Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (394)

Search Parameters:
Keywords = multiple drought indicators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 25093 KiB  
Article
Sunflower HaGLK Enhances Photosynthesis, Grain Yields, and Stress Tolerance of Rice
by Jie Luo, Mengyi Zheng, Jiacheng He, Yangyang Lou, Qianwen Ge, Bojun Ma and Xifeng Chen
Biology 2025, 14(8), 946; https://doi.org/10.3390/biology14080946 - 27 Jul 2025
Abstract
GOLDEN2-LIKEs (GLKs) are important transcription factors for the chloroplast development influencing photosynthesis, nutrition, senescence, and stress response in plants. Sunflower (Helianthus annuus) is a highly photosynthetic plant; here, a GLK-homologues gene HaGLK was identified from the sunflower genome by bioinformatics. [...] Read more.
GOLDEN2-LIKEs (GLKs) are important transcription factors for the chloroplast development influencing photosynthesis, nutrition, senescence, and stress response in plants. Sunflower (Helianthus annuus) is a highly photosynthetic plant; here, a GLK-homologues gene HaGLK was identified from the sunflower genome by bioinformatics. To analyze the bio-function of HaGLK, transgenic rice plants overexpressing HaGLK (HaGLK-OE) were constructed and characterized via phenotype. Compared to the wild-type control rice variety Zhonghua 11 (ZH11), the HaGLK-OE lines exhibited increased photosynthetic pigment contents, higher net photosynthetic rates, and enlarged chloroplast area; meanwhile, genes involved in both photosynthesis and chlorophyll biosynthesis were also significantly up-regulated. Significantly, the HaGLK-OE plants showed a 12–13% increase in yield per plant. Additionally, the HaGLK-OE plants were demonstrated to have improved salt and drought tolerance compared to the control ZH11. Our results indicated that the HaGLK gene could play multiple roles in photosynthesis and stress response in rice, underscoring its potential value for improving crop productivity and environmental adaptability in breeding. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

24 pages, 5977 KiB  
Article
An Investigation into the Evolutionary Characteristics and Expression Patterns of the Basic Leucine Zipper Gene Family in the Endangered Species Phoebe bournei Under Abiotic Stress Through Bioinformatics
by Yizhuo Feng, Almas Bakari, Hengfeng Guan, Jingyan Wang, Linping Zhang, Menglan Xu, Michael Nyoni, Shijiang Cao and Zhenzhen Zhang
Plants 2025, 14(15), 2292; https://doi.org/10.3390/plants14152292 - 25 Jul 2025
Viewed by 199
Abstract
The bZIP gene family play a crucial role in plant growth, development, and stress responses, functioning as transcription factors. While this gene family has been studied in several plant species, its roles in the endangered woody plant Phoebe bournei remain largely unclear. This [...] Read more.
The bZIP gene family play a crucial role in plant growth, development, and stress responses, functioning as transcription factors. While this gene family has been studied in several plant species, its roles in the endangered woody plant Phoebe bournei remain largely unclear. This study comprehensively analyzed the PbbZIP gene family in P. bournei, identifying 71 PbbZIP genes distributed across all 12 chromosomes. The amino acid count in these genes ranged from 74 to 839, with molecular weights varying from 8813.28 Da to 88,864.94 Da. Phylogenetic analysis categorized the PbbZIP genes into 12 subfamilies (A-K, S). Interspecific collinearity analysis revealed homologous PbbZIP genes between P. bournei and Arabidopsis thaliana. A promoter cis-acting element analysis indicated that PbbZIP genes contain various elements responsive to plant hormones, stress signals, and light. Additionally, expression analysis of public RNA-seq data showed that PbbZIP genes are distributed across multiple tissues, exhibiting distinct expression patterns specific to root bark, root xylem, stem bark, stem xylem, and leaves. We also performed qRT-PCR analysis on five representative PbbZIP genes (PbbZIP14, PbbZIP26, PbbZIP32, PbbZIP67, and PbbZIP69). The results demonstrated significant differences in the expression of PbbZIP genes under various abiotic stress conditions, including salt stress, heat, and drought. Notably, PbbZIP67 and PbbZIP69 exhibited robust responses under salt or heat stress conditions. This study confirmed the roles of the PbbZIP gene family in responding to various abiotic stresses, thereby providing insights into its functions in plant growth, development, and stress adaptation. The findings lay a foundation for future research on breeding and enhancing stress resistance in P. bournei. Full article
(This article belongs to the Special Issue Advances in Forest Tree Genetics and Breeding)
Show Figures

Figure 1

23 pages, 12625 KiB  
Article
Genome-Wide Identification and Expression Analysis of Auxin-Responsive GH3 Gene Family in Pepper (Capsicum annuum L.)
by Qiao-Lu Zang, Meng Wang, Lu Liu, Xiao-Mei Zheng and Yan Cheng
Plants 2025, 14(14), 2231; https://doi.org/10.3390/plants14142231 - 18 Jul 2025
Viewed by 298
Abstract
As an auxin-responsive gene, Gretchen Hagen 3 (GH3) maintains hormonal homeostasis by conjugating excess auxin with amino acids in plant stress-related signaling pathways. GH3 genes have been characterized in many plant species, but the characteristics of pepper (Capsicum annuum L.) [...] Read more.
As an auxin-responsive gene, Gretchen Hagen 3 (GH3) maintains hormonal homeostasis by conjugating excess auxin with amino acids in plant stress-related signaling pathways. GH3 genes have been characterized in many plant species, but the characteristics of pepper (Capsicum annuum L.) GH3 (CaGH3) gene family members in response to multiple stimulants are largely unknown. In this study, we systematically identified the CaGH3 gene family at the genome level and identified eight members on four chromosomes in pepper. CaGH3s were divided into two groups (I and III) and shared conserved motifs, domains, and gene structures. Moreover, CaGH3s had close evolutionary relationships with tomato (Solanum lycopersicum L.), and the promoters of most CaGH3 genes contained hormone and abiotic stress response elements. A protein interaction prediction analysis demonstrated that the CaGH3-3/3-6/3-7/3-8 proteins were possibly core members of the CaGH3 family interaction. In addition, qRT-PCR results showed that CaGH3 genes were differentially expressed in pepper tissues and could be induced by phytohormones (IAA, ABA, and MeJA) and abiotic stresses (salt, low temperature, and drought) with different patterns. In addition, CaGH3-5 and CaGH3-7 were cloned, and the sequences showed a high degree of conservation. Moreover, the results of subcellular localization indicated that they were located in the membrane and chloroplast. Notably, after overexpressing CaGH3-7 in tomato, RNA-seq was performed on wild-type and transgenic lines, and the differentially expressed genes were mainly enriched in response to external stimuli. This study not only lays the foundation for a comprehensive understanding of the function of the CaGH3 gene family during plant growth and stress responses but also provides potential genetic resources for pepper resistance breeding. Full article
Show Figures

Figure 1

27 pages, 50073 KiB  
Article
A Spatiotemporal Analysis of Drought Conditions Framework in Vast Paddy Cultivation Areas of Thung Kula Ronghai, Thailand
by Pariwate Varnakovida, Nathapat Punturasan, Usa Humphries, Anisara Tibkaew and Sornkitja Boonprong
Agriculture 2025, 15(14), 1503; https://doi.org/10.3390/agriculture15141503 - 12 Jul 2025
Viewed by 351
Abstract
This study presents an integrated spatiotemporal assessment of drought conditions in the Thung Kula Ronghai region of Northeastern Thailand from 2001 to 2023. Multiple satellite-derived drought indices, including SPI, SPEI, RDI, and AI, together with NDVI anomalies, were used to detect seasonal and [...] Read more.
This study presents an integrated spatiotemporal assessment of drought conditions in the Thung Kula Ronghai region of Northeastern Thailand from 2001 to 2023. Multiple satellite-derived drought indices, including SPI, SPEI, RDI, and AI, together with NDVI anomalies, were used to detect seasonal and long-term drought dynamics affecting rainfed Hom Mali rice production. The results show that dry season droughts now affect up to 17 percent of the region’s agricultural land in some years, while severe drought zones persist across more than 2.5 million hectares over the 20-year period. In the most recent 5 years, approximately 50 percent of cultivated areas experienced moderate to severe drought conditions. The RDI showed the strongest correlation with NDVI anomalies (r = 0.22), indicating its relative value for assessing vegetation response to moisture deficits. The combined index approach delineated high-risk sub-regions, particularly in central Thung Kula Ronghai and lower Surin, where drought frequency and severity have intensified. These findings underscore the region’s increasing exposure to dry-season water stress and highlight the need for site-specific irrigation development and adaptive cropping strategies. The methodological framework demonstrated here provides a practical basis for improving drought monitoring and early warning systems to support the resilience of Thailand’s high-value rice production under changing climate conditions. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

16 pages, 5576 KiB  
Article
Functional Identification Reveals That TaTGA16-2D Promotes Drought and Heat Tolerance
by Jingna Ru, Jiamin Hao, Xiaoqian Ji, Bingqing Hao, Jiale Yang, Hongtao Wang, Baoquan Quan, Pengyan Guo, Jiping Zhao, Chao Wang, Huawei Shi and Zhaoshi Xu
Plants 2025, 14(14), 2125; https://doi.org/10.3390/plants14142125 - 9 Jul 2025
Viewed by 348
Abstract
The TGACG motif-binding factor (TGA) family is an important group of basic region/leucine zipper (bZIP) transcription factors in plants, playing crucial roles in plant development and stress responses. This study conducted a comprehensive genome-wide analysis of the TGA transcription factor (TF) family in [...] Read more.
The TGACG motif-binding factor (TGA) family is an important group of basic region/leucine zipper (bZIP) transcription factors in plants, playing crucial roles in plant development and stress responses. This study conducted a comprehensive genome-wide analysis of the TGA transcription factor (TF) family in common wheat (Triticum aestivum L.). A total of 48 wheat TGAs were identified and classified into four subgroups. Collinearity analysis of the TGAs between wheat and other species identified multiple duplicated gene pairs and highlighted the presence of highly conserved TGAs in wheat. Whole-genome and segmental duplications were identified as the primary drivers of TaTGA expansion. Expression pattern analysis indicated that TaTGAs are involved in plant development and responses to abiotic stresses, including drought, heat, and cold treatment. Among these, TaTGA16-2D was significantly upregulated under both drought and heat stresses, showing more than a five-fold increase in expression. Subcellular localization confirmed its nucleus localization. Functional validation through ectopic expression in Arabidopsis demonstrated that transgenic lines overexpressing TaTGA16-2D exhibited significantly improved stress tolerance. Under heat stress, the survival rates of transgenic lines exceeded 34%, compared to less than 18% in wild-type plants. Overall, this study provides valuable insights into the evolution and functional roles of TaTGAs and identifies TaTGA16-2D as a promising candidate to enhance abiotic stress tolerance in wheat via molecular breeding. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

21 pages, 3766 KiB  
Article
Comparative Genomic Analysis of COMT Family Genes in Three Vitis Species Reveals Evolutionary Relationships and Functional Divergence
by Yashi Liu, Zhiyuan Bian, Shan Jiang, Xiao Wang, Lin Jiao, Yun Shao, Chengmei Ma and Mingyu Chu
Plants 2025, 14(13), 2079; https://doi.org/10.3390/plants14132079 - 7 Jul 2025
Viewed by 368
Abstract
Caffeic acid-O-methyltransferase (COMT) is a key enzyme in lignin synthesis and secondary metabolism in plants, and it participates in the regulation of plant growth and development as well as plants’ stress response. To further investigate the function of COMT in grapevine, a total [...] Read more.
Caffeic acid-O-methyltransferase (COMT) is a key enzyme in lignin synthesis and secondary metabolism in plants, and it participates in the regulation of plant growth and development as well as plants’ stress response. To further investigate the function of COMT in grapevine, a total of 124 COMT family genes were identified from three Vitis species in this study, namely Pinot noir (Vitis vinifera L.), Vitis amurensis, and Vitis riparia. The amino acid sequence encoded by these genes ranged from 55 to 1422 aa, and their molecular mass ranged from 6640.82 to 77,034.43 Da. Subcellular localization prediction inferred that they were mainly located in the plasma membrane and cytoplasm. The prediction of secondary structures showed that α-helix and irregular coiled-coil were primary structural elements. These genes were unevenly distributed across 10 different chromosomes, respectively. Phylogenetic tree analysis of the amino acid sequences of VvCOMT, VaCOMT, VrCOMT, and AtCOMT proteins showed that they were closely related and were divided into four subgroups. The motif distribution was similar among the cluster genes, and the gene sequence was notably conserved. The 124 members of the COMT gene family possessed a variable number of exons, ranging from 2 to 13. The promoter region of all of these COMTs genes contained multiple cis-acting elements related to hormones (e.g., ABA, IAA, MeJA, GA, and SA), growth and development (e.g., endosperm, circadian, meristem, light response), and various stress responses (e.g., drought, low temperature, wounding, anaerobic, defense, and stress). The intraspecies collinearity analysis suggested that there were one pair, three pairs, and six pairs of collinear genes in Va, Pinot noir, and Vr, respectively, and that tandem duplication contributed more to the expansion of these gene family members. In addition, interspecific collinearity revealed that the VvCOMTs had the strongest homology with the VaCOMTs, followed by the VrCOMTs, and the weakest homology with the AtCOMTs. The expression patterns of different tissues and organs at different developmental stages indicated that the VvCOMT genes had obvious tissue expression specificity. The majority of VvCOMT genes were only expressed at higher levels in certain tissues. Furthermore, we screened 13 VvCOMT genes to conduct qRT-PCR verification according to the transcriptome data of VvCOMTs under abiotic stresses (NaCl, PEG, and cold). The results confirmed that these genes were involved in the responses to NaCl, PEG, and cold stress. This study lays a foundation for the exploration of the function of the COMT genes, and is of great importance for the genetic improvement of abiotic stress resistance in grapes. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

18 pages, 6726 KiB  
Article
Genome-Wide Identification and Analysis of the AHL Gene Family in Pepper (Capsicum annuum L.)
by Xiao-Yan Sui, Yan-Long Li, Xi Wang, Yi Zhong, Qing-Zhi Cui, Yin Luo, Bing-Qian Tang, Feng Liu and Xue-Xiao Zou
Int. J. Mol. Sci. 2025, 26(13), 6527; https://doi.org/10.3390/ijms26136527 - 7 Jul 2025
Viewed by 404
Abstract
AT-hook motif nuclear-localized (AHL) genes play critical roles in chromatin remodeling and gene transcription regulation, profoundly influencing plant growth, development, and stress responses. While AHL genes have been extensively characterized in multiple plant species, their biological functions in pepper (Capsicum [...] Read more.
AT-hook motif nuclear-localized (AHL) genes play critical roles in chromatin remodeling and gene transcription regulation, profoundly influencing plant growth, development, and stress responses. While AHL genes have been extensively characterized in multiple plant species, their biological functions in pepper (Capsicum annuum L.) remain largely uncharacterized. In this study, we identified 45 CaAHL genes in the pepper genome through bioinformatics approaches. Comprehensive analyses were conducted to examine their chromosomal distribution, phylogenetic relationships, and the structural and functional features of their encoded proteins. Phylogenetic clustering classified the CaAHL proteins into six distinct subgroups. Transcriptome profiling revealed widespread expression of CaAHL genes across diverse tissues—including roots, stems, leaves, flowers, seeds, pericarp, placenta, and fruits—at various developmental stages. Quantitative real-time PCR further demonstrated that CaAHL1, CaAHL33, and CaAHL23 exhibited consistently high expression throughout flower bud development, whereas CaAHL36 showed preferential upregulation at early bud development stages. Expression profiling under hormone treatments and abiotic stresses indicated that CaAHL36 and CaAHL23 are auxin-inducible but are repressed by ABA, cold, heat, salt, and drought stress. Subcellular localization assays in Nicotiana benthamiana leaf epidermal cells showed that both CaAHL36 and CaAHL23 were predominantly localized in the nucleus, with faint expression also detected in the cytoplasm. Collectively, this study provides foundational insights into the CaAHL gene family, laying the groundwork for future functional investigations of these genes in pepper. Full article
(This article belongs to the Special Issue Vegetable Genetics and Genomics, 3rd Edition)
Show Figures

Figure 1

19 pages, 3093 KiB  
Article
Developing a Composite Drought Indicator Using PCA Integration of CHIRPS Rainfall, Temperature, and Vegetation Health Products for Agricultural Drought Monitoring in New Mexico
by Bishal Poudel, Dewasis Dahal, Sujan Shrestha, Roshan Sewa and Ajay Kalra
Atmosphere 2025, 16(7), 818; https://doi.org/10.3390/atmos16070818 - 4 Jul 2025
Viewed by 402
Abstract
Drought indices are important resources for monitoring and warning of drought impacts. However, regions like New Mexico, which are highly vulnerable to drought, as identified by the United States Drought Monitor (USDM), lack a comprehensive drought monitoring system that integrates multiple agrometeorological variables [...] Read more.
Drought indices are important resources for monitoring and warning of drought impacts. However, regions like New Mexico, which are highly vulnerable to drought, as identified by the United States Drought Monitor (USDM), lack a comprehensive drought monitoring system that integrates multiple agrometeorological variables into a single indicator. The purpose of this study is to create a Combined Drought Indicator for New Mexico (CDI-NM) as an indicator tool for use in monitoring historical drought events and measuring its extent across the New Mexico. The CDI-NM was constructed using four key variables: the Vegetation Condition Index (VCI), temperature, Smoothed Normalized Difference Vegetation Index (SMN), and gridded rainfall data. A quantitative approach was used to assign weights to these variables employing Principal Component Analysis (PCA) to produce the CDI-NM. Unlike conventional indices, CDI-NM assigns weights to each variable based on their statistical contributions, allowing the index to adapt to local spatial and temporal drought dynamics. The performance of CDI-NM was evaluated against gridded rainfall data using the 3-month Standardized Precipitation Index (SPI3) over a 17-year period (2003–2019). The results revealed that CDI-NM reliably detected moderate and severe droughts with a strong correlation (R2 > 0.8 and RMSE = 0.10) between both indices for the entire period of analysis. CDI-NM showed negative correlation (r < 0) with crop yield. While promising, the method assumes linear relationships among variables and consistent spatial resolution in the input datasets, which may affect its accuracy under certain local conditions. Based on the results, the CDI-NM stands out as a promising instrument that brings us closer to improved decision-making by stakeholders in the fight against agricultural droughts throughout New Mexico. Full article
Show Figures

Figure 1

19 pages, 8079 KiB  
Article
Identification and Expression Pattern Analysis of AsSWEET Gene Family in Achnatherum splendens
by Ming Hu, Wei Kou, Mingsu Chen, Xiaoying Li, Jingru Wang, Jiahuan Niu, Fei Wang, Hongbin Li and Rong Li
Int. J. Mol. Sci. 2025, 26(13), 6438; https://doi.org/10.3390/ijms26136438 - 4 Jul 2025
Viewed by 240
Abstract
Sugars Will Eventually Be Exported Transporters (SWEETs) are involved in plant growth and development, particularly in resistance to adverse environments. Achnatherum splendens (Trin.) Nevski exhibits rhizosheath formation and demonstrates notable salt and drought tolerance. We identified 31 sugar transporter family genes [...] Read more.
Sugars Will Eventually Be Exported Transporters (SWEETs) are involved in plant growth and development, particularly in resistance to adverse environments. Achnatherum splendens (Trin.) Nevski exhibits rhizosheath formation and demonstrates notable salt and drought tolerance. We identified 31 sugar transporter family genes (AsSWEETs) from the Achnatherum splendens genome in the NCBI database and performed bioinformatics analyses, including gene structure, subcellular localization, conserved sequences, promoter cis-acting elements, phylogenetic relationships, and chromosomal localization. The 31 AsSWEET genes are distributed across 13 chromosomes, encoding peptides ranging from 375 to 1353 amino acids. Their predicted molecular weights range from 31,499.38 to 109,286.91 Da, with isoelectric points (pI) between 4.78 and 5.21. The aliphatic index values range from 13.59 to 24.19, and the grand average of hydropathicity (GRAVY) values range from 0.663 to 1.664. An analysis of promoter cis-acting elements reveals that all 31 AsSWEET genes contain multiple elements related to light, stress, and hormone responses. Subcellular localization predictions indicate that most genes in this family are localized to the plasma membrane or tonoplast, with AsSWEET12-2 and AsSWEET3b localized in chloroplasts and AsSWEET2b-2 in the nucleus. qRT-PCR results show that AsSWEET13-1, AsSWEET13-3, and AsSWEET1a exhibit upregulated expression in response to salt and drought stress in the roots of Achnatherum splendens. These genes may serve as candidate genes for investigating the stress resistance mechanisms of Achnatherum splendens. The findings provide a theoretical basis for further research on stress resistance mechanisms and candidate gene identification under salt and drought stress in Achnatherum splendens. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 1498 KiB  
Article
Identification of Common Bean Genotypes Tolerant to the Combined Stress of Terminal Drought and High Temperature
by Alejandro Antonio Prado-García, Jorge Alberto Acosta-Gallegos, Víctor Montero-Tavera, Ricardo Yáñez-López, Juan Gabriel Ramírez-Pimentel and Cesar Leobardo Aguirre-Mancilla
Agronomy 2025, 15(7), 1624; https://doi.org/10.3390/agronomy15071624 - 3 Jul 2025
Viewed by 285
Abstract
The yield of common bean (Phaseolus vulgaris L.) is limited by abiotic stresses such as drought and high temperatures, which frequently occur simultaneously under field conditions. This study examined 100 bean genotypes under three environmental conditions, namely, the rainy season (optimal conditions), [...] Read more.
The yield of common bean (Phaseolus vulgaris L.) is limited by abiotic stresses such as drought and high temperatures, which frequently occur simultaneously under field conditions. This study examined 100 bean genotypes under three environmental conditions, namely, the rainy season (optimal conditions), full irrigation in the dry season (high-temperature stress), and terminal drought in the dry season (combined stress), via a 10 × 10 triple-lattice design. Agronomic parameters evaluated included days to flowering (DF), days to physiological maturity (DM), plant height (PH), aerial biomass (BIO), grain yield (YLD), and 100-seed weight (100SW). The natural temperature exceeded 35 °C during the reproductive stage of the dry season. Combined stress revealed differential adaptive mechanisms in the tested germplasms, indicating that the response to multiple stresses is more complex than the sum of individual stress responses. The average yield under optimal conditions was 1344 kg/ha, decreasing to 889 kg/ha (66.1%) under irrigation with high temperatures and to 317 kg/ha (23.6%) under terminal drought with high temperatures. Under terminal drought with high temperatures, the number of days to maturity decreased by 5%, and the seed weight decreased by 20%. The G69-33-PT and G-19158 genotypes presented high yields under high-temperature stress, with yields above 1800 kg/ha, suggesting specific physiological mechanisms for tolerance to elevated temperatures. Under combined stress, genotypes G69-Sel25, Pinto Mestizo, and Dalia presented yields above 680 kg/ha, indicating adaptations in terms of water use efficiency and tolerance to high temperature. The identification of genotypes with differential stress tolerance provides valuable genetic resources for breeding programs. The diverse origins of superior germplasms (bred lines, landraces, and commercial cultivars) highlight the importance of exploring various germplasms in the search for sources of abiotic stress tolerance for breeding projects aimed at developing cultivars adapted to climate change scenarios where drought and high temperatures occur simultaneously. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

18 pages, 6585 KiB  
Article
Research on the Risk of a Multi-Source Hydrological Drought Encounter in the Yangtze River Basin Based on Spatial and Temporal Correlation
by Jinbei Li and Hao Wang
Water 2025, 17(13), 1986; https://doi.org/10.3390/w17131986 - 1 Jul 2025
Viewed by 256
Abstract
For a long time, drought disasters have brought about a wide range of negative impacts on human socio-economics. Especially in large basins with many tributaries, once hydrological drought occurs synchronously in several tributaries, the hydrological drought condition in the mainstream will be aggravated, [...] Read more.
For a long time, drought disasters have brought about a wide range of negative impacts on human socio-economics. Especially in large basins with many tributaries, once hydrological drought occurs synchronously in several tributaries, the hydrological drought condition in the mainstream will be aggravated, which will lead to more serious losses. However, there is still a lack of research on the probabilistic risk of simultaneous hydrologic droughts in various areas of large watersheds. In this study, the Standardized Runoff Index was used to characterize hydrological drought, and the Standardized Runoff Index (SRI) sequence characteristics of each region were analyzed. Subsequently, a multiregional hazard encounter probability distribution model with an R-vine structure was constructed with the help of the vine copula function to study the risk pattern of simultaneous hydrological drought in multiple tributaries under environmental changes. The model results showed that the probability of the four basins gradually decreased from 7.5% to 0.16% when the SRI changed from ≤−0.5 to ≤−2.0, indicating that the likelihood of the joint distribution of the compound disaster decreases with increase in the drought extremes. Meanwhile, the probability of hydrological drought in the three major basins showed significant spatial differences, and the risk ranking was Dongting Lake Basin > Poyang Lake Basin > Han River Basin. The model constructed in this study reveals the disaster risk law, provides theoretical support for the measurement of hydrological drought risk in multiple regions at the same time, and is of great significance for the prediction of compound drought disaster risk. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

19 pages, 12071 KiB  
Article
Drought, Topographic Depression, and Severe Damage Slowed Down and Differentiated Recovery of Mangrove Forests from Major Hurricane Disturbance
by Mei Yu and Qiong Gao
Remote Sens. 2025, 17(13), 2223; https://doi.org/10.3390/rs17132223 - 28 Jun 2025
Cited by 1 | Viewed by 259
Abstract
Extreme climate events are becoming more intense, and how coastal mangroves respond to the alternating intense cyclones and severe droughts is less understood, which challenges the sustainability of the ecosystem services they provide to coastal communities. To address this, we analyzed spatiotemporal dynamics [...] Read more.
Extreme climate events are becoming more intense, and how coastal mangroves respond to the alternating intense cyclones and severe droughts is less understood, which challenges the sustainability of the ecosystem services they provide to coastal communities. To address this, we analyzed spatiotemporal dynamics of coastal mangroves in a Caribbean island in response to major hurricanes in 2017, which followed a severe multi-year drought in 2014–2015, using multiple indices derived from multispectral optical images. We further explored the roles of hurricane forces, local hydro-geomorphic environment, and rainfall dynamics in the damage and the following recovery. In addition to the hurricane forces, such as gusty wind and rainfall, the local hydro-geomorphic environment largely determines the spatial variations of damage. Lower-lying, flatter, and wetter mangrove areas sustained more damage, possibly due to prolonged inundation susceptibility and tall canopy configurations. Recovery is mainly limited by the severity of damage. However, sufficient rainfall gradually becomes important to facilitate the recovery. While the pre-hurricane severe drought (2014–2015) largely degraded the mangroves at dry sites, the drought after the hurricanes exacerbated the hurricane damage and retarded the recovery. We also found that the spectral distance and the mangrove vegetation index revealed slower and more spatiotemporally heterogenous mangrove recovery than indices of greenness, implying they are better measures for monitoring mangroves’ response to disturbance. Six years after the disturbance, the greenness of mangroves near the hurricane landfall reached 84% of the pre-hurricane values. However, the mangrove vegetation index showed that healthy mangrove coverage was only 10%, in comparison to 76% before the disturbance. The sluggish recovery at this site with the severest damage may be associated with the loss of pre-established seedlings and the difficulty to have new ones established, thus human efforts are in need to restore the system. Full article
Show Figures

Figure 1

15 pages, 3297 KiB  
Article
Evaluating Leaf Water Potential of Maize Through Multi-Cultivar Dehydration Experiments and Segmentation Thresholding
by Shuanghui Zhao, Yanqun Zhang, Pancen Feng, Xinlong Hu, Yan Mo, Hao Li and Jiusheng Li
Remote Sens. 2025, 17(12), 2106; https://doi.org/10.3390/rs17122106 - 19 Jun 2025
Viewed by 252
Abstract
Estimating leaf water potential (Ψleaf) is essential for understanding plant physiological processes’ response to drought. The estimation of Ψleaf based on different regression analysis methods with hyperspectral vegetation indices (VIs) has been proven to be a simple and efficient [...] Read more.
Estimating leaf water potential (Ψleaf) is essential for understanding plant physiological processes’ response to drought. The estimation of Ψleaf based on different regression analysis methods with hyperspectral vegetation indices (VIs) has been proven to be a simple and efficient technique. However, models constructed by existing methods and VIs still face challenges regarding the generalizability and limited ranges of field experiment datasets. In this study, leaf dehydration experiments of three maize cultivars were applied to provide a dataset covering a wide range of Ψleaf variations, which is often challenging to obtain in field trials. The analysis screened published VIs highly correlated with Ψleaf and constructed a model for Ψleaf estimation based on three algorithms—partial least squares regression (PLSR), random forest (RF), and multiple linear stepwise regression (MLR)—for each cultivar and all three cultivars. Models were constructed using PLSR and MLR for each cultivar and PLSR, MLR, and RF for the samples from all three cultivars. The performance of the models developed for each cultivar was compared with the performance of the cross-cultivar model. Simultaneously, the normalized ratio (ND) and double-difference (DDn) were applied to determine the VIs and models. Finally, the relationship between the optimal VIs and Ψleaf was analyzed using discontinuous linear segmental fitting. The results showed that leaf spectral reflectance variations in the 350~700 nm bands and 1450~2500 nm bands were significantly sensitive to Ψleaf. The RF method achieved the highest prediction accuracy when all three cultivars’ data were used, with a normalized root mean square error (NRMSE) of 9.02%. In contrast, there was little difference in the predictive effectiveness of the models constructed for each cultivar and all three cultivars. Moreover, the simple linear regression model built based on the DDn(2030,45) outperformed the RF method regarding prediction accuracy, with an NRMSE of 7.94%. Ψleaf at the breakpoint obtained by discontinuous linear segment fitting was about −1.20 MPa, consistent with the published range of the turgor loss point (ΨTLP). This study provides an effective methodology for Ψleaf monitoring with significant practical value, particularly in irrigation decision-making and drought prediction. Full article
Show Figures

Figure 1

25 pages, 12964 KiB  
Article
Teleconnection Patterns and Synoptic Drivers of Climate Extremes in Brazil (1981–2023)
by Marcio Cataldi, Lívia Sancho, Priscila Esposte Coutinho, Louise da Fonseca Aguiar, Vitor Luiz Victalino Galves and Aimée Guida
Atmosphere 2025, 16(6), 699; https://doi.org/10.3390/atmos16060699 - 10 Jun 2025
Viewed by 1366
Abstract
Brazil is increasingly affected by extreme weather events due to climate change, with pronounced regional differences in temperature and precipitation patterns. The southeast region is particularly vulnerable, frequently experiencing severe droughts and extreme heatwaves linked to atmospheric blocking events and intense rainfall episodes [...] Read more.
Brazil is increasingly affected by extreme weather events due to climate change, with pronounced regional differences in temperature and precipitation patterns. The southeast region is particularly vulnerable, frequently experiencing severe droughts and extreme heatwaves linked to atmospheric blocking events and intense rainfall episodes driven by the South Atlantic Convergence Zone (SACZ). These phenomena contribute to recurring climate-related disasters. The country’s heavy reliance on hydropower heightens its susceptibility to droughts, while growing evidence points to intensifying dry spells and wildfires across multiple regions, threatening agricultural output and food security. Urban areas, particularly, are experiencing more frequent and severe heatwaves, posing serious health risks to vulnerable populations. This study investigates the links between global teleconnection indices and synoptic-scale systems, specifically blocking events and SACZ activity, and their influence on Brazil’s extreme heat, drought conditions, and river flow variability over the past 30 to 40 years. By clarifying these interactions, the research aims to enhance understanding of how large-scale atmospheric dynamics shape climate extremes and to assess their broader implications for water resource management, energy production, and regional climate variability. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

27 pages, 9650 KiB  
Article
Impact of Spatio-Temporal Variability of Droughts on Streamflow: A Remote-Sensing Approach Integrating Combined Drought Index
by Anoma Srimali, Luminda Gunawardhana, Janaka Bamunawala, Jeewanthi Sirisena and Lalith Rajapakse
Hydrology 2025, 12(6), 142; https://doi.org/10.3390/hydrology12060142 - 7 Jun 2025
Viewed by 840
Abstract
Understanding how spatial drought variability influences streamflow is critical for sustainable water management under changing climate conditions. This study developed a novel Combined Drought Index (CDI) and a method to assess spatial drought impacts on different flow components by integrating remote sensing and [...] Read more.
Understanding how spatial drought variability influences streamflow is critical for sustainable water management under changing climate conditions. This study developed a novel Combined Drought Index (CDI) and a method to assess spatial drought impacts on different flow components by integrating remote sensing and hydrological modelling frameworks with generic applicability. The CDI was constructed using Principal Component Analysis to merge multiple standardized indicators: the Standardized Precipitation Evapotranspiration Index, Temperature Condition Index, Vegetation Condition Index, and Soil Moisture Condition Index. The developed framework was applied to the Giriulla sub-basin of the Maha Oya River Basin, Sri Lanka. The CDI strongly correlated with standardized streamflow with a Pearson correlation coefficient of 0.74 and successfully captured major drought and flood events between 2015 and 2023. A semi-distributed hydrological model was used to simulate streamflow variations across sub-catchments under varying drought conditions. Results show upstream sub-catchments were more sensitive to droughts, with sharper declines in specific discharge. Spatial drought variability had different impacts under high- and low-flow conditions: wetter sub-catchments contributed more during high flows, while resilience during low flows varied with catchment characteristics. This integrated approach provides a valuable framework that can be generically applicable for enhanced drought impact assessments. Full article
Show Figures

Figure 1

Back to TopTop