Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,928)

Search Parameters:
Keywords = multiple networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3080 KiB  
Article
Unsupervised Multimodal Community Detection Algorithm in Complex Network Based on Fractal Iteration
by Hui Deng, Yanchao Huang, Jian Wang, Yanmei Hu and Biao Cai
Fractal Fract. 2025, 9(8), 507; https://doi.org/10.3390/fractalfract9080507 (registering DOI) - 2 Aug 2025
Abstract
Community detection in complex networks plays a pivotal role in modern scientific research, including in social network analysis and protein structure analysis. Traditional community detection methods face challenges in integrating heterogeneous multi-source information, capturing global semantic relationships, and adapting to dynamic network evolution. [...] Read more.
Community detection in complex networks plays a pivotal role in modern scientific research, including in social network analysis and protein structure analysis. Traditional community detection methods face challenges in integrating heterogeneous multi-source information, capturing global semantic relationships, and adapting to dynamic network evolution. This paper proposes a novel unsupervised multimodal community detection algorithm (UMM) based on fractal iteration. The core idea is to design a dual-channel encoder that comprehensively considers node semantic features and network topological structures. Initially, node representation vectors are derived from structural information (using feature vectors when available, or singular value decomposition to obtain feature vectors for nodes without attributes). Subsequently, a parameter-free graph convolutional encoder (PFGC) is developed based on fractal iteration principles to extract high-order semantic representations from structural encodings without requiring any training process. Furthermore, a semantic–structural dual-channel encoder (DC-SSE) is designed, which integrates semantic encodings—reduced in dimensionality via UMAP—with structural features extracted by PFGC to obtain the final node embeddings. These embeddings are then clustered using the K-means algorithm to achieve community partitioning. Experimental results demonstrate that the UMM outperforms existing methods on multiple real-world network datasets. Full article
18 pages, 5391 KiB  
Article
Pharmacological Investigation of Tongqiao Jiuxin Oil Against High-Altitude Hypoxia: Integrating Chemical Profiling, Network Pharmacology, and Experimental Validation
by Jiamei Xie, Yang Yang, Yuhang Du, Xiaohua Su, Yige Zhao, Yongcheng An, Xin Mao, Menglu Wang, Ziyi Shan, Zhiyun Huang, Shuchang Liu and Baosheng Zhao
Pharmaceuticals 2025, 18(8), 1153; https://doi.org/10.3390/ph18081153 (registering DOI) - 2 Aug 2025
Abstract
Background: Acute mountain sickness (AMS) is a prevalent and potentially life-threatening condition caused by rapid exposure to high-altitude hypoxia, affecting pulmonary and neurological functions. Tongqiao Jiuxin Oil (TQ), a traditional Chinese medicine formula composed of aromatic and resinous ingredients such as sandalwood, [...] Read more.
Background: Acute mountain sickness (AMS) is a prevalent and potentially life-threatening condition caused by rapid exposure to high-altitude hypoxia, affecting pulmonary and neurological functions. Tongqiao Jiuxin Oil (TQ), a traditional Chinese medicine formula composed of aromatic and resinous ingredients such as sandalwood, agarwood, frankincense, borneol, and musk, has been widely used in the treatment of cardiovascular and cerebrovascular disorders. Clinical observations suggest its potential efficacy against AMS, yet its pharmacological mechanisms remain poorly understood. Methods: The chemical profile of TQ was characterized using UHPLC-Q-Exactive Orbitrap HRMS. Network pharmacology was applied to predict the potential targets and pathways involved in AMS. A rat model of AMS was established by exposing animals to hypobaric hypoxia (~10% oxygen), simulating an altitude of approximately 5500 m. TQ was administered at varying doses. Physiological indices, oxidative stress markers (MDA, SOD, GSH), histopathological changes, and the expression of hypoxia- and apoptosis-related proteins (HIF-1α, VEGFA, EPO, Bax, Bcl-2, Caspase-3) in lung and brain tissues were assessed. Results: A total of 774 chemical constituents were identified from TQ. Network pharmacology predicted the involvement of multiple targets and pathways. TQ significantly improved arterial oxygenation and reduced histopathological damage in both lung and brain tissues. It enhanced antioxidant activity by elevating SOD and GSH levels and reducing MDA content. Mechanistically, TQ downregulated the expression of HIF-1α, VEGFA, EPO, and pro-apoptotic markers (Bax/Bcl-2 ratio, Caspase-3), while upregulated Bcl-2, the anti-apoptotic protein expression. Conclusions: TQ exerts protective effects against AMS-induced tissue injury by improving oxygen homeostasis, alleviating oxidative stress, and modulating hypoxia-related and apoptotic signaling pathways. This study provides pharmacological evidence supporting the potential of TQ as a promising candidate for AMS intervention, as well as the modern research method for multi-component traditional Chinese medicine. Full article
(This article belongs to the Section Pharmacology)
25 pages, 904 KiB  
Review
Edible Mushroom Cultivation in Liquid Medium: Impact of Microparticles and Advances in Control Systems
by Juan Carlos Ferrer Romero, Oana Bianca Oprea, Liviu Gaceu, Siannah María Más Diego, Humberto J. Morris Quevedo, Laura Galindo Alonso, Lilianny Rivero Ramírez and Mihaela Badea
Processes 2025, 13(8), 2452; https://doi.org/10.3390/pr13082452 (registering DOI) - 2 Aug 2025
Abstract
Mushrooms are eukaryotic organisms with absorptive heterotrophic nutrition, capable of feeding on organic matter rich in cellulose and lignocellulose. Since ancient times, they have been considered allies and, in certain cultures, they were seen as magical beings or food of the gods. Of [...] Read more.
Mushrooms are eukaryotic organisms with absorptive heterotrophic nutrition, capable of feeding on organic matter rich in cellulose and lignocellulose. Since ancient times, they have been considered allies and, in certain cultures, they were seen as magical beings or food of the gods. Of the great variety of edible mushrooms identified worldwide, less than 2% are traded on the market. Although mushrooms have been valued for their multiple nutritional and healing benefits, some cultures perceive them as toxic and do not accept them in their culinary practices. Despite the existing skepticism, several researchers are promoting the potential of edible mushrooms. There are two main methods of mushroom cultivation: solid-state fermentation and submerged fermentation. The former is the most widely used and simplest, since the fungus grows in its natural environment; in the latter, the fungus grows suspended without developing a fruiting body. In addition, submerged fermentation is easily monitored and scalable. Both systems are important and have their limitations. This article discusses the main methods used to increase the performance of submerged fermentation with emphasis on the modes of operation used, types of bioreactors and application of morphological bioengineering of filamentous fungi, and especially the use of intelligent automatic control technologies and the use of non-invasive monitoring in fermentation systems thanks to the development of machine learning (ML), neural networks, and the use of big data, which will allow more accurate decisions to be made in the fermentation of filamentous fungi in submerged environments with improvements in production yields. Full article
Show Figures

Figure 1

24 pages, 1681 KiB  
Article
A Hybrid Quantum–Classical Architecture with Data Re-Uploading and Genetic Algorithm Optimization for Enhanced Image Classification
by Aksultan Mukhanbet and Beimbet Daribayev
Computation 2025, 13(8), 185; https://doi.org/10.3390/computation13080185 (registering DOI) - 1 Aug 2025
Abstract
Quantum machine learning (QML) has emerged as a promising approach for enhancing image classification by exploiting quantum computational principles such as superposition and entanglement. However, practical applications on complex datasets like CIFAR-100 remain limited due to the low expressivity of shallow circuits and [...] Read more.
Quantum machine learning (QML) has emerged as a promising approach for enhancing image classification by exploiting quantum computational principles such as superposition and entanglement. However, practical applications on complex datasets like CIFAR-100 remain limited due to the low expressivity of shallow circuits and challenges in circuit optimization. In this study, we propose HQCNN–REGA—a novel hybrid quantum–classical convolutional neural network architecture that integrates data re-uploading and genetic algorithm optimization for improved performance. The data re-uploading mechanism allows classical inputs to be encoded multiple times into quantum states, enhancing the model’s capacity to learn complex visual features. In parallel, a genetic algorithm is employed to evolve the quantum circuit architecture by optimizing gate sequences, entanglement patterns, and layer configurations. This combination enables automatic discovery of efficient parameterized quantum circuits without manual tuning. Experiments on the MNIST and CIFAR-100 datasets demonstrate state-of-the-art performance for quantum models, with HQCNN–REGA outperforming existing quantum neural networks and approaching the accuracy of advanced classical architectures. In particular, we compare our model with classical convolutional baselines such as ResNet-18 to validate its effectiveness in real-world image classification tasks. Our results demonstrate the feasibility of scalable, high-performing quantum–classical systems and offer a viable path toward practical deployment of QML in computer vision applications, especially on noisy intermediate-scale quantum (NISQ) hardware. Full article
Show Figures

Figure 1

24 pages, 3172 KiB  
Article
A DDPG-LSTM Framework for Optimizing UAV-Enabled Integrated Sensing and Communication
by Xuan-Toan Dang, Joon-Soo Eom, Binh-Minh Vu and Oh-Soon Shin
Drones 2025, 9(8), 548; https://doi.org/10.3390/drones9080548 (registering DOI) - 1 Aug 2025
Abstract
This paper proposes a novel dual-functional radar-communication (DFRC) framework that integrates unmanned aerial vehicle (UAV) communications into an integrated sensing and communication (ISAC) system, termed the ISAC-UAV architecture. In this system, the UAV’s mobility is leveraged to simultaneously serve multiple single-antenna uplink users [...] Read more.
This paper proposes a novel dual-functional radar-communication (DFRC) framework that integrates unmanned aerial vehicle (UAV) communications into an integrated sensing and communication (ISAC) system, termed the ISAC-UAV architecture. In this system, the UAV’s mobility is leveraged to simultaneously serve multiple single-antenna uplink users (UEs) and perform radar-based sensing tasks. A key challenge stems from the target position uncertainty due to movement, which impairs matched filtering and beamforming, thereby degrading both uplink reception and sensing performance. Moreover, UAV energy consumption associated with mobility must be considered to ensure energy-efficient operation. We aim to jointly maximize radar sensing accuracy and minimize UAV movement energy over multiple time steps, while maintaining reliable uplink communications. To address this multi-objective optimization, we propose a deep reinforcement learning (DRL) framework based on a long short-term memory (LSTM)-enhanced deep deterministic policy gradient (DDPG) network. By leveraging historical target trajectory data, the model improves prediction of target positions, enhancing sensing accuracy. The proposed DRL-based approach enables joint optimization of UAV trajectory and uplink power control over time. Extensive simulations validate that our method significantly improves communication quality and sensing performance, while ensuring energy-efficient UAV operation. Comparative results further confirm the model’s adaptability and robustness in dynamic environments, outperforming existing UAV trajectory planning and resource allocation benchmarks. Full article
Show Figures

Figure 1

17 pages, 1340 KiB  
Article
Enhanced Respiratory Sound Classification Using Deep Learning and Multi-Channel Auscultation
by Yeonkyeong Kim, Kyu Bom Kim, Ah Young Leem, Kyuseok Kim and Su Hwan Lee
J. Clin. Med. 2025, 14(15), 5437; https://doi.org/10.3390/jcm14155437 (registering DOI) - 1 Aug 2025
Abstract
 Background/Objectives: Identifying and classifying abnormal lung sounds is essential for diagnosing patients with respiratory disorders. In particular, the simultaneous recording of auscultation signals from multiple clinically relevant positions offers greater diagnostic potential compared to traditional single-channel measurements. This study aims to improve [...] Read more.
 Background/Objectives: Identifying and classifying abnormal lung sounds is essential for diagnosing patients with respiratory disorders. In particular, the simultaneous recording of auscultation signals from multiple clinically relevant positions offers greater diagnostic potential compared to traditional single-channel measurements. This study aims to improve the accuracy of respiratory sound classification by leveraging multichannel signals and capturing positional characteristics from multiple sites in the same patient. Methods: We evaluated the performance of respiratory sound classification using multichannel lung sound data with a deep learning model that combines a convolutional neural network (CNN) and long short-term memory (LSTM), based on mel-frequency cepstral coefficients (MFCCs). We analyzed the impact of the number and placement of channels on classification performance. Results: The results demonstrated that using four-channel recordings improved accuracy, sensitivity, specificity, precision, and F1-score by approximately 1.11, 1.15, 1.05, 1.08, and 1.13 times, respectively, compared to using three, two, or single-channel recordings. Conclusion: This study confirms that multichannel data capture a richer set of features corresponding to various respiratory sound characteristics, leading to significantly improved classification performance. The proposed method holds promise for enhancing sound classification accuracy not only in clinical applications but also in broader domains such as speech and audio processing.  Full article
(This article belongs to the Section Respiratory Medicine)
21 pages, 1198 KiB  
Article
The Impact of Energy Communities Virtual Islanding on the Integration of Renewables in Distribution Power Systems
by Andrea Bonfiglio, Sergio Bruno, Alice La Fata, Maria Martino, Renato Procopio and Angelo Velini
Energies 2025, 18(15), 4084; https://doi.org/10.3390/en18154084 (registering DOI) - 1 Aug 2025
Abstract
In power distribution networks, the growing integration of renewable energy sources (RESs) presents a challenge for the electricity system and its operators, who need to make the energy sector more flexible and resilient. In this context, this paper proposes a novel flexibilization service [...] Read more.
In power distribution networks, the growing integration of renewable energy sources (RESs) presents a challenge for the electricity system and its operators, who need to make the energy sector more flexible and resilient. In this context, this paper proposes a novel flexibilization service for the distribution system leveraging the role of renewable energy communities (RECs), an emerging entity with the potential to facilitate the sustainable energy transition through Virtual Islanding operation. The concept of Virtual Islanding is investigated in the paper and a methodology for its validation is developed. Its effectiveness is then assessed using an IEEE-standard 33-node network with significant penetration of RESs, considering the presence of multiple RECs to prove its benefits on electrical distribution networks. The results showcase the advantages of the VI paradigm both from technical and sustainability viewpoint. Full article
(This article belongs to the Section F1: Electrical Power System)
22 pages, 10625 KiB  
Article
Regenerating Landscape Through Slow Tourism: Insights from a Mediterranean Case Study
by Luca Barbarossa and Viviana Pappalardo
Sustainability 2025, 17(15), 7005; https://doi.org/10.3390/su17157005 (registering DOI) - 1 Aug 2025
Abstract
The implementation of the trans-European tourist cycle route network “EuroVelo” is fostering new strategic importance for non-motorized mobility and the associated practice of cycling tourism. Indeed, slow tourism offers a pathway for the development of inland areas. The infrastructure supporting it, such as [...] Read more.
The implementation of the trans-European tourist cycle route network “EuroVelo” is fostering new strategic importance for non-motorized mobility and the associated practice of cycling tourism. Indeed, slow tourism offers a pathway for the development of inland areas. The infrastructure supporting it, such as long-distance cycling and walking paths, can act as a vital connection, stimulating regeneration in peripheral territories by enhancing environmental and landscape assets, as well as preserving heritage, local identity, and culture. The regeneration of peri-urban landscapes through soft mobility is recognized as the cornerstone for accessibility to material and immaterial resources (including ecosystem services) for multiple categories of users, including the most vulnerable, especially following the restoration of green-area systems and non-urbanized areas with degraded ecosystems. Considering the forthcoming implementation of the Magna Grecia cycling route, the southernmost segment of the “EuroVelo” network traversing three regions in southern Italy, this contribution briefly examines the necessity of defining new development policies to effectively integrate sustainable slow tourism with the enhancement of environmental and landscape values in the coastal areas along the route. Specifically, this case study focuses on a coastal stretch characterized by significant morphological and environmental features and notable landscapes interwoven with densely built environments. In this area, environmental and landscape values face considerable threats from scattered, irregular, low-density settlements, abandoned sites, and other inappropriate constructions along the coastline. Full article
(This article belongs to the Special Issue A Systems Approach to Urban Greenspace System and Climate Change)
14 pages, 1714 KiB  
Article
A Kalman Filter-Based Localization Calibration Method Optimized by Reinforcement Learning and Information Matrix Fusion
by Zijia Huang, Qiushi Xu, Menghao Sun and Xuzhen Zhu
Entropy 2025, 27(8), 821; https://doi.org/10.3390/e27080821 (registering DOI) - 1 Aug 2025
Abstract
To address the degradation in localization accuracy caused by insufficient robustness of filter parameters and inefficient multi-trajectory data fusion in dynamic environments, this paper proposes a Kalman filter-based localization calibration method optimized by reinforcement learning and information matrix fusion (RL-IMKF). An actor–critic reinforcement [...] Read more.
To address the degradation in localization accuracy caused by insufficient robustness of filter parameters and inefficient multi-trajectory data fusion in dynamic environments, this paper proposes a Kalman filter-based localization calibration method optimized by reinforcement learning and information matrix fusion (RL-IMKF). An actor–critic reinforcement learning network is designed to adaptively adjust the state covariance matrix, enhancing the Kalman filter’s adaptability to environmental changes. Meanwhile, a multi-trajectory information matrix fusion strategy is introduced, which aggregates multiple trajectories in the information domain via weighted inverse covariance matrices to suppress error propagation and improve system consistency. Experiments using both simulated and real-world sensor data demonstrate that the proposed method outperforms traditional extended Kalman filter approaches in terms of localization accuracy and stability, providing a novel solution for cooperative localization calibration of unmanned aerial vehicle (UAV) swarms in dynamic environments. Full article
(This article belongs to the Special Issue Complexity, Entropy and the Physics of Information II)
Show Figures

Figure 1

27 pages, 4163 KiB  
Article
Rainfall Forecasting Using a BiLSTM Model Optimized by an Improved Whale Migration Algorithm and Variational Mode Decomposition
by Yueqiao Yang, Shichuang Li, Ting Zhou, Liang Zhao, Xiao Shi and Boni Du
Mathematics 2025, 13(15), 2483; https://doi.org/10.3390/math13152483 (registering DOI) - 1 Aug 2025
Abstract
The highly stochastic nature of rainfall presents significant challenges for the accurate prediction of its time series. To enhance the prediction performance of non-stationary rainfall time series, this study proposes a hybrid deep learning forecasting framework—VMD-IWMA-BiLSTM—that integrates Variational Mode Decomposition (VMD), Improved Whale [...] Read more.
The highly stochastic nature of rainfall presents significant challenges for the accurate prediction of its time series. To enhance the prediction performance of non-stationary rainfall time series, this study proposes a hybrid deep learning forecasting framework—VMD-IWMA-BiLSTM—that integrates Variational Mode Decomposition (VMD), Improved Whale Migration Algorithm (IWMA), and Bidirectional Long Short-Term Memory network (BiLSTM). Firstly, VMD is employed to decompose the original rainfall series into multiple modes, extracting Intrinsic Mode Functions (IMFs) with more stable frequency characteristics. Secondly, IWMA is utilized to globally optimize multiple hyperparameters of the BiLSTM model, enhancing its ability to capture complex nonlinear relationships and long-term dependencies. Finally, experimental validation is conducted using daily rainfall data from 2020 to 2024 at the Xinzheng National Meteorological Observatory. The results demonstrate that the proposed framework outperforms traditional models such as LSTM, ARIMA, SVM, and LSSVM in terms of prediction accuracy. This research provides new insights and effective technical pathways for improving rainfall time series prediction accuracy and addressing the challenges posed by high randomness. Full article
Show Figures

Figure 1

31 pages, 3315 KiB  
Article
Searching for the Best Artificial Neural Network Architecture to Estimate Column and Beam Element Dimensions
by Ayla Ocak, Gebrail Bekdaş, Sinan Melih Nigdeli, Umit Işıkdağ and Zong Woo Geem
Information 2025, 16(8), 660; https://doi.org/10.3390/info16080660 (registering DOI) - 1 Aug 2025
Abstract
The cross-sectional dimensions of structural elements in a structure are design elements that need to be carefully designed and are related to the stiffness of the structure. Various optimization processes are applied to determine the optimum cross-sectional dimensions of beams or columns in [...] Read more.
The cross-sectional dimensions of structural elements in a structure are design elements that need to be carefully designed and are related to the stiffness of the structure. Various optimization processes are applied to determine the optimum cross-sectional dimensions of beams or columns in structures. By repeating the optimization processes for multiple load scenarios, it is possible to create a data set that shows the optimum design section properties. However, this step means repeating the same processes to produce the optimum cross-sectional dimensions. Artificial intelligence technology offers a short-cut solution to this by providing the opportunity to train itself with previously generated optimum cross-sectional dimensions and infer new cross-sectional dimensions. By processing the data, the artificial neural network can generate models that predict the cross-section for a new structural element. In this study, an optimization process is applied to a simple tubular column and an I-section beam, and the results are compiled to create a data set that presents the optimum section dimensions as a class. The harmony search (HS) algorithm, which is a metaheuristic method, was used in optimization. An artificial neural network (ANN) was created to predict the cross-sectional dimensions of the sample structural elements. The neural architecture search (NAS) method, which incorporates many metaheuristic algorithms designed to search for the best artificial neural network architecture, was applied. In this method, the best values of various parameters of the neural network, such as activation function, number of layers, and neurons, are searched for in the model with a tool called HyperNetExplorer. Model metrics were calculated to evaluate the prediction success of the developed model. An effective neural network architecture for column and beam elements is obtained. Full article
(This article belongs to the Special Issue Optimization Algorithms and Their Applications)
Show Figures

Figure 1

15 pages, 4258 KiB  
Article
Complex-Scene SAR Aircraft Recognition Combining Attention Mechanism and Inner Convolution Operator
by Wansi Liu, Huan Wang, Jiapeng Duan, Lixiang Cao, Teng Feng and Xiaomin Tian
Sensors 2025, 25(15), 4749; https://doi.org/10.3390/s25154749 (registering DOI) - 1 Aug 2025
Abstract
Synthetic aperture radar (SAR), as an active microwave imaging system, has the capability of all-weather and all-time observation. In response to the challenges of aircraft detection in SAR images due to the complex background interference caused by the continuous scattering of airport buildings [...] Read more.
Synthetic aperture radar (SAR), as an active microwave imaging system, has the capability of all-weather and all-time observation. In response to the challenges of aircraft detection in SAR images due to the complex background interference caused by the continuous scattering of airport buildings and the demand for real-time processing, this paper proposes a YOLOv7-MTI recognition model that combines the attention mechanism and involution. By integrating the MTCN module and involution, performance is enhanced. The Multi-TASP-Conv network (MTCN) module aims to effectively extract low-level semantic and spatial information using a shared lightweight attention gate structure to achieve cross-dimensional interaction between “channels and space” with very few parameters, capturing the dependencies among multiple dimensions and improving feature representation ability. Involution helps the model adaptively adjust the weights of spatial positions through dynamic parameterized convolution kernels, strengthening the discrete strong scattering points specific to aircraft and suppressing the continuous scattering of the background, thereby alleviating the interference of complex backgrounds. Experiments on the SAR-AIRcraft-1.0 dataset, which includes seven categories such as A220, A320/321, A330, ARJ21, Boeing737, Boeing787, and others, show that the mAP and mRecall of YOLOv7-MTI reach 93.51% and 96.45%, respectively, outperforming Faster R-CNN, SSD, YOLOv5, YOLOv7, and YOLOv8. Compared with the basic YOLOv7, mAP is improved by 1.47%, mRecall by 1.64%, and FPS by 8.27%, achieving an effective balance between accuracy and speed, providing research ideas for SAR aircraft recognition. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

25 pages, 2451 KiB  
Article
Complexation and Thermal Stabilization of Protein–Polyelectrolyte Systems via Experiments and Molecular Simulations: The Poly(Acrylic Acid)/Lysozyme Case
by Sokratis N. Tegopoulos, Sisem Ektirici, Vagelis Harmandaris, Apostolos Kyritsis, Anastassia N. Rissanou and Aristeidis Papagiannopoulos
Polymers 2025, 17(15), 2125; https://doi.org/10.3390/polym17152125 - 1 Aug 2025
Abstract
Protein–polyelectrolyte nanostructures assembled via electrostatic interactions offer versatile applications in biomedicine, tissue engineering, and food science. However, several open questions remain regarding their intermolecular interactions and the influence of external conditions—such as temperature and pH—on their assembly, stability, and responsiveness. This study explores [...] Read more.
Protein–polyelectrolyte nanostructures assembled via electrostatic interactions offer versatile applications in biomedicine, tissue engineering, and food science. However, several open questions remain regarding their intermolecular interactions and the influence of external conditions—such as temperature and pH—on their assembly, stability, and responsiveness. This study explores the formation and stability of networks between poly(acrylic acid) (PAA) and lysozyme (LYZ) at the nanoscale upon thermal treatment, using a combination of experimental and simulation measures. Experimental techniques of static and dynamic light scattering (SLS and DLS), Fourier transform infrared spectroscopy (FTIR), and circular dichroism (CD) are combined with all-atom molecular dynamics simulations. Model systems consisting of multiple PAA and LYZ molecules explore collective assembly and complexation in aqueous solution. Experimental results indicate that electrostatic complexation occurs between PAA and LYZ at pH values below LYZ’s isoelectric point. This leads to the formation of nanoparticles (NPs) with radii ranging from 100 to 200 nm, most pronounced at a PAA/LYZ mass ratio of 0.1. These complexes disassemble at pH 12, where both LYZ and PAA are negatively charged. However, when complexes are thermally treated (TT), they remain stable, which is consistent with earlier findings. Atomistic simulations demonstrate that thermal treatment induces partially reversible structural changes, revealing key microscopic features involved in the stabilization of the formed network. Although electrostatic interactions dominate under all pH and temperature conditions, thermally induced conformational changes reorganize the binding pattern, resulting in an increased number of contacts between LYZ and PAA upon thermal treatment. The altered hydration associated with conformational rearrangements emerges as a key contributor to the stability of the thermally treated complexes, particularly under conditions of strong electrostatic repulsion at pH 12. Moreover, enhanced polymer chain associations within the network are observed, which play a crucial role in complex stabilization. These insights contribute to the rational design of protein–polyelectrolyte materials, revealing the origins of association under thermally induced structural rearrangements. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

26 pages, 3030 KiB  
Article
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
by Frédéric Lorng Gnagne, Serge Schmitz, Hélène Boyossoro Kouadio, Aurélia Hubert-Ferrari, Jean Biémi and Alain Demoulin
Earth 2025, 6(3), 84; https://doi.org/10.3390/earth6030084 (registering DOI) - 1 Aug 2025
Abstract
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and [...] Read more.
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and frequency ratio models. The analysis is based on a dataset comprising 54 mapped landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived from multiple data sources, supports the spatial analysis. The landslide inventory was randomly divided into two subsets: 80% for model calibration and 20% for validation. After optimization and statistical testing, the selected thematic layers were integrated to produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is classified as very highly susceptible. The proportion of the sample (61.2%) in this class had a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE, S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), demonstrating strong predictive capability. These findings can support informed land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in helping them make decisions and implement protective measures. Full article
Show Figures

Figure 1

16 pages, 7560 KiB  
Article
High-Performance Sodium Alginate Fiber-Reinforced Polyvinyl Alcohol Hydrogel for Artificial Cartilage
by Lingling Cui, Yifan Lu, Jun Wang, Haiqin Ding, Guodong Jia, Zhiwei Li, Guang Ji and Dangsheng Xiong
Coatings 2025, 15(8), 893; https://doi.org/10.3390/coatings15080893 (registering DOI) - 1 Aug 2025
Abstract
Hydrogels, especially Polyvinyl alcohols, have received extensive attention as alternative materials for articular cartilage. Aiming at the problems such as low strength and poor toughness of polyvinyl alcohol hydrogels in practical applications, an enhancement and modification strategy is proposed. Sodium alginate fibers were [...] Read more.
Hydrogels, especially Polyvinyl alcohols, have received extensive attention as alternative materials for articular cartilage. Aiming at the problems such as low strength and poor toughness of polyvinyl alcohol hydrogels in practical applications, an enhancement and modification strategy is proposed. Sodium alginate fibers were introduced into polyvinyl alcohol hydrogel network through physical blending and freezing/thawing methods. The prepared composite hydrogels exhibited a three-dimensional porous network structure similar to that of human articular cartilage. The mechanical and tribological properties of hydrogels have been significantly improved, due to the multiple hydrogen bonding interaction between sodium alginate fibers and polyvinyl alcohol. Most importantly, under a load of 2 N, the friction coefficient of the PVA/0.4SA hydrogel can remain stable at 0.02 when lubricated in PBS buffer for 1 h. This work provides a novel design strategy for the development of high-performance polyvinyl alcohol hydrogels. Full article
(This article belongs to the Section Surface Coatings for Biomedicine and Bioengineering)
Show Figures

Figure 1

Back to TopTop