for the creation of short-growth-period CMS (cytoplasmic male sterility, CMS) lines, and also provides materials and a theoretical basis for indicajaponica interspecific hybrid rice breeding with wider adaptability. Full article
(This article belongs to the Special Issue Molecular Breeding and Germplasm Improvement of Rice—2nd Edition)
Show Figures

Figure 1

15 pages, 5861 KiB  
Article
The Development of a CRISPR-FnCpf1 System for Large-Fragment Deletion and Multiplex Gene Editing in Acinetobacter baumannii
by Shuai Wang, Yue Ding, Hua Rong and Yu Wang
Curr. Issues Mol. Biol. 2024, 46(1), 570-584; https://doi.org/10.3390/cimb46010037 - 5 Jan 2024
Viewed by 2469
Abstract
Acinetobacter baumannii is a low-GC-content Gram-negative opportunistic pathogen that poses a serious global public health threat. Convenient and rapid genetic manipulation is beneficial for elucidating its pathogenic mechanisms and developing novel therapeutic methods. In this study, we report a new CRISPR-FnCpf1-based two-plasmid system [...] Read more.
Acinetobacter baumannii is a low-GC-content Gram-negative opportunistic pathogen that poses a serious global public health threat. Convenient and rapid genetic manipulation is beneficial for elucidating its pathogenic mechanisms and developing novel therapeutic methods. In this study, we report a new CRISPR-FnCpf1-based two-plasmid system for versatile and precise genome editing in A. baumannii. After identification, this new system prefers to recognize the 5′-TTN-3′ (N = A, T, C or G) and the 5′-CTV-3′ (V = A, C or G) protospacer-adjacent motif (PAM) sequence and utilize the spacer with lengths ranging from 19 to 25 nt. In direct comparison with the existing CRISPR-Cas9 system, it exhibits approximately four times the targetable range in A. baumannii. Moreover, by employing a tandem dual crRNA expression cassette, the new system can perform large-fragment deletion and simultaneous multiple gene editing, which is difficult to achieve via CRISPR-Cas9. Therefore, the new system is valuable and can greatly expand the genome editing toolbox of A. baumannii. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

11 pages, 511 KiB  
Review
The Search of a Molecular “Swiss Knife” for Chloroplast Genomic Editing
by Natalya V. Dorogova and Yuriy V. Sidorchuk
Horticulturae 2023, 9(12), 1338; https://doi.org/10.3390/horticulturae9121338 - 14 Dec 2023
Cited by 2 | Viewed by 2132
Abstract
In recent years, genome editing methods have become an integral part of the genetic engineering toolset that allows for making targeted changes to plant genomes, both in the case of single-gene mutations and multiplex modifications. These technologies were mostly proven effective for editing [...] Read more.
In recent years, genome editing methods have become an integral part of the genetic engineering toolset that allows for making targeted changes to plant genomes, both in the case of single-gene mutations and multiplex modifications. These technologies were mostly proven effective for editing nuclear genomes. However, plastids, the best-known example of which is chloroplasts, have their own genome (plastome), which is also available for various genetic manipulations, including editing. Despite the fact that the modification of plastomes represents a very promising task for modern biotechnology, the structure of plastids and the peculiarities of their genome organization require the specific adaptation of genome editing methods. This applies to both the design of genetic constructs and methods of their delivery to plastids. The article provides an overview of the current state of research in the field of plastid genome editing with chloroplasts taken as an example. We consider the possibilities of using programmable genome-editing technologies, analyze their effectiveness, limitations, and problems caused by the structural features of these organelles, and their genome organization. We discuss the results of the first successful experiments in this field and try to assess the prospects for the development of tools and methods for increasing the efficiency and the specificity of this biotechnological platform. Full article
Show Figures

Figure 1

Back to TopTop