Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (207)

Search Parameters:
Keywords = multiparametric prostate MRI

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2220 KiB  
Article
Radiologic Assessment of Periprostatic Fat as an Indicator of Prostate Cancer Risk on Multiparametric MRI
by Roxana Iacob, Emil Radu Iacob, Emil Robert Stoicescu, Diana Manolescu, Laura Andreea Ghenciu, Radu Căprariu, Amalia Constantinescu, Iulia Ciobanu, Răzvan Bardan and Alin Cumpănaș
Bioengineering 2025, 12(8), 831; https://doi.org/10.3390/bioengineering12080831 (registering DOI) - 31 Jul 2025
Abstract
Prostate cancer remains one of the most prevalent malignancies among men, and emerging evidence proposed a potential role for periprostatic adipose tissue (PPAT) in tumor progression. However, its relationship with imaging-based risk stratification systems such as PI-RADS remains uncertain. This retrospective observational study [...] Read more.
Prostate cancer remains one of the most prevalent malignancies among men, and emerging evidence proposed a potential role for periprostatic adipose tissue (PPAT) in tumor progression. However, its relationship with imaging-based risk stratification systems such as PI-RADS remains uncertain. This retrospective observational study aimed to evaluate whether periprostatic and subcutaneous fat thickness are associated with PI-RADS scores or PSA levels in biopsy-naïve patients. We retrospectively reviewed 104 prostate MRI scans performed between January 2020 and January 2024. Fat thickness was measured on axial T2-weighted images, and statistical analyses were conducted using Spearman’s correlation and multiple linear regression. In addition to linear measurements, we also assessed periprostatic fat volume and posterior fat thickness derived from imaging data. No significant correlations were observed between fat thickness (either periprostatic or subcutaneous) and PI-RADS score or PSA values. Similarly, periprostatic fat volume showed only a weak, non-significant correlation with PI-RADS, while posterior fat thickness demonstrated a weak but statistically significant positive association. Additionally, subgroup comparisons between low-risk (PI-RADS < 4) and high-risk (PI-RADS ≥ 4) patients showed no meaningful differences in fat measurements. These findings suggest that simple linear fat thickness measurements may not enhance imaging-based risk assessment in prostate cancer, though regional and volumetric assessments could offer modest added value. Full article
(This article belongs to the Special Issue Label-Free Cancer Detection)
Show Figures

Figure 1

20 pages, 12298 KiB  
Article
Impact of Metastatic Microenvironment on Physiology and Metabolism of Small Cell Neuroendocrine Prostate Cancer Patient-Derived Xenografts
by Shubhangi Agarwal, Deepti Upadhyay, Jinny Sun, Emilie Decavel-Bueff, Robert A. Bok, Romelyn Delos Santos, Said Al Muzhahimi, Rosalie Nolley, Jason Crane, John Kurhanewicz, Donna M. Peehl and Renuka Sriram
Cancers 2025, 17(14), 2385; https://doi.org/10.3390/cancers17142385 - 18 Jul 2025
Viewed by 367
Abstract
Background: Potent androgen receptor pathway inhibitors induce small cell neuroendocrine prostate cancer (SCNC), a highly aggressive subtype of metastatic androgen deprivation-resistant prostate cancer (ARPC) with limited treatment options and poor survival rates. Patients with metastases in the liver have a poor prognosis relative [...] Read more.
Background: Potent androgen receptor pathway inhibitors induce small cell neuroendocrine prostate cancer (SCNC), a highly aggressive subtype of metastatic androgen deprivation-resistant prostate cancer (ARPC) with limited treatment options and poor survival rates. Patients with metastases in the liver have a poor prognosis relative to those with bone metastases alone. The mechanisms that underlie the different behavior of ARPC in bone vs. liver may involve factors intrinsic to the tumor cell, tumor microenvironment, and/or systemic factors, and identifying these factors is critical to improved diagnosis and treatment of SCNC. Metabolic reprogramming is a fundamental strategy of tumor cells to colonize and proliferate in microenvironments distinct from the primary site. Understanding the metabolic plasticity of cancer cells may reveal novel approaches to imaging and treating metastases more effectively. Methods: Using magnetic resonance (MR) imaging and spectroscopy, we interrogated the physiological and metabolic characteristics of SCNC patient-derived xenografts (PDXs) propagated in the bone and liver, and used correlative biochemical, immunohistochemical, and transcriptomic measures to understand the biological underpinnings of the observed imaging metrics. Results: We found that the influence of the microenvironment on physiologic measures using MRI was variable among PDXs. However, the MR measure of glycolytic capacity in the liver using hyperpolarized 13C pyruvic acid recapitulated the enzyme activity (lactate dehydrogenase), cofactor (nicotinamide adenine dinucleotide), and stable isotope measures of fractional enrichment of lactate. While in the bone, the congruence of the glycolytic components was lost and potentially weighted by the interaction of cancer cells with osteoclasts/osteoblasts. Conclusion: While there was little impact of microenvironmental factors on metabolism, the physiological measures (cellularity and perfusion) are highly variable and necessitate the use of combined hyperpolarized 13C MRI and multiparametric (anatomic, diffusion-, and perfusion- weighted) 1H MRI to better characterize pre-treatment tumor characteristics, which will be crucial to evaluate treatment response. Full article
(This article belongs to the Special Issue Magnetic Resonance in Cancer Research)
Show Figures

Figure 1

16 pages, 1242 KiB  
Review
Micro-Ultrasound in the Detection of Clinically Significant Prostate Cancer: A Comprehensive Review and Comparison with Multiparametric MRI
by Julien DuBois, Shayan Smani, Aleksandra Golos, Carlos Rivera Lopez and Soum D. Lokeshwar
Tomography 2025, 11(7), 80; https://doi.org/10.3390/tomography11070080 - 8 Jul 2025
Viewed by 453
Abstract
Background/Objectives: Multiparametric MRI (mpMRI) is widely established as the standard imaging modality for detecting clinically significant prostate cancer (csPCa), yet it can be limited by cost, accessibility, and the need for specialized radiologist interpretation. Micro-ultrasound (micro-US) has recently emerged as a more accessible [...] Read more.
Background/Objectives: Multiparametric MRI (mpMRI) is widely established as the standard imaging modality for detecting clinically significant prostate cancer (csPCa), yet it can be limited by cost, accessibility, and the need for specialized radiologist interpretation. Micro-ultrasound (micro-US) has recently emerged as a more accessible alternative imaging modality. This review evaluates whether the evidence base for micro-US meets thresholds comparable to those that led to MRI’s guideline adoption, synthesizes diagnostic performance data compared to mpMRI, and outlines future research priorities to define its clinical role. Methods: A targeted literature review of PubMed, Embase, and the Cochrane Library was conducted for studies published between 2014 and May 2025 evaluating micro-US in csPCa detection. Search terms included “micro-ultrasound,” “ExactVu,” “PRI-MUS,” and related terminology. Study relevance was assessed independently by the authors. Extracted data included csPCa detection rates, modality concordance, and diagnostic accuracy, and were synthesized and, rarely, restructured to facilitate study comparisons. Results: Micro-US consistently demonstrated non-inferiority to mpMRI for csPCa detection across retrospective studies, prospective cohorts, and meta-analyses. Several studies reported discordant csPCa lesions detected by only one modality, highlighting potential complementarity. The recently published OPTIMUM randomized controlled trial offers the strongest individual-trial evidence to date in support of micro-US non-inferiority. Conclusions: Micro-US shows potential as an alternative or adjunct to mpMRI for csPCa detection. However, additional robust multicenter studies are needed to achieve the evidentiary strength that led mpMRI to distinguish itself in clinical guidelines. Full article
(This article belongs to the Special Issue New Trends in Diagnostic and Interventional Radiology)
Show Figures

Figure 1

12 pages, 418 KiB  
Article
Comparing Multigene Molecular Testing Results of MRI-Target Versus Systematic Prostate Needle Biopsies of Candidates for and Under Active Surveillance
by Nicholas J. Lanzotti, Chris Du, Julia Hall, Joseph Saba, Maria M. Picken and Gopal N. Gupta
J. Pers. Med. 2025, 15(7), 279; https://doi.org/10.3390/jpm15070279 - 1 Jul 2025
Viewed by 316
Abstract
Introduction: The multigene molecular testing of prostate cancer tissue after biopsy provides individualized information to guide further management. The utility of selective genetic testing for MRI-visible target versus systematic cancer in patients as well as during different time points of active surveillance (AS) [...] Read more.
Introduction: The multigene molecular testing of prostate cancer tissue after biopsy provides individualized information to guide further management. The utility of selective genetic testing for MRI-visible target versus systematic cancer in patients as well as during different time points of active surveillance (AS) is unknown. The objective of this study was to compare ProlarisTM results of MRI-target cancers versus systematic cancers on prostate needle biopsy as well as both during consideration for initial AS candidacy and candidacy for remaining on AS. Methods: Our prospectively maintained institutional multiparametric (mp) MRI prostate cancer active surveillance database (2013–2024) was queried for patients that underwent ProlarisTM genetic testing of positive biopsy cores. Baseline information for PSA, PSA density, and ProlarisTM calculated data were collected. Information on the timing of the Prolaris testing, defined as during the initial cancer diagnostic biopsy or on a subsequent confirmatory biopsy was collected. SPSS v29.0 was used to compare the selective ProlarisTM results of MRI-target cancers versus systematic cancers during different points of AS. Results: 264 patients with a ProlarisTM test were identified, 86 with MRI-target and 178 on systematic cancers. 182 ProlarisTM tests were sent on a diagnostic biopsy and 81 on a subsequent biopsy. Overall, MRI-target cancers had similar risk scores (3.23 vs. 3.14, p = 0.18). ProlarisTM scores were higher for GG2 systematic than GG1 target cancers (3.40 vs. 3.18, p = 0.023). The GG2 systematic lesion cohort also had higher predicted the 10-year disease-specific mortality (DSM) (3.40% vs. 2.30%, p < 0.01) and 10-year metastasis risk (1.90% vs. 1.20%, p = 0.013), and more aggressive recommended treatment. Analyses of the ProlarisTM results sent during a diagnostic biopsy yielded similar results. Finally, on an analysis of the ProlarisTM results sent during subsequent biopsy, a systematic GG2 biopsy was noted to have a higher 10-year DSM and metastasis rate, but similar risk scores and treatment recommendations. Conclusions: ProlarisTM tests can be sent at multiple time points of AS, and selectively for MRI-visible versus higher grade cancers. There is no consistent association between MRI-visible cancer and Prolaris risk profile. When utilizing multigene molecular testing in prostate cancer, each individual patient must be evaluated to decide the appropriate level of care. Full article
(This article belongs to the Special Issue Urological Cancer: Clinical Advances in Personalized Therapy)
Show Figures

Figure 1

17 pages, 4423 KiB  
Article
Multivariate Framework of Metabolism in Advanced Prostate Cancer Using Whole Abdominal and Pelvic Hyperpolarized 13C MRI—A Correlative Study with Clinical Outcomes
by Hsin-Yu Chen, Ivan de Kouchkovsky, Robert A. Bok, Michael A. Ohliger, Zhen J. Wang, Daniel Gebrezgiabhier, Tanner Nickles, Lucas Carvajal, Jeremy W. Gordon, Peder E. Z. Larson, John Kurhanewicz, Rahul Aggarwal and Daniel B. Vigneron
Cancers 2025, 17(13), 2211; https://doi.org/10.3390/cancers17132211 - 1 Jul 2025
Cited by 1 | Viewed by 487 | Correction
Abstract
Background: Most of the existing hyperpolarized (HP) 13C MRI analyses use univariate rate maps of pyruvate-to-lactate conversion (kPL), and radiomic-style multiparametric models extracting complex, higher-order features remain unexplored. Purpose: To establish a multivariate framework based on whole abdomen/pelvis HP 13 [...] Read more.
Background: Most of the existing hyperpolarized (HP) 13C MRI analyses use univariate rate maps of pyruvate-to-lactate conversion (kPL), and radiomic-style multiparametric models extracting complex, higher-order features remain unexplored. Purpose: To establish a multivariate framework based on whole abdomen/pelvis HP 13C-pyruvate MRI and evaluate the association between multiparametric features of metabolism (MFM) and clinical outcome measures in advanced and metastatic prostate cancer. Methods: Retrospective statistical analysis was performed on 16 participants with metastatic or local-regionally advanced prostate cancer prospectively enrolled in a tertiary center who underwent HP-pyruvate MRI of abdomen or pelvis between November 2020 and May 2023. Five patients were hormone-sensitive and eleven were castration-resistant. GMP-grade [1-13C]pyruvate was polarized using a 5T clinical-research DNP polarizer, and HP MRI used a set of flexible vest-transmit, array-receive coils, and echo-planar imaging sequences. Three basic metabolic maps (kPL, pyruvate summed-over-time, and mean pyruvate time) were created by semi-automatic segmentation, from which 316 MFMs were extracted using an open-source, radiomic-compliant software package. Univariate risk classifier was constructed using a biologically meaningful feature (kPL,median), and the multivariate classifier used a two-step feature selection process (ranking and clustering). Both were correlated with progression-free survival (PFS) and overall survival (OS) (median follow-up = 22.0 months) using Cox proportional hazards model. Results: In the univariate analysis, patients harboring tumors with lower-kPL,median had longer PFS (11.2 vs. 0.5 months, p < 0.01) and OS (NR vs. 18.4 months, p < 0.05) than their higher-kPL,median counterparts. Using a hypothesis-generating, age-adjusted multivariate risk classifier, the lower-risk subgroup also had longer PFS (NR vs. 2.4 months, p < 0.002) and OS (NR vs. 18.4 months, p < 0.05). By contrast, established laboratory markers, including PSA, lactate dehydrogenase, and alkaline phosphatase, were not significantly associated with PFS or OS (p > 0.05). Key limitations of this study include small sample size, retrospective study design, and referral bias. Conclusions: Risk classifiers derived from select multiparametric HP features were significantly associated with clinically meaningful outcome measures in this small, heterogeneous patient cohort, strongly supporting further investigation into their prognostic values. Full article
Show Figures

Figure 1

28 pages, 7186 KiB  
Review
Advances and Challenges in Prostate Cancer Diagnosis: A Comprehensive Review
by Emil Kania, Maciej Janica, Miłosz Nesterowicz, Wojciech Modzelewski, Mateusz Cybulski and Jacek Janica
Cancers 2025, 17(13), 2137; https://doi.org/10.3390/cancers17132137 - 25 Jun 2025
Viewed by 912
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men and continues to be a leading cause of cancer-related mortality. Accurate and timely diagnosis is essential for distinguishing clinically significant tumors from indolent lesions and for informing treatment decisions. Multiparametric magnetic resonance imaging [...] Read more.
Prostate cancer is the most commonly diagnosed malignancy in men and continues to be a leading cause of cancer-related mortality. Accurate and timely diagnosis is essential for distinguishing clinically significant tumors from indolent lesions and for informing treatment decisions. Multiparametric magnetic resonance imaging (mpMRI) has revolutionized prostate cancer detection by enabling precise lesion localization, risk stratification, and improved biopsy targeting. Fusion biopsy, which combines mpMRI findings with real-time transrectal ultrasonography (TRUS), has emerged as a highly effective method for sampling suspicious lesions. This review provides an integrated anatomical, epidemiological, technical, and clinical overview that highlights the evolving role of fusion biopsy in contemporary prostate cancer diagnostics. We also explore emerging strategies such as penumbra-targeted sampling, discuss ongoing clinical challenges, and examine the impact of biopsy underestimation and lack of standardization. Compared to conventional systematic biopsy, mpMRI-TRUS fusion biopsy improves the detection of clinically significant prostate cancer while reducing the overdiagnosis of low-risk tumors. To our knowledge, few recent reviews have comprehensively synthesized current clinical guidelines, emerging biopsy techniques, and future directions within a single narrative. mpMRI-TRUS-guided fusion biopsy represents a major advancement in the prostate cancer diagnostic pathway, promoting precision oncology by reducing overtreatment and facilitating individualized patient care. This review aims to assist clinicians in adopting biopsy innovations that enhance diagnostic accuracy and improve patient outcomes. Full article
Show Figures

Graphical abstract

11 pages, 1948 KiB  
Article
Factors Determining Postoperative Early Continence in Patients Undergoing Robotic Radical Prostatectomy
by Metin Mod, Hasan Samet Güngör, Hakan Karaca, Ahmet Tahra, Resul Sobay, Abdurrahman İnkaya and Eyüp Veli Küçük
J. Clin. Med. 2025, 14(13), 4405; https://doi.org/10.3390/jcm14134405 - 20 Jun 2025
Viewed by 371
Abstract
Background/Objectives: Prostate cancer is the second most common malignancy in men, and robot-assisted radical prostatectomy (RARP) has become a preferred treatment for localized disease. Postoperative urinary continence is a key determinant of quality of life. The aim of this study was to [...] Read more.
Background/Objectives: Prostate cancer is the second most common malignancy in men, and robot-assisted radical prostatectomy (RARP) has become a preferred treatment for localized disease. Postoperative urinary continence is a key determinant of quality of life. The aim of this study was to evaluate the preoperative patient characteristics and multiparametric magnetic resonance imaging (mpMRI) data that determine early postoperative continence in patients who underwent robotic radical prostatectomy at our clinic. Methods: In this study, patients who underwent robotic radical prostatectomy at our clinic between March 2020 and June 2022 were evaluated. The patients’ demographic data, preoperative PSA levels, digital rectal examination findings, preoperative lower urinary tract symptoms, sexual function, mpMRI findings, Briganti scores, surgical techniques used during the procedure and postoperative continence status were assessed. Results: A total of 111 patients were included in the study. The mean age of the patients was 61.1 years. The median follow-up duration was twelve months. According to the postoperative continence status, 22% of the patients were incontinent, 53% had moderate continence and 24% were fully continent in the first month. At the third month, 16.8% of the patients were incontinent, 31.3% had moderate continence and 51.8% were fully continent. At the one-year postoperative follow-up, the percentages of incontinent, moderately continent and fully continent patients were 4.8%, 13.2% and 81.9%, respectively. Urethral width in mpMRI (p: 0.012), pelvic transverse (p: 0.002) and AP (anterior–posterior) diameters (p: 0.033), preoperative IPSS scores (p: 0.033) and the presence of bilateral nerve-sparing surgery (p: 0.047) were found to be associated with postoperative urinary continence. No significant differences were found between groups regarding the relationship of other parameters evaluated by mpMRI with continence. Conclusions: In our study, preoperative IPSS scores, urethral width in mpMRI, pelvic transverse and AP diameters and the performance of nerve-sparing surgery were associated with early postoperative continence. Further studies with larger patient populations are needed to better understand the long-term predictors of postoperative urinary incontinence following radical prostatectomy. Full article
(This article belongs to the Special Issue Prostate Cancer: Diagnosis, Clinical Management and Prognosis)
Show Figures

Figure 1

19 pages, 1827 KiB  
Article
ISUP Grade Prediction of Prostate Nodules on T2WI Acquisitions Using Clinical Features, Textural Parameters and Machine Learning-Based Algorithms
by Teodora Telecan, Alexandra Chiorean, Roxana Sipos-Lascu, Cosmin Caraiani, Bianca Boca, Raluca Maria Hendea, Teodor Buliga, Iulia Andras, Nicolae Crisan and Monica Lupsor-Platon
Cancers 2025, 17(12), 2035; https://doi.org/10.3390/cancers17122035 - 18 Jun 2025
Viewed by 446
Abstract
Background: Prostate cancer (PCa) represents a matter at the forefront of healthcare, being divided into clinically significant (csPCa) and indolent PCa based on prognostic and treatment options. Although multi-parametric magnetic resonance imaging (mpMRI) has enabled significant advances, it cannot differentiate between the aforementioned [...] Read more.
Background: Prostate cancer (PCa) represents a matter at the forefront of healthcare, being divided into clinically significant (csPCa) and indolent PCa based on prognostic and treatment options. Although multi-parametric magnetic resonance imaging (mpMRI) has enabled significant advances, it cannot differentiate between the aforementioned categories; therefore, in order to render the initial diagnosis, invasive procedures such as transrectal prostate biopsy are still necessary. In response to these challenges, artificial intelligence (AI)-based algorithms combined with radiomics features offer the possibility of creating a textural pixel pattern-based surrogate, which has the potential of correlating the medical imagery with the pathological report in a one-to-one manner. Objective: The aim of the present study was to develop a machine learning model that can differentiate indolent from csPCa lesions, as well as individually classifying each nodule into corresponding ISUP grades prior to prostate biopsy, using textural features derived from mpMRI T2WI acquisitions. Materials and Methods: The study was conducted in 154 patients and 201 individual prostatic lesions. All cases were scanned using the same 1.5 Tesla mpMRI machine, employing a standard protocol. Each nodule was manually delineated using the 3D Slicer platform (version 5.2.2) and textural parameters were derived using the PyRadiomics database (version 3.1.0). We compared three machine learning classification models (Random Forest, Support Vector Machine, and Logistic Regression) in full, partial and no correlation settings, in order to differentiate between indolent and csPCa, as well as between ISUP 2 and ISUP 3 lesions. Results: The median age was 65 years (IQR: 61–69), the mean PSA value was 10.27 ng/mL, and 76.61% of the segmented lesions had a PI-RADS score of 4 or higher. Overall, the highest performance was registered for the Random Forest model in the partial correlation setting, differentiating between indolent and csPCa and between ISUP 2 versus ISUP 3 lesions, with accuracies of 88.13% and 82.5%, respectively. When the models were trained on combined clinical data and radiomic signatures, these accuracies increased to 91.11% and 91.39%, respectively. Conclusions: We developed a machine learning decision support tool that accurately predicts the ISUP grade prior to prostate biopsy, based on the textural features extracted from T2 MRI acquisitions. Full article
(This article belongs to the Section Cancer Causes, Screening and Diagnosis)
Show Figures

Figure 1

15 pages, 2088 KiB  
Article
Personalized High-Resolution Genetic Diagnostics of Prostate Adenocarcinoma Guided by Multiparametric Magnetic Resonance Imaging: Results of a Pilot Study
by Jacek Wilkosz, Dariusz Wojciech Sobieraj, Tadeusz Kałużewski, Jakub Kaczmarek, Jarosław Szwalski, Michał Bednarek, Agnieszka Morel, Żaneta Kasprzyk, Łukasz Kępczyński, Jordan Sałamunia, Agnieszka Gach and Bogdan Kałużewski
Int. J. Mol. Sci. 2025, 26(12), 5648; https://doi.org/10.3390/ijms26125648 - 12 Jun 2025
Viewed by 689
Abstract
The upcoming wave of personalized medicine, driven by genomic diagnostics and artificial intelligence, demands clearly defined pre-laboratory and laboratory procedures to ensure the acquisition of DNA and RNA of sufficient quantity and quality. In prostate cancer oncogenetics, diagnostic and prognostic assessments increasingly rely [...] Read more.
The upcoming wave of personalized medicine, driven by genomic diagnostics and artificial intelligence, demands clearly defined pre-laboratory and laboratory procedures to ensure the acquisition of DNA and RNA of sufficient quantity and quality. In prostate cancer oncogenetics, diagnostic and prognostic assessments increasingly rely on personalized approaches, including Comprehensive Genomic Profiling (CGP). In this pilot study, we aimed to establish optimal pre-analytical and analytical conditions for selected genetic diagnostic methods using tissue samples acquired through multiparametric MRI-guided biopsy. Tissue specimens from thirteen patients were processed for DNA isolation, fluorescence in situ hybridization (FISH), and next-generation sequencing (NGS). Comparative analyses were performed on DNA derived from both fresh and formalin-fixed, paraffin-embedded (FFPE) samples. Sequencing quality metrics demonstrated markedly superior performance in fresh tissue compared to FFPE. These results highlight the importance of standardized tissue collection and processing protocols to enable reliable molecular diagnostics in prostate cancer. Our findings support the feasibility of integrating high-quality genomic testing into routine biopsy workflows and emphasize the need for further large-scale validation. Full article
Show Figures

Figure 1

13 pages, 635 KiB  
Review
SIU-ICUD: Principles and Outcomes of Focal Therapy in Localized Prostate Cancer
by Alessandro Marquis, Jonathan Olivier, Tavya G. R. Benjamin, Eric Barret, Giancarlo Marra, Claire Deleuze, Lucas Bento, Kae J. Tay, Hashim U. Ahmed, Mark Emberton, Arnauld Villers, Thomas J. Polascik and Ardeshir R. Rastinehad
Soc. Int. Urol. J. 2025, 6(3), 42; https://doi.org/10.3390/siuj6030042 - 10 Jun 2025
Cited by 1 | Viewed by 1070
Abstract
Background/Objectives: Focal therapy (FT) for prostate cancer (PCa) is an alternative to radical treatments that aims to balance cancer control and quality of life preservation in well-selected patients. Understanding its general principles and outcomes is key for its widespread adoption and proper implementation. [...] Read more.
Background/Objectives: Focal therapy (FT) for prostate cancer (PCa) is an alternative to radical treatments that aims to balance cancer control and quality of life preservation in well-selected patients. Understanding its general principles and outcomes is key for its widespread adoption and proper implementation. Methods: The International Consultation on Urological Diseases nominated a committee to review the literature on FT for PCa. A comprehensive PubMed search was conducted to identify articles focused on the different aspects of FT, including patient selection, imaging techniques, treatment modalities, cancer control and safety outcomes, integration with other approaches and future perspectives. Results: FT for PCa was introduced in the 1990s with cryotherapy and high-intensity focused ultrasound (HIFU) as pioneering modalities. Though initially guided by transrectal ultrasound (TRUS) and large biopsy templates, FT implementation expanded significantly with the advent of multiparametric magnetic resonance imaging (MRI) and the validation of the index lesion concept. Appropriate patient selection is key for FT and relies on prostate-specific antigen (PSA) metrics, MRI findings and targeted biopsy information. Multiple energy sources are now available, each with specific technical characteristics. Cancer control rates vary by energy modality, tumor characteristics, and institutional experience, demonstrating comparable outcomes to radical treatments in well-selected patients. The safety profile is excellent, with high rates of urinary continence and sexual function preservation. Post-treatment surveillance integrates PSA measurements, imaging, and histological assessment. Future directions for further FT adoption include the availability of long-term data, protocol standardization and technological improvements to enhance patient selection and treatment planning and delivery. Conclusions: FT is a valuable therapeutic option for selected patients with localized PCa, demonstrating promising oncological outcomes and better functional preservation compared to radical treatments. Understanding its principles and technical aspects is essential for offering comprehensive PCa care. Full article
Show Figures

Figure 1

12 pages, 1280 KiB  
Review
SIU-ICUD: Comprehensive Imaging in Prostate Cancer—A Focus on MRI and Micro-Ultrasound
by Cesare Saitta, Wayne G. Brisbane, Hannes Cash, Sangeet Ghai, Francesco Giganti, Adam Kinnaird, Daniel Margolis and Giovanni Lughezzani
Soc. Int. Urol. J. 2025, 6(3), 39; https://doi.org/10.3390/siuj6030039 - 7 Jun 2025
Cited by 1 | Viewed by 423
Abstract
Background/Objectives: The diagnostic approach to prostate cancer (PCa) has evolved from systematic biopsies to imaging-guided strategies that improve detection of clinically significant PCa (csPCa) while reducing overdiagnosis. Multiparametric magnetic resonance imaging (mpMRI) has emerged as the gold standard for pre-biopsy evaluation, while micro-ultrasound [...] Read more.
Background/Objectives: The diagnostic approach to prostate cancer (PCa) has evolved from systematic biopsies to imaging-guided strategies that improve detection of clinically significant PCa (csPCa) while reducing overdiagnosis. Multiparametric magnetic resonance imaging (mpMRI) has emerged as the gold standard for pre-biopsy evaluation, while micro-ultrasound (MicroUS) offers a promising alternative with real-time imaging capabilities. Methods: We examined the principles, image interpretation frameworks (Prostate Imaging Reporting and Data System (PI-RADS) and Prostate Risk Identification using Micro UltraSound (PRI-MUS)), and clinical applications of mpMRI and MicroUS, comparing their diagnostic accuracy in biopsy-naïve patients, repeat biopsy scenarios, active surveillance, and staging. Results: mpMRI improves csPCa detection, reduces unnecessary biopsies, and enhances risk stratification. Landmark studies such as PRECISION (Prostate Evaluation for Clinically Important Disease: Sampling Using Image Guidance or Not?) and PRIME (Prostate Imaging Using MRI±Contrast Enhancement) confirm its superiority over systematic biopsy. However, mpMRI remains resource-intensive, with limitations in accessibility and interpretation variability. Conversely, MicroUS, with its high-resolution real-time imaging, shows non-inferiority to mpMRI and potential advantages in magnetic resonance imaging (MRI)-ineligible patients. It improves lesion visualization and biopsy targeting, with ongoing trials such as OPTIMUM (Optimization of prostate biopsy—Micro-Ultrasound versus MRI) evaluating its standalone efficacy. Conclusions: mpMRI and MicroUS are complementary modalities in PCa diagnosis. While mpMRI remains the preferred imaging standard, MicroUS offers an alternative, particularly in patients with MRI contraindications. Combining these techniques could enhance diagnostic accuracy, reduce unnecessary interventions, and refine active surveillance strategies. Future research should focus on integrating both modalities into standardized diagnostic pathways for a more individualized approach. Full article
Show Figures

Figure 1

29 pages, 3056 KiB  
Review
Transforming Prostate Cancer Care: Innovations in Diagnosis, Treatment, and Future Directions
by Sanaz Vakili, Iman Beheshti, Amir Barzegar Behrooz, Marek J. Łos, Rui Vitorino and Saeid Ghavami
Int. J. Mol. Sci. 2025, 26(11), 5386; https://doi.org/10.3390/ijms26115386 - 4 Jun 2025
Cited by 1 | Viewed by 1560
Abstract
Prostate cancer remains a major global health challenge, ranking as the second most common malignancy in men worldwide. Advances in diagnostic and therapeutic strategies have transformed its management, enhancing patient outcomes and quality of life. This review highlights recent breakthroughs in imaging, including [...] Read more.
Prostate cancer remains a major global health challenge, ranking as the second most common malignancy in men worldwide. Advances in diagnostic and therapeutic strategies have transformed its management, enhancing patient outcomes and quality of life. This review highlights recent breakthroughs in imaging, including multiparametric MRI and PSMA-PET, which have improved cancer detection and staging. Biomarker-based diagnostics, such as PHI and 4K Score, offer precise risk stratification, reducing unnecessary biopsies. Innovations in treatment, including robotic-assisted surgery, novel hormone therapies, immunotherapy, and PARP inhibitors, are redefining care for localized and advanced prostate cancer. Artificial intelligence (AI) and machine learning (ML) are emerging as powerful tools to optimize diagnostics, risk prediction, and treatment personalization. Additionally, advances in radiation therapy, such as IMRT and SBRT, provide targeted and effective options for high-risk patients. While these innovations have significantly improved survival and minimized overtreatment, challenges remain in optimizing therapy sequencing and addressing disparities in care. The integration of AI, theranostics, and gene-editing technologies holds immense promise for the future of prostate cancer management. Full article
(This article belongs to the Special Issue Prostate Cancer Research Update: Molecular Diagnostic Biomarkers)
Show Figures

Figure 1

15 pages, 3148 KiB  
Article
Comparison of mpMRI and 68Ga-PSMA-PET/CT in the Assessment of the Primary Tumors in Predominant Low-/Intermediate-Risk Prostate Cancer
by Moritz J. Argow, Sebastian Hupfeld, Simone A. Schenke, Sophie Neumann, Romy Damm, Johanna Vogt, Melis Guer, Jan Wuestemann, Martin Schostak, Frank Fischbach and Michael C. Kreissl
Diagnostics 2025, 15(11), 1358; https://doi.org/10.3390/diagnostics15111358 - 28 May 2025
Viewed by 596
Abstract
While multi-parametric magnetic resonance imaging (mpMRI) is known to be a specific and reliable modality for the diagnosis of non-metastatic prostate cancer (PC), positron emission tomography (PET) using 68Ga labeled ligands targeting the prostate-specific membrane antigen (PSMA) is known for its reliable [...] Read more.
While multi-parametric magnetic resonance imaging (mpMRI) is known to be a specific and reliable modality for the diagnosis of non-metastatic prostate cancer (PC), positron emission tomography (PET) using 68Ga labeled ligands targeting the prostate-specific membrane antigen (PSMA) is known for its reliable detection of prostate cancer, being the most sensitive modality for the assessment of the extra-prostatic extension of the disease and the establishment of a diagnosis, even before biopsy. Background/Objectives: Here, we compared these modalities in regards to the localization of intraprostatic cancer lesions prior to local HDR brachytherapy. Methods: A cohort of 27 patients received both mpMRI and PSMA-PET/CT. Based on 24 intraprostatic segments, two readers each scored the risk of tumor-like alteration in each imaging modality. The detectability was evaluated using receiver operating characteristic (ROC) analysis. The histopathological findings from biopsy were used as the gold standard in each segment. In addition, we applied a patient-based “congruence” concept to quantify the interobserver and intermodality agreement. Results: For the ROC analysis, we included 447 segments (19 patients), with their respective histological references. The two readers of the MRI reached an AUC of 0.770 and 0.781, respectively, with no significant difference (p = 0.75). The PET/CT readers reached an AUC of 0.684 and 0.608, respectively, with a significant difference (p < 0.001). The segment-wise intermodality comparison showed a significant superiority of MRI (AUC = 0.815) compared to PET/CT (AUC = 0.690) (p = 0.006). Via a patient-based analysis, a superiority of MRI in terms of relative agreement with the biopsy result was observed (n = 19 patients). We found congruence scores of 83% (MRI) and 76% (PET/CT, p = 0.034), respectively. Using an adjusted “near total agreement” score (adjacent segments with positive scores of 4 or 5 counted as congruent), we found an increase in the agreement, with a score of 96.5% for MRI and 92.7% for PET/CT, with significant difference (p = 0.024). Conclusions: This study suggests that in a small collective of low-/intermediate risk prostate cancer, mpMRI is superior for the detection of intraprostatic lesions as compared to PSMA-PET/CT. We also found a higher relative agreement between MRI and biopsy as compared to that for PET/CT. However, further studies including a larger number of patients and readers are necessary to draw solid conclusions. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

28 pages, 3279 KiB  
Review
Overdiagnosis and Overtreatment in Prostate Cancer
by Zaure Dushimova, Yerbolat Iztleuov, Gulnar Chingayeva, Abay Shepetov, Nagima Mustapayeva, Oxana Shatkovskaya, Marat Pashimov and Timur Saliev
Diseases 2025, 13(6), 167; https://doi.org/10.3390/diseases13060167 - 24 May 2025
Cited by 1 | Viewed by 1337
Abstract
Prostate cancer (PCa) is one of the most common malignancies among men worldwide. While prostate-specific antigen (PSA) screening has improved early detection, it has also led to significant challenges regarding overdiagnosis and overtreatment. Overdiagnosis involves identifying indolent tumors unlikely to affect a patient’s [...] Read more.
Prostate cancer (PCa) is one of the most common malignancies among men worldwide. While prostate-specific antigen (PSA) screening has improved early detection, it has also led to significant challenges regarding overdiagnosis and overtreatment. Overdiagnosis involves identifying indolent tumors unlikely to affect a patient’s lifespan, while overtreatment refers to unnecessary interventions that can cause adverse effects such as urinary incontinence, erectile dysfunction, and a reduced quality of life. This review highlights contributing factors, including the limitations of PSA testing, advanced imaging techniques like multi-parametric MRI (mpMRI), medical culture, and patient expectations. The analysis emphasizes the need for refining screening protocols, integrating novel biomarkers (e.g., PCA3, TMPRSS2-ERG), and adopting conservative management strategies such as active surveillance to minimize harm. Risk-based screening and shared decision-making are critical to balancing the benefits of early detection with the risks of unnecessary treatment. Additionally, systemic healthcare factors like financial incentives and malpractice concerns exacerbate overuse. This review advocates for updated clinical guidelines and personalized approaches to optimizing patient outcomes while reducing the strain on healthcare resources. Addressing overdiagnosis and overtreatment through targeted interventions will improve the quality of life for PCa patients and enhance the efficiency of healthcare systems. Full article
Show Figures

Figure 1

9 pages, 1318 KiB  
Review
A Case Report and Literature Review of Prostatic Tuberculosis Masquerading as Prostate Cancer: A Diagnostic Challenge in a Tuberculosis-Endemic Region
by Yonathan William, Marto Sugiono, Patricia Diana Prasetiyo, Adelbertus Erico and Gilbert Sterling Octavius
Trop. Med. Infect. Dis. 2025, 10(5), 145; https://doi.org/10.3390/tropicalmed10050145 - 21 May 2025
Viewed by 565
Abstract
A male in his 60s presented with a four-month history of dysuria and lower urinary tract symptoms (LUTS). He had a history of elevated PSA and benign prostatic hyperplasia (BPH), previously treated with transurethral resection of the prostate (TURP). Multiparametric MRI (MP-MRI) revealed [...] Read more.
A male in his 60s presented with a four-month history of dysuria and lower urinary tract symptoms (LUTS). He had a history of elevated PSA and benign prostatic hyperplasia (BPH), previously treated with transurethral resection of the prostate (TURP). Multiparametric MRI (MP-MRI) revealed a PI-RADS 5 lesion, raising suspicion of malignancy. However, histopathological analysis from MRI fusion-targeted biopsies confirmed tuberculous prostatitis. The patient was treated with antituberculosis drugs, resulting in symptomatic improvement and a significant PSA decline. This case highlights the diagnostic challenge of distinguishing tuberculous prostatitis from prostate cancer, particularly in tuberculosis-endemic regions. Our literature review reveals that patients with tuberculous prostatitis undergoing MRI are at least 50 years old, originate from endemic areas, and exhibit PI-RADS scores ranging from 2 to 5, indicating inter-rater variability. Histopathological confirmation remains essential in cases with ambiguous imaging and clinical findings. Full article
Show Figures

Figure 1

Back to TopTop