Drought, Topographic Depression, and Severe Damage Slowed Down and Differentiated Recovery of Mangrove Forests from Major Hurricane Disturbance
Abstract
1. Introduction
2. Methods
2.1. Study Areas
2.2. Datasets Preparation
2.3. Image and Statistical Analyses
2.3.1. Spectral Distance, Enhanced Vegetation Index, and Mangrove Vegetation Index to Quantify the Hurricane Impact and Recovery
2.3.2. Potential Drivers to the Impact on and the Recovery of Coastal Mangroves
3. Results
3.1. Mangroves Recovery with the Spectral Distance from Pre-Storm Status
3.2. Potential Drivers of Mangrove Damage and Recovery
3.3. Response of Mangrove Greenness and Mangrove Vegetation Index
4. Discussion
5. Conclusions
- (1)
- Rainfall during recovery played a significant role. Sufficient rainfall facilitates recovery. Sites with a large amount of rainfall, such as Piñones (PIN) and Punta Santiago (PST), had substantial recovery in 6 years. On the other hand, scarce rainfall or drought, such as the cases of La Parguera (PAG) and Jobos Bay (JOB), retards the recovery. Hurricanes aggravated the mangrove degradation at dry sites with the pre-hurricane droughts, and the drought after the hurricanes further exacerbated it and the recovery process was largely retarded.
- (2)
- Topography and associated hydrology partly determine the chances of recovery. Topographic depressions along the lowest canals/rivers are susceptible to extended flooding which might suffocate mangrove roots and attribute to the delayed mortality at Rio Espírito Santo (RES), Cibuco (CIB), or Toa Baja (TOA).
- (3)
- The severity of damage is the primary factor to limit recovery. When the damage is too severe, such as that at Punta Tuna (PTU) next to the hurricane landfall, the recovery is sluggish, potentially due to the loss of pre-established seedlings/saplings and the unfavorable environment for new propagules establishment. Efforts such as reconnecting tidal hydrology are needed for the mangrove system restoration [15].
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Luca, A.D.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; et al. Weather and Climate Extreme Events in a Changing Climate; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Zscheischler, J.; Michalak, A.M.; Schwalm, C.; Mahecha, M.D.; Huntzinger, D.N.; Reichstein, M.; Berthier, G.; Ciais, P.; Cook, R.B.; El-Masri, B.; et al. Impact of large-scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data. Glob. Biogeochem. Cycles 2014, 28, 585–600. [Google Scholar] [CrossRef]
- Peneva-Reed, E.I.; Krauss, K.W.; Bullock, E.L.; Zhu, Z.; Woltz, V.L.; Drexler, J.Z.; Conrad, J.R.; Stehman, S.V. Carbon stock losses and recovery observed for a mangrove ecosystem following a major hurricane in Southwest Florida. Estuar. Coast. Shelf Sci. 2021, 248, 106750. [Google Scholar] [CrossRef]
- Duke, N.C.; Kovacs, J.M.; Griffiths, A.D.; Preece, L.; Hill, D.J.E.; van Oosterzee, P.; Mackenzie, J.; Morning, H.S.; Burrows, D. Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: A severe ecosystem response, coincidental with an unusually extreme weather event. Mar. Freshw. Res. 2017, 68, 1816–1829. [Google Scholar] [CrossRef]
- Sippo, J.Z.; Lovelock, C.E.; Santos, I.R.; Sanders, C.J.; Maher, D.T. Mangrove mortality in a changing climate: An overview. Estuar. Coast. Shelf Sci. 2018, 215, 241–249. [Google Scholar] [CrossRef]
- Yu, M.; Rivera-Ocasio, E.; Heartsill-Scalley, T.; Davila-Casanova, D.; Rios-López, N.; Gao, Q. Landscape-Level Consequences of Rising Sea-Level on Coastal Wetlands: Saltwater Intrusion Drives Displacement and Mortality in the Twenty-First Century. Wetlands 2019, 39, 1343–1355. [Google Scholar] [CrossRef]
- Krauss, K.W.; From, A.S.; Rogers, C.S.; Whelan, K.R.T.; Grimes, K.W.; Dobbs, R.C.; Kelley, T. Structural Impacts, Carbon Losses, and Regeneration in Mangrove Wetlands after Two Hurricanes on St. John, U.S. Virgin Islands. Wetlands 2020, 40, 2397–2412. [Google Scholar] [CrossRef]
- Krauss, K.W.; Osland, M.J. Tropical cyclones and the organization of mangrove forests: A review. Ann. Bot. 2019, 125, 213–234. [Google Scholar] [CrossRef]
- Imbert, D. Hurricane disturbance and forest dynamics in east Caribbean mangroves. Ecosphere 2018, 9, e02231. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Costanza Pérez-Maqueo, O.; Martinez, M.L.; Sutton, P.; Anderson, S.J.; Mulder, K. The Value of Coastal Wetlands for Hurricane Protection. AMBIO J. Hum. Environ. 2008, 37, 241–248. [Google Scholar] [CrossRef]
- Lugo, A.E. Visible and invisible effects of hurricanes on forest ecosystems: An international review. Austral Ecol. 2008, 33, 368–398. [Google Scholar] [CrossRef]
- Smith, T.J., III; Anderson, G.H.; Balentine, K.; Tiling, G.; Ward, G.A.; Whelan, K.R.T. Cumulative impacts of hurricanes on Florida mangrove ecosystems: Sediment deposition, storm surges and vegetation. Wetlands 2009, 29, 24–34. [Google Scholar] [CrossRef]
- Yu, M.; Gao, Q. Topography, drainage capability, and legacy of drought differentiate tropical ecosystem response to and recovery from major hurricanes. Environ. Res. Lett. 2020, 15, 104046. [Google Scholar] [CrossRef]
- Krauss, K.W.; Whelan, K.R.T.; Kennedy, J.P.; Friess, D.A.; Rogers, C.S.; Stewart, H.A.; Grimes, K.W.; Trench, C.A.; Ogurcak, D.E.; Toline, C.A.; et al. Framework for facilitating mangrove recovery after hurricanes on Caribbean islands. Restor. Ecol. 2023, 31, e13885. [Google Scholar] [CrossRef]
- Peereman, J.; Hogan, J.A.; Lin, T.-C. Disturbance frequency, intensity and forest structure modulate cyclone-induced changes in mangrove forest canopy cover. Glob. Ecol. Biogeogr. 2022, 31, 37–50. [Google Scholar] [CrossRef]
- Radabaugh, K.R.; Moyer, R.P.; Chappel, A.R.; Dontis, E.E.; Russo, C.E.; Joyse, K.M.; Bownik, M.W.; Goeckner, A.H.; Khan, N.S. Mangrove Damage, Delayed Mortality, and Early Recovery Following Hurricane Irma at Two Landfall Sites in Southwest Florida, USA. Estuaries Coasts 2020, 43, 1104–1118. [Google Scholar] [CrossRef]
- Lewis, R.R.; Milbrandt, E.C.; Brown, B.; Krauss, K.W.; Rovai, A.S.; Beever, J.W.; Flynn, L.L. Stress in mangrove forests: Early detection and preemptive rehabilitation are essential for future successful worldwide mangrove forest management. Mar. Pollut. Bull. 2016, 109, 764–771. [Google Scholar] [CrossRef]
- Paling, E.; Kobryn, H.T.; Humphreys, G. Assessing the extent of mangrove change caused by Cyclone Vance in the eastern Exmouth Gulf, northwestern Australia. Estuar. Coast. Shelf Sci. 2008, 77, 603–613. [Google Scholar] [CrossRef]
- Villamayor, B.M.R.; Rollon, R.N.; Samson, M.S.; Albano, G.M.G.; Primavera, J.H. Impact of Haiyan on Philippine mangroves: Implications to the fate of the widespread monospecific Rhizophora plantations against strong typhoons. Ocean Coast. Manag. 2016, 132, 1–14. [Google Scholar] [CrossRef]
- Jimenez, J.A.; Lugo, A.E.; Cintron, G. Tree Mortality in Mangrove Forests. Biotropica 1985, 17, 177–185. [Google Scholar] [CrossRef]
- Imbert, D.; Rousteau, A.; Scherrer, P. Ecology of Mangrove Growth and Recovery in the Lesser Antilles: State of Knowledge and Basis for Restoration Projects. Restor. Ecol. 2000, 8, 230–236. [Google Scholar] [CrossRef]
- Gauthey, A.; Backes, D.; Balland, J.; Alam, I.; Maher, D.T.; Cernusak, L.A.; Duke, N.C.; Medlyn, B.E.; Tissue, D.T.; Choat, B. The Role of Hydraulic Failure in a Massive Mangrove Die-Off Event. Front. Plant Sci. 2022, 13, 822136. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Borlace, S.; Lengaigne, M.; van Rensch, P.; Collins, M.; Vecchi, G.; Timmermann, A.; Santoso, A.; McPhaden, M.J.; Wu, L.; et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 2014, 4, 111–116. [Google Scholar] [CrossRef]
- Cai, W.; Wang, G.; Santoso, A.; McPhaden, M.J.; Wu, L.; Jin, F.-F.; Timmermann, A.; Collins, M.; Vecchi, G.; Lengaigne, M.; et al. Increased frequency of extreme La Niña events under greenhouse warming. Nat. Clim. Change 2015, 5, 132–137. [Google Scholar] [CrossRef]
- Lu, Z.; Schultze, A.; Carré, M.; Brierley, C.; Hopcroft, P.O.; Zhao, D.; Zheng, M.; Braconnot, P.; Yin, Q.; Jungclaus, J.H.; et al. Increased frequency of multi-year El Niño–Southern Oscillation events across the Holocene. Nat. Geosci. 2025, 18, 337–343. [Google Scholar] [CrossRef]
- Barrera, R.; Acevedo; Amador, V.M.; Marzan, M.; Adams, L.E.; Paz-Bailey, G. El Niño Southern Oscillation (ENSO) effects on local weather, arboviral diseases, and dynamics of managed and unmanaged populations of Aedes aegypti (Diptera: Culicidae) in Puerto Rico. J. Med. Entomol. 2023, 60, 796–807. [Google Scholar] [CrossRef]
- Feng, Y.; Negrón-Juárez, R.I.; Chambers, J.Q. Remote sensing and statistical analysis of the effects of hurricane María on the forests of Puerto Rico. Remote Sens. Environ. 2020, 247, 111940. [Google Scholar] [CrossRef]
- Svejkovsky, J.; Ogurcak, D.E.; Ross, M.S.; Arkowitz, A. Satellite Image-Based Time Series Observations of Vegetation Response to Hurricane Irma in the Lower Florida Keys. Estuaries Coasts 2020, 43, 1058–1069. [Google Scholar] [CrossRef]
- Li, Q.; Bonebrake, T.C.; Michalski, J.R.; Wong, F.K.K.; Fung, T. Combining multi-temporal airborne LiDAR and Sentinel-2 multispectral data for assessment of disturbances and recovery of mangrove forests. Estuar. Coast. Shelf Sci. 2023, 291, 108444. [Google Scholar] [CrossRef]
- Pasch, R.J.; Penny, A.B.; Berg, R. National Hurricane Center Tropical Cyclone Report–Hurricane Maria; (AL152017); National Hurricane Center: Miami, FL, USA, 2017. [Google Scholar]
- López-Marrero, T.; Heartsill-Scalley, T.; Rivera-López, C.F.; Escalera-García, I.A.; Echevarría-Ramos, M. Broadening Our Understanding of Hurricanes and Forests on the Caribbean Island of Puerto Rico: Where and What Should We Study Now? Forests 2019, 10, 710. [Google Scholar] [CrossRef]
- Gao, Q.; Yu, M. Elevation Regimes Modulated the Responses of Canopy Structure of Coastal Mangrove Forests to Hurricane Damage. Remote Sens. 2022, 14, 1497. [Google Scholar] [CrossRef]
- Sabo, A.M.; Roy, S.S.; Pestle, W.J. Effects of climate change and extreme weather events on natural and archaeological landscapes in southwestern Puerto Rico. Remote Sens. Appl. Soc. Environ. 2024, 36, 101370. [Google Scholar] [CrossRef]
- NOAA Office for Coastal Management. 2020. C-CAP Land Cover, Puerto Rico. 2010. Available online: https://www.fisheries.noaa.gov/inport/item/48301 (accessed on 1 May 2025).
- Gao, Q.; Yu, M. Elevation and Distribution of Freshwater and Sewage Canals Regulate Canopy Structure and Differentiate Hurricane Damages to a Basin Mangrove Forest. Remote Sens. 2021, 13, 3387. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Wang, J.; Yang, D.; Chen, S.; Zhu, X.; Wu, S.; Bogonovich, M.; Guo, Z.; Zhu, Z.; Wu, J. Automatic cloud and cloud shadow detection in tropical areas for PlanetScope satellite images. Remote Sens. Environ. 2021, 264, 112604. [Google Scholar] [CrossRef]
- Pasquarella; Brown, C.F.; Czerwinski, W.; Rucklidge, W.J. Comprehensive Quality Assessment of Optical Satellite Imagery Using Weakly Supervised Video Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 2124–2134. [Google Scholar]
- Chen, Z.J.; Zhang, M.; Zhang, H.; Liu, Y. Mapping Mangrove Using a Red-Edge Mangrove Index (REMI) Based on Sentinel-2 Multispectral Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4409511. [Google Scholar] [CrossRef]
- Baloloy, A.B.; Blanco, A.C.; Ana, R.R.C.S.; Nadaoka, K. Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. ISPRS J. Photogramm. Remote Sens. 2020, 166, 95–117. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Pebesma, E.; Bivand, R. Spatial Data Science with Applications in R; Chapman & Hall: Boca Raton, FL, USA, 2023. [Google Scholar]
- Bivand, R.; Millo, G.; Piras, G. A Review of Software for Spatial Econometrics in R. Mathematics 2021, 9, 1276. [Google Scholar] [CrossRef]
- Yu, M.; Gao, Q. Assessment of Surface Inundation Monitoring and Drivers after Major Storms in a Tropical Island. Remote Sens. 2024, 16, 503. [Google Scholar] [CrossRef]
- Yu, M.; Gao, Q. Prolonged coastal inundation detected with synthetic aperture radar significantly retarded functional recovery of mangroves after major hurricanes. Landsc. Ecol. 2023, 38, 169–183. [Google Scholar] [CrossRef]
- Choy, S.C.; Booth, W.E. Prolonged inundation and ecological changes in an Avicennia mangrove: Implications for conservation and management. Hydrobiologia 1994, 285, 237–247. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Krauss, K.W.; Osland, M.J.; Reef, R.; Ball, M.C. The Physiology of Mangrove Trees with Changing Climate. In Tropical Tree Physiology—Adaptations and Responses in a Changing Environment; Goldstein, G., Santiago, L.S., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 149–179. [Google Scholar]
- Beard, K.H.; Vogt, K.A.; Vogt, D.J.; Scatena, F.N.; Covich, A.P.; Sigurdardottir, R.; Siccama, T.G.; Crowl, T.A. Structural and functional responses of a subtropical forest to 10 years of hurricanes and droughts. Ecol. Monogr. 2005, 75, 345–361. [Google Scholar] [CrossRef]
- Escalera-García, I.A.; Rivera-López, C.F.; López-Marrero, T. Mortalidad de Mangles en Cabo Rojo, Puerto Rico; Centro Interdisciplinario de Estudios del Litoral; Universidad de Puerto Rico: Mayaguez, Puerto Rico, 2020. [Google Scholar]
- Estudios Técnicos Inc. Plan de Manejo Reserva Natural Humedal Punta Tuna; Estudios Técnicos Inc.: San Juan, Puerto Rico, 2009. [Google Scholar]
Abbreviation | Site Name | Area (ha) | Mean Elevation (m) | Mean Slope | Distance to Maria’s Path (km) |
---|---|---|---|---|---|
PAG | La Parguera | 359.16 | 0.58 | 0.50 | 71 |
JOB | Jobos Bay | 556.53 | 0.57 | 0.59 | 27 |
PTU | Punta Tuna | 10.20 | 1.79 | 0.92 | 7 |
PST | Punta Santiago | 375.05 | 1.31 | 0.35 | 18 |
RES | Rio Espírito Santo | 365.13 | 1.03 | 0.82 | 37 |
PIN | Piñones | 1445.64 | 0.51 | 0.18 | 32 |
TBA | Toa Baja | 268.47 | 0.67 | 0.65 | 21 |
CIB | Cibuco | 300.31 | 1.11 | 0.67 | 15 |
Site | After | 1 Year | Relative Reduction in 1 Year | 6 Year | Relative Reduction in 6 Years |
---|---|---|---|---|---|
Spectral Angle Mapper (SAM) | |||||
PAG | 0.12 ± 0.09 | 0.13 ± 0.09 | −4% | 0.10 ± 0.10 | 16% |
JOB | 0.20 ± 0.14 | 0.21 ± 0.14 | −4% | 0.11 ± 0.10 | 45% |
PTU | 0.43 ± 0.19 | 0.43 ± 0.19 | 1% | 0.17 ± 0.13 | 60% |
PST | 0.22 ± 0.12 | 0.21 ± 0.12 | 1% | 0.05 ± 0.07 | 75% |
RES | 0.18 ± 0.11 | 0.17 ± 0.11 | 5% | 0.09 ± 0.11 | 50% |
PIN | 0.30 ± 0.13 | 0.26 ± 0.13 | 12% | 0.06 ± 0.05 | 79% |
TBA | 0.19 ± 0.11 | 0.18 ± 0.11 | 2% | 0.09 ± 0.10 | 53% |
CIB | 0.26 ± 0.12 | 0.25 ± 0.12 | 5% | 0.11 ± 0.10 | 60% |
Euclidean Spectral Distance | |||||
PAG | 0.100 ± 0.066 | 0.103 ± 0.067 | −3% | 0.075 ± 0.064 | 25% |
JOB | 0.117 ± 0.068 | 0.121 ± 0.069 | −3% | 0.070 ± 0.053 | 40% |
PTU | 0.280 ± 0.106 | 0.278 ± 0.104 | 1% | 0.127 ± 0.057 | 55% |
PST | 0.200 ± 0.080 | 0.199 ± 0.077 | 1% | 0.064 ± 0.050 | 68% |
RES | 0.121 ± 0.066 | 0.120 ± 0.070 | 1% | 0.073 ± 0.074 | 39% |
PIN | 0.191 ± 0.080 | 0.165 ± 0.077 | 13% | 0.063 ± 0.043 | 67% |
TBA | 0.136 ± 0.071 | 0.130 ± 0.071 | 4% | 0.082 ± 0.069 | 40% |
CIB | 0.137 ± 0.065 | 0.133 ± 0.066 | 3% | 0.081 ± 0.065 | 41% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Gao, Q. Drought, Topographic Depression, and Severe Damage Slowed Down and Differentiated Recovery of Mangrove Forests from Major Hurricane Disturbance. Remote Sens. 2025, 17, 2223. https://doi.org/10.3390/rs17132223
Yu M, Gao Q. Drought, Topographic Depression, and Severe Damage Slowed Down and Differentiated Recovery of Mangrove Forests from Major Hurricane Disturbance. Remote Sensing. 2025; 17(13):2223. https://doi.org/10.3390/rs17132223
Chicago/Turabian StyleYu, Mei, and Qiong Gao. 2025. "Drought, Topographic Depression, and Severe Damage Slowed Down and Differentiated Recovery of Mangrove Forests from Major Hurricane Disturbance" Remote Sensing 17, no. 13: 2223. https://doi.org/10.3390/rs17132223
APA StyleYu, M., & Gao, Q. (2025). Drought, Topographic Depression, and Severe Damage Slowed Down and Differentiated Recovery of Mangrove Forests from Major Hurricane Disturbance. Remote Sensing, 17(13), 2223. https://doi.org/10.3390/rs17132223