Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,891)

Search Parameters:
Keywords = multiple attention network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6487 KiB  
Article
An RGB-D Vision-Guided Robotic Depalletizing System for Irregular Camshafts with Transformer-Based Instance Segmentation and Flexible Magnetic Gripper
by Runxi Wu and Ping Yang
Actuators 2025, 14(8), 370; https://doi.org/10.3390/act14080370 - 24 Jul 2025
Abstract
Accurate segmentation of densely stacked and weakly textured objects remains a core challenge in robotic depalletizing for industrial applications. To address this, we propose MaskNet, an instance segmentation network tailored for RGB-D input, designed to enhance recognition performance under occlusion and low-texture conditions. [...] Read more.
Accurate segmentation of densely stacked and weakly textured objects remains a core challenge in robotic depalletizing for industrial applications. To address this, we propose MaskNet, an instance segmentation network tailored for RGB-D input, designed to enhance recognition performance under occlusion and low-texture conditions. Built upon a Vision Transformer backbone, MaskNet adopts a dual-branch architecture for RGB and depth modalities and integrates multi-modal features using an attention-based fusion module. Further, spatial and channel attention mechanisms are employed to refine feature representation and improve instance-level discrimination. The segmentation outputs are used in conjunction with regional depth to optimize the grasping sequence. Experimental evaluations on camshaft depalletizing tasks demonstrate that MaskNet achieves a precision of 0.980, a recall of 0.971, and an F1-score of 0.975, outperforming a YOLO11-based baseline. In an actual scenario, with a self-designed flexible magnetic gripper, the system maintains a maximum grasping error of 9.85 mm and a 98% task success rate across multiple camshaft types. These results validate the effectiveness of MaskNet in enabling fine-grained perception for robotic manipulation in cluttered, real-world scenarios. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

17 pages, 4338 KiB  
Article
Lightweight Attention-Based CNN Architecture for CSI Feedback of RIS-Assisted MISO Systems
by Anming Dong, Yupeng Xue, Sufang Li, Wendong Xu and Jiguo Yu
Mathematics 2025, 13(15), 2371; https://doi.org/10.3390/math13152371 - 24 Jul 2025
Abstract
Reconfigurable Intelligent Surface (RIS) has emerged as a promising enabling technology for wireless communications, which significantly enhances system performance through real-time manipulation of electromagnetic wave reflection characteristics. In RIS-assisted communication systems, existing deep learning-based channel state information (CSI) feedback methods often suffer from [...] Read more.
Reconfigurable Intelligent Surface (RIS) has emerged as a promising enabling technology for wireless communications, which significantly enhances system performance through real-time manipulation of electromagnetic wave reflection characteristics. In RIS-assisted communication systems, existing deep learning-based channel state information (CSI) feedback methods often suffer from excessive parameter requirements and high computational complexity. To address this challenge, this paper proposes LwCSI-Net, a lightweight autoencoder network specifically designed for RIS-assisted multiple-input single-output (MISO) systems, aiming to achieve efficient and low-complexity CSI feedback. The core contribution of this work lies in an innovative lightweight feedback architecture that deeply integrates multi-layer convolutional neural networks (CNNs) with attention mechanisms. Specifically, the network employs 1D convolutional operations with unidirectional kernel sliding, which effectively reduces trainable parameters while maintaining robust feature-extraction capabilities. Furthermore, by incorporating an efficient channel attention (ECA) mechanism, the model dynamically allocates weights to different feature channels, thereby enhancing the capture of critical features. This approach not only improves network representational efficiency but also reduces redundant computations, leading to optimized computational complexity. Additionally, the proposed cross-channel residual block (CRBlock) establishes inter-channel information-exchange paths, strengthening feature fusion and ensuring outstanding stability and robustness under high compression ratio (CR) conditions. Our experimental results show that for CRs of 16, 32, and 64, LwCSI-Net significantly improves CSI reconstruction performance while maintaining fewer parameters and lower computational complexity, achieving an average complexity reduction of 35.63% compared to state-of-the-art (SOTA) CSI feedback autoencoder architectures. Full article
(This article belongs to the Special Issue Data-Driven Decentralized Learning for Future Communication Networks)
Show Figures

Figure 1

30 pages, 9268 KiB  
Article
A Visualized Analysis of Research Hotspots and Trends on the Ecological Impact of Volatile Organic Compounds
by Xuxu Guo, Qiurong Lei, Xingzhou Li, Jing Chen and Chuanjian Yi
Atmosphere 2025, 16(8), 900; https://doi.org/10.3390/atmos16080900 - 24 Jul 2025
Abstract
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and [...] Read more.
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and dynamic transformation processes across air, water, and soil media, the ecological risks associated with VOCs have attracted increasing attention from both the scientific community and policy-makers. This study systematically reviews the core literature on the ecological impacts of VOCs published between 2005 and 2024, based on data from the Web of Science and Google Scholar databases. Utilizing three bibliometric tools (CiteSpace, VOSviewer, and Bibliometrix), we conducted a comprehensive visual analysis, constructing knowledge maps from multiple perspectives, including research trends, international collaboration, keyword evolution, and author–institution co-occurrence networks. The results reveal a rapid growth in the ecological impact of VOCs (EIVOCs), with an average annual increase exceeding 11% since 2013. Key research themes include source apportionment of air pollutants, ecotoxicological effects, biological response mechanisms, and health risk assessment. China, the United States, and Germany have emerged as leading contributors in this field, with China showing a remarkable surge in research activity in recent years. Keyword co-occurrence and burst analyses highlight “air pollution”, “exposure”, “health”, and “source apportionment” as major research hotspots. However, challenges remain in areas such as ecosystem functional responses, the integration of multimedia pollution pathways, and interdisciplinary coordination mechanisms. There is an urgent need to enhance monitoring technology integration, develop robust ecological risk assessment frameworks, and improve predictive modeling capabilities under climate change scenarios. This study provides scientific insights and theoretical support for the development of future environmental protection policies and comprehensive VOCs management strategies. Full article
Show Figures

Figure 1

29 pages, 1616 KiB  
Systematic Review
Non-Coding RNAs in Neurodevelopmental Disorders—From Diagnostic Biomarkers to Therapeutic Targets: A Systematic Review
by Katerina Karaivazoglou, Christos Triantos and Ioanna Aggeletopoulou
Biomedicines 2025, 13(8), 1808; https://doi.org/10.3390/biomedicines13081808 - 24 Jul 2025
Abstract
Background: Neurodevelopmental disorders, including autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), are increasingly recognized as conditions arising from multifaceted interactions among genetic predisposition, environmental exposures, and epigenetic modifications. Among epigenetic mechanisms, non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), [...] Read more.
Background: Neurodevelopmental disorders, including autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), are increasingly recognized as conditions arising from multifaceted interactions among genetic predisposition, environmental exposures, and epigenetic modifications. Among epigenetic mechanisms, non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and PIWI-interacting RNAs (piRNAs), have gained attention as pivotal regulators of gene expression during neurodevelopment. These RNA species do not encode proteins but modulate gene expression at transcriptional and post-transcriptional levels, thereby influencing neuronal differentiation, synaptogenesis, and plasticity. Objectives: This systematic review critically examines and synthesizes the most recent findings, particularly in the post-COVID transcriptomic research era, regarding the role of ncRNAs in the pathogenesis, diagnosis, and potential treatment of neurodevelopmental disorders. Methods: A comprehensive literature search was conducted to identify studies reporting on the expression profiles, functional implications, and clinical relevance of ncRNAs in neurodevelopmental disorders, across both human and animal models. Results: Here, we highlight that multiple classes of ncRNAs are differentially expressed in individuals with ASD and ADHD. Notably, specific miRNAs and lncRNAs demonstrate potential as diagnostic biomarkers with high sensitivity and specificity. Functional studies further reveal that ncRNAs actively contribute to pathogenic mechanisms by modulating neuronal gene networks. Conclusions: Emerging experimental data indicate that the exogenous administration of certain ncRNAs may reverse molecular and behavioral phenotypes, supporting their therapeutic promise. These findings broaden our understanding of neurodevelopmental regulation and open new avenues for personalized diagnostics and targeted interventions in clinical neuropsychiatry. Full article
Show Figures

Graphical abstract

30 pages, 9145 KiB  
Article
Ultra-Short-Term Forecasting-Based Optimization for Proactive Home Energy Management
by Siqi Liu, Zhiyuan Xie, Zhengwei Hu, Kaisa Zhang, Weidong Gao and Xuewen Liu
Energies 2025, 18(15), 3936; https://doi.org/10.3390/en18153936 - 23 Jul 2025
Abstract
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy [...] Read more.
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy that integrates advanced forecasting models with multi-objective scheduling algorithms. By leveraging deep learning techniques like Graph Attention Network (GAT) architectures, the system predicts ultra-short-term household load profiles with high accuracy, addressing the volatility of residential energy use. Then, based on the predicted data, a comprehensive consideration of electricity costs, user comfort, carbon emission pricing, and grid load balance indicators is undertaken. This study proposes an enhanced mixed-integer optimization algorithm to collaboratively optimize multiple objective functions, thereby refining appliance scheduling, energy storage utilization, and grid interaction. Case studies demonstrate that integrating photovoltaic (PV) power generation forecasting and load forecasting models into a home energy management system, and adjusting the original power usage schedule based on predicted PV output and water heater demand, can effectively reduce electricity costs and carbon emissions without compromising user engagement in optimization. This approach helps promote energy-saving and low-carbon electricity consumption habits among users. Full article
Show Figures

Figure 1

19 pages, 2407 KiB  
Article
IFDA: Intermittent Fault Diagnosis Algorithm for Augmented Cubes Under the PMC Model
by Chongwen Yuan, Chenghao Zou, Jiong Wu, Hao Feng and Jie Li
Appl. Sci. 2025, 15(15), 8197; https://doi.org/10.3390/app15158197 - 23 Jul 2025
Abstract
Fault diagnosis technology is a crucial technique for ensuring the reliability of multiprocessor systems. Many previous studies have paid close attention to the permanent faults of systems while ignoring the rise of intermittent faults. Meanwhile, there is a lack of a rapid diagnostic [...] Read more.
Fault diagnosis technology is a crucial technique for ensuring the reliability of multiprocessor systems. Many previous studies have paid close attention to the permanent faults of systems while ignoring the rise of intermittent faults. Meanwhile, there is a lack of a rapid diagnostic algorithm tailored for intermittent faults. In this paper, we propose multiple theorems to evaluate the intermittent fault diagnosability of different topologies under the PMC model. Through these theorems, we demonstrate that the intermittent fault diagnosability of an n-dimensional augmented cube (AQn) is (2n2) when n is greater than or equal to 4. Furthermore, we present a fast intermittent fault diagnosis algorithm, which is named as IFDA, to identify the processors with intermittent fault in the networks. Finally, we evaluate the performance of the algorithm in terms of the parameters Accuracy and Precision. The simulation experimental results show that the algorithm IFDA has good performance and efficiency. Full article
Show Figures

Figure 1

22 pages, 2420 KiB  
Article
BiEHFFNet: A Water Body Detection Network for SAR Images Based on Bi-Encoder and Hybrid Feature Fusion
by Bin Han, Xin Huang and Feng Xue
Mathematics 2025, 13(15), 2347; https://doi.org/10.3390/math13152347 - 23 Jul 2025
Abstract
Water body detection in synthetic aperture radar (SAR) imagery plays a critical role in applications such as disaster response, water resource management, and environmental monitoring. However, it remains challenging due to complex background interference in SAR images. To address this issue, a bi-encoder [...] Read more.
Water body detection in synthetic aperture radar (SAR) imagery plays a critical role in applications such as disaster response, water resource management, and environmental monitoring. However, it remains challenging due to complex background interference in SAR images. To address this issue, a bi-encoder and hybrid feature fuse network (BiEHFFNet) is proposed for achieving accurate water body detection. First, a bi-encoder structure based on ResNet and Swin Transformer is used to jointly extract local spatial details and global contextual information, enhancing feature representation in complex scenarios. Additionally, the convolutional block attention module (CBAM) is employed to suppress irrelevant information of the output features of each ResNet stage. Second, a cross-attention-based hybrid feature fusion (CABHFF) module is designed to interactively integrate local and global features through cross-attention, followed by channel attention to achieve effective hybrid feature fusion, thus improving the model’s ability to capture water structures. Third, a multi-scale content-aware upsampling (MSCAU) module is designed by integrating atrous spatial pyramid pooling (ASPP) with the Content-Aware ReAssembly of FEatures (CARAFE), aiming to enhance multi-scale contextual learning while alleviating feature distortion caused by upsampling. Finally, a composite loss function combining Dice loss and Active Contour loss is used to provide stronger boundary supervision. Experiments conducted on the ALOS PALSAR dataset demonstrate that the proposed BiEHFFNet outperforms existing methods across multiple evaluation metrics, achieving more accurate water body detection. Full article
(This article belongs to the Special Issue Advanced Mathematical Methods in Remote Sensing)
Show Figures

Figure 1

21 pages, 1672 KiB  
Article
TSE-APT: An APT Attack-Detection Method Based on Time-Series and Ensemble-Learning Models
by Mingyue Cheng, Ga Xiang, Qunsheng Yang, Zhixing Ma and Haoyang Zhang
Electronics 2025, 14(15), 2924; https://doi.org/10.3390/electronics14152924 - 22 Jul 2025
Abstract
Advanced Persistent Threat (APT) attacks pose a serious challenge to traditional detection methods. These methods often suffer from high false-alarm rates and limited accuracy due to the multi-stage and covert nature of APT attacks. In this paper, we propose TSE-APT, a time-series ensemble [...] Read more.
Advanced Persistent Threat (APT) attacks pose a serious challenge to traditional detection methods. These methods often suffer from high false-alarm rates and limited accuracy due to the multi-stage and covert nature of APT attacks. In this paper, we propose TSE-APT, a time-series ensemble model that addresses these two limitations. It combines multiple machine-learning models, such as Random Forest (RF), Multi-Layer Perceptron (MLP), and Bidirectional Long Short-Term Memory Network (BiLSTM) models, to dynamically capture correlations between multiple stages of the attack process based on time-series features. It discovers hidden features through the integration of multiple machine-learning models to significantly improve the accuracy and robustness of APT detection. First, we extract a collection of dynamic time-series features such as traffic mean, flow duration, and flag frequency. We fuse them with static contextual features, including the port service matrix and protocol type distribution, to effectively capture the multi-stage behaviors of APT attacks. Then, we utilize an ensemble-learning model with a dynamic weight-allocation mechanism using a self-attention network to adaptively adjust the sub-model contribution. The experiments showed that using time-series feature fusion significantly enhanced the detection performance. The RF, MLP, and BiLSTM models achieved 96.7% accuracy, considerably enhancing recall and the false positive rate. The adaptive mechanism optimizes the model’s performance and reduces false-alarm rates. This study provides an analytical method for APT attack detection, considering both temporal dynamics and context static characteristics, and provides new ideas for security protection in complex networks. Full article
(This article belongs to the Special Issue AI in Cybersecurity, 2nd Edition)
Show Figures

Figure 1

26 pages, 4203 KiB  
Article
Research on Industrial Process Fault Diagnosis Method Based on DMCA-BiGRUN
by Feng Yu, Changzhou Zhang and Jihan Li
Mathematics 2025, 13(15), 2331; https://doi.org/10.3390/math13152331 - 22 Jul 2025
Abstract
With the rising automation and complexity level of industrial systems, the efficiency and accuracy of fault diagnosis have become a critical challenge. The convolutional neural network (CNN) has shown some success in the fault diagnosis field. However, typical convolutional kernels are commonly fixed-sized, [...] Read more.
With the rising automation and complexity level of industrial systems, the efficiency and accuracy of fault diagnosis have become a critical challenge. The convolutional neural network (CNN) has shown some success in the fault diagnosis field. However, typical convolutional kernels are commonly fixed-sized, which makes it difficult to capture multi-scale features simultaneously. Additionally, the use of numerous fixed-size convolutional filters often results in redundant parameters. During the feature extraction process, the CNN often struggles to take inter-channel dependencies and spatial location information into consideration. There are also limitations in extracting various time-scale features. To address these issues, a fault diagnosis method on the basis of a dual-path mixed convolutional attention-BiGRU network (DMCA-BiGRUN) is proposed for industrial processes. Firstly, a dual-path mixed CNN (DMCNN) is designed to capture features at multiple scales while effectively reducing the parameter count. Secondly, a coordinate attention mechanism (CAM) is designed to help the network to concentrate on main features more effectively during feature extraction by combining the channel relationship and position information. Finally, a bidirectional gated recurrent unit (BiGRU) is introduced to process sequences in both directions, which can effectively learn the long-range temporal dependencies of sequence data. To verify the fault diagnosis performance of the proposed method, simulation experiments are implemented on the Tennessee Eastman (TE) and Continuous Stirred Tank Reactor (CSTR) datasets. Some deep learning methods are compared in the experiments, and the results confirm the feasibility and superiority of DMCA-BiGRUN. Full article
Show Figures

Figure 1

24 pages, 3714 KiB  
Article
DTCMMA: Efficient Wind-Power Forecasting Based on Dimensional Transformation Combined with Multidimensional and Multiscale Convolutional Attention Mechanism
by Wenhan Song, Enguang Zuo, Junyu Zhu, Chen Chen, Cheng Chen, Ziwei Yan and Xiaoyi Lv
Sensors 2025, 25(15), 4530; https://doi.org/10.3390/s25154530 - 22 Jul 2025
Viewed by 60
Abstract
With the growing global demand for clean energy, the accuracy of wind-power forecasting plays a vital role in ensuring the stable operation of power systems. However, wind-power generation is significantly influenced by meteorological conditions and is characterized by high uncertainty and multiscale fluctuations. [...] Read more.
With the growing global demand for clean energy, the accuracy of wind-power forecasting plays a vital role in ensuring the stable operation of power systems. However, wind-power generation is significantly influenced by meteorological conditions and is characterized by high uncertainty and multiscale fluctuations. Traditional recurrent neural network (RNN) and long short-term memory (LSTM) models, although capable of handling sequential data, struggle with modeling long-term temporal dependencies due to the vanishing gradient problem; thus, they are now rarely used. Recently, Transformer models have made notable progress in sequence modeling compared to RNNs and LSTM models. Nevertheless, when dealing with long wind-power sequences, their quadratic computational complexity (O(L2)) leads to low efficiency, and their global attention mechanism often fails to capture local periodic features accurately, tending to overemphasize redundant information while overlooking key temporal patterns. To address these challenges, this paper proposes a wind-power forecasting method based on dimension-transformed collaborative multidimensional multiscale attention (DTCMMA). This method first employs fast Fourier transform (FFT) to automatically identify the main periodic components in wind-power data, reconstructing the one-dimensional time series as a two-dimensional spatiotemporal representation, thereby explicitly encoding periodic features. Based on this, a collaborative multidimensional multiscale attention (CMMA) mechanism is designed, which hierarchically integrates channel, spatial, and pixel attention to adaptively capture complex spatiotemporal dependencies. Considering the geometric characteristics of the reconstructed data, asymmetric convolution kernels are adopted to enhance feature extraction efficiency. Experiments on multiple wind-farm datasets and energy-related datasets demonstrate that DTCMMA outperforms mainstream methods such as Transformer, iTransformer, and TimeMixer in long-sequence forecasting tasks, achieving improvements in MSE performance by 34.22%, 2.57%, and 0.51%, respectively. The model’s training speed also surpasses that of the fastest baseline by 300%, significantly improving both prediction accuracy and computational efficiency. This provides an efficient and accurate solution for wind-power forecasting and contributes to the further development and application of wind energy in the global energy mix. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

18 pages, 2549 KiB  
Article
A Multi-Fusion Early Warning Method for Vehicle–Pedestrian Collision Risk at Unsignalized Intersections
by Weijing Zhu, Junji Dai, Xiaoqin Zhou, Xu Gao, Rui Cheng, Bingheng Yang, Enchu Li, Qingmei Lü, Wenting Wang and Qiuyan Tan
World Electr. Veh. J. 2025, 16(7), 407; https://doi.org/10.3390/wevj16070407 - 21 Jul 2025
Viewed by 157
Abstract
Traditional collision risk warning methods primarily focus on vehicle-to-vehicle collisions, neglecting conflicts between vehicles and vulnerable road users (VRUs) such as pedestrians, while the difficulty in predicting pedestrian trajectories further limits the accuracy of collision warnings. To address this problem, this study proposes [...] Read more.
Traditional collision risk warning methods primarily focus on vehicle-to-vehicle collisions, neglecting conflicts between vehicles and vulnerable road users (VRUs) such as pedestrians, while the difficulty in predicting pedestrian trajectories further limits the accuracy of collision warnings. To address this problem, this study proposes a vehicle-to-everything-based (V2X) multi-fusion vehicle–pedestrian collision warning method, aiming to enhance the traffic safety protection for VRUs. First, Unmanned Aerial Vehicle aerial imagery combined with the YOLOv7 and DeepSort algorithms is utilized to achieve target detection and tracking at unsignalized intersections, thereby constructing a vehicle–pedestrian interaction trajectory dataset. Subsequently, key foundational modules for collision warning are developed, including the vehicle trajectory module, the pedestrian trajectory module, and the risk detection module. The vehicle trajectory module is based on a kinematic model, while the pedestrian trajectory module adopts an Attention-based Social GAN (AS-GAN) model that integrates a generative adversarial network with a soft attention mechanism, enhancing prediction accuracy through a dual-discriminator strategy involving adversarial loss and displacement loss. The risk detection module applies an elliptical buffer zone algorithm to perform dynamic spatial collision determination. Finally, a collision warning framework based on the Monte Carlo (MC) method is developed. Multiple sampled pedestrian trajectories are generated by applying Gaussian perturbations to the predicted mean trajectory and combined with vehicle trajectories and collision determination results to identify potential collision targets. Furthermore, the driver perception–braking time (TTM) is incorporated to estimate the joint collision probability and assist in warning decision-making. Simulation results show that the proposed warning method achieves an accuracy of 94.5% at unsignalized intersections, outperforming traditional Time-to-Collision (TTC) and braking distance models, and effectively reducing missed and false warnings, thereby improving pedestrian traffic safety at unsignalized intersections. Full article
Show Figures

Figure 1

23 pages, 4361 KiB  
Article
ANHNE: Adaptive Multi-Hop Neighborhood Information Fusion for Heterogeneous Network Embedding
by Hanyu Xie, Hao Shao, Lunwen Wang and Changjian Song
Electronics 2025, 14(14), 2911; https://doi.org/10.3390/electronics14142911 - 21 Jul 2025
Viewed by 161
Abstract
Heterogeneous information network (HIN) embedding transforms multi-type nodes into low-dimensional vectors to preserve structural and semantic information for downstream tasks. However, it struggles with multiplex networks where nodes connect via diverse semantic paths (metapaths). Information fusion mainly improves the quality of node embedding [...] Read more.
Heterogeneous information network (HIN) embedding transforms multi-type nodes into low-dimensional vectors to preserve structural and semantic information for downstream tasks. However, it struggles with multiplex networks where nodes connect via diverse semantic paths (metapaths). Information fusion mainly improves the quality of node embedding by fully exploiting the structure and hidden information within the network. Current metapath-based methods ignore information from intermediate nodes along paths, depend on manually defined metapaths, and overlook implicit relationships between nodes sharing similar attributes. Our objective is to develop an adaptive framework that overcomes limitations in existing metapath-based embedding (incomplete information aggregation, manual path dependency, and ignorance of latent semantics) to learn more discriminative embeddings. We propose an adaptive multi-hop neighbor information fusion model for heterogeneous network embedding (ANHNE), which: (1) autonomously extracts composite metapaths (weighted combinations of relations) via a multipath aggregation matrix to mine hierarchical semantics of varying lengths for task-specific scenarios; (2) projects heterogeneous nodes into a unified space and employs hierarchical attention to selectively fuse neighborhood features across metapath hierarchies; and (3) enhances semantics by identifying potential node correlations via cosine similarity to construct implicit connections, enriching network structure with latent information. Extensive experimental results on multiple datasets show that ANHNE achieves more precise embeddings than comparable baseline models. Full article
(This article belongs to the Special Issue Advances in Learning on Graphs and Information Networks)
Show Figures

Figure 1

22 pages, 14158 KiB  
Article
Enhanced YOLOv8 for Robust Pig Detection and Counting in Complex Agricultural Environments
by Jian Li, Wenkai Ma, Yanan Wei and Tan Wang
Animals 2025, 15(14), 2149; https://doi.org/10.3390/ani15142149 - 21 Jul 2025
Viewed by 148
Abstract
Accurate pig counting is crucial for precision livestock farming, enabling optimized feeding management and health monitoring. Detection-based counting methods face significant challenges due to mutual occlusion, varying illumination conditions, diverse pen configurations, and substantial variations in pig densities. Previous approaches often struggle with [...] Read more.
Accurate pig counting is crucial for precision livestock farming, enabling optimized feeding management and health monitoring. Detection-based counting methods face significant challenges due to mutual occlusion, varying illumination conditions, diverse pen configurations, and substantial variations in pig densities. Previous approaches often struggle with complex agricultural environments where lighting conditions, pig postures, and crowding levels create challenging detection scenarios. To address these limitations, we propose EAPC-YOLO (enhanced adaptive pig counting YOLO), a robust architecture integrating density-aware processing with advanced detection optimizations. The method consists of (1) an enhanced YOLOv8 network incorporating multiple architectural improvements for better feature extraction and object localization. These improvements include DCNv4 deformable convolutions for irregular pig postures, BiFPN bidirectional feature fusion for multi-scale information integration, EfficientViT linear attention for computational efficiency, and PIoU v2 loss for improved overlap handling. (2) A density-aware post-processing module with intelligent NMS strategies that adapt to different crowding scenarios. Experimental results on a comprehensive dataset spanning diverse agricultural scenarios (nighttime, controlled indoor, and natural daylight environments with density variations from 4 to 30 pigs) demonstrate our method achieves 94.2% mAP@0.5 for detection performance and 96.8% counting accuracy, representing 12.3% and 15.7% improvements compared to the strongest baseline, YOLOv11n. This work enables robust, accurate pig counting across challenging agricultural environments, supporting precision livestock management. Full article
Show Figures

Figure 1

18 pages, 3004 KiB  
Article
A Spatiotemporal Convolutional Neural Network Model Based on Dual Attention Mechanism for Passenger Flow Prediction
by Jinlong Li, Haoran Chen, Qiuzi Lu, Xi Wang, Haifeng Song and Lunming Qin
Mathematics 2025, 13(14), 2316; https://doi.org/10.3390/math13142316 - 21 Jul 2025
Viewed by 188
Abstract
Establishing a high-precision passenger flow prediction model is a critical and complex task for the optimization of urban rail transit systems. With the development of artificial intelligence technology, the data-driven technology has been widely studied in the intelligent transportation system. In this study, [...] Read more.
Establishing a high-precision passenger flow prediction model is a critical and complex task for the optimization of urban rail transit systems. With the development of artificial intelligence technology, the data-driven technology has been widely studied in the intelligent transportation system. In this study, a neural network model based on the data-driven technology is established for the prediction of passenger flow in multiple urban rail transit stations to enable smart perception for optimizing urban railway transportation. The integration of network units with different specialities in the proposed model allows the network to capture passenger flow data, temporal correlation, spatial correlation, and spatiotemporal correlation with the dual attention mechanism, further improving the prediction accuracy. Experiments based on the actual passenger flow data of Beijing Metro Line 13 are conducted to compare the prediction performance of the proposed data-driven model with the other baseline models. The experimental results demonstrate that the proposed prediction model achieves lower MAE and RMSE in passenger flow prediction, and its fitted curve more closely aligns with the actual passenger flow data. This demonstrates the model’s practical potential to enhance intelligent transportation system management through more accurate passenger flow forecasting. Full article
Show Figures

Figure 1

14 pages, 1452 KiB  
Review
Recent Advances in Liquid Metal-Based Stretchable and Conductive Composites for Wearable Sensor Applications
by Boo Young Kim, Wan Yusmawati Wan Yusoff, Paolo Matteini, Peter Baumli and Byungil Hwang
Biosensors 2025, 15(7), 466; https://doi.org/10.3390/bios15070466 - 19 Jul 2025
Viewed by 246
Abstract
Liquid metals (LMs), with their unique combination of high electrical conductivity and mechanical deformability, have emerged as promising materials for stretchable electronics and biointerfaces. However, the practical application of bulk LMs in wearable sensors has been hindered by processing challenges and low stability. [...] Read more.
Liquid metals (LMs), with their unique combination of high electrical conductivity and mechanical deformability, have emerged as promising materials for stretchable electronics and biointerfaces. However, the practical application of bulk LMs in wearable sensors has been hindered by processing challenges and low stability. To overcome these limitations, liquid metal particles (LMPs) encapsulated by native oxide shells have gained attention as versatile and stable fillers for stretchable and conductive composites. Recent advances have focused on the development of LM-based hybrid composites that combine LMPs with metal, carbon, or polymeric fillers. These systems offer enhanced electrical and mechanical properties and can form conductive networks without the need for additional sintering processes. They also impart composites with multiple functions such as self-healing, electromagnetic interference shielding, and recyclability. Hence, the present review summarizes the fabrication methods and functional properties of LM-based composites, with a particular focus on their applications in wearable sensing. In addition, recent developments in the use of LM composites for physical motion monitoring (e.g., strain and pressure sensing) and electrophysiological signal recording (e.g., EMG and ECG) are presented, and the key challenges and opportunities for next-generation wearable platforms are discussed. Full article
(This article belongs to the Special Issue The Application of Biomaterials in Electronics and Biosensors)
Show Figures

Figure 1

Back to TopTop