Overdiagnosis and Overtreatment in Prostate Cancer
Abstract
1. Introduction
2. Risk of Overdiagnosis and Overtreatment of Prostate Cancer
3. Consequences of Overdiagnosis and Overtreatment of Prostate Cancer
4. Challenges in Treatment and Prognosis of Prostate Cancer
Treatment Option | Description | Advantages | Problems | Ref. |
---|---|---|---|---|
Active Surveillance | Closely monitoring cancer progression without immediate treatment, often recommended for low-risk PCa or patients with limited life expectancy. | Avoids unnecessary treatment side effects. | Requires close monitoring; may cause anxiety. | [62,63] |
Radical Prostatectomy | Surgical removal of the entire prostate gland and surrounding tissue. | Offers a chance of cure, especially for localized PCa. | Risk of urinary incontinence, erectile dysfunction, and other surgical complications. | [64,65] |
Radiation Therapy | Uses high-energy X-rays or other forms of radiation to kill or suppress cancer cells. Types include external beam radiation therapy (EBRT) and brachytherapy (internal radiation therapy). | Effective for localized PCa; fewer side effects compared to surgery. | Potential side effects: urinary problems, bowel irritation, erectile dysfunction. | [51,66] |
Hormone Therapy (ADT) | Reduces levels of male hormones (androgens) that contribute to the growth of PCa. | Slows cancer progression; relieves symptoms. | Side effects: hot flashes, loss of libido, osteoporosis, fatigue. | [67,68] |
Chemotherapy | Uses drugs to kill cancer cells or prevent their proliferation, typically for advanced or metastatic PCa. | Blocks tumor development; prolongs survival. | Potential side effects: nausea, hair loss, fatigue, increased susceptibility to infections, decreased immunity. | [69,70] |
Immunotherapy | Stimulates the body’s immune system to recognize and attack PCa cells. Includes checkpoint inhibitors and therapeutic vaccines. | Potential for long-term response; fewer systemic side effects. | Limited effectiveness in some patients; adverse immune-related events. | [71,72] |
5. Factors Influencing Treatment Strategy for Prostate Cancer
Biomarker | Type | Sample Type | Detection Method | Potential | Clinical Relevance | Ref. |
---|---|---|---|---|---|---|
Prostate Cancer Antigen 3 (PCA3) | Long non-coding RNA | Urine | Urine-based assay | Non-invasive, assists in distinguishing between benign and malignant prostate conditions | Moderate | [79] |
TMPRSS2-ERG Fusion | Gene fusion | Tissue/ Urine | Molecular analysis (PCR) | Aids in diagnosis, prognosis, and risk stratification of prostate cancer | Low to Emerging | [81] |
Prostate Health Index (phi) | Protein | Blood | Immunoassay | Improves specificity of PSA testing, aids in identifying aggressive prostate cancer | Moderate to High | [83] |
SelectMDx | Gene expression | Urine | mRNA analysis (RT-qPCR) | Identifies patients at risk of clinically significant prostate cancer, reduces unnecessary biopsies | Emerging | [86] |
Circulating Tumor Cells (CTCs) | Cancer cells | Blood | Immunocytochemistry | Prognostic biomarker for disease progression, potential for treatment monitoring | Low for early detection | [88] |
Prostate-Specific Antigen Density (PSAD) | Antigen | Blood | PSAD calculated by dividing the serum level of prostate-specific antigen (PSA) by the volume of the prostate. | PSAD is a clinical measure used to help assess the risk of PCa. | High | [91] |
6. Prostate Enlargement and Cancer Risk: The Protective Hypothesis and Its Reflection in PSAD
Aspect | Traditional Methods (PSA + Random Biopsy) | MRI | Biomarkers | Targeted Biopsy | Ref. |
---|---|---|---|---|---|
Screening Tool | PSA test: blood-based, non-specific, high false positives/negatives. | mpMRI: Non-invasive imaging for lesion localization and risk assessment. | Blood/urine tests (phi, 4Kscore, PCA3, SelectMDx) increase specificity for csPCa. | Used after MRI to sample MRI-visible lesions. Not a screening tool itself. | [11,123] |
Biopsy Approach | Random TRUS-guided biopsy: blind, systematic sampling of 10–12 cores. | Identifies suspicious regions before biopsy, guides biopsy decision. | Supports biopsy decision-making by risk stratification. | MRI-TRUS fusion, cognitive, or in-bore MRI-guided biopsy targeting MRI-visible lesions. | [124,125] |
Sensitivity and Specificity | PSA: variable sensitivity (21–68%), low specificity, leads to unnecessary biopsies. | High sensitivity (~88%) and specificity (~74%) for csPCa. | Improves specificity, differentiating indolent vs. aggressive cancers. | Higher detection rate of csPCa, fewer missed lesions compared to random biopsy. | [126,127,128] |
Overdiagnosis and Overtreatment | High risk of detecting insignificant cancers, leading to overtreatment. | Reduces detection of indolent lesions, focuses on csPCa. | Helps avoid unnecessary biopsies and treatment of indolent cancers. | Targets clinically significant lesions, reduces overdiagnosis. | [129,130] |
Invasiveness and Complications | Invasive biopsy with risk of infection, bleeding, urinary retention. | Non-invasive imaging modality. | Minimally invasive (blood/urine samples). | Fewer biopsy cores, lower complication rates compared to random biopsy. | [131,132] |
Cost and Accessibility | PSA: low-cost, random biopsy widely available but resource-intensive. | High cost, limited access in some regions, requires radiology expertise. | Variable cost, availability increasing, simpler than MRI. | Requires specialized equipment and expertise for MRI-guided targeting. | [9,133] |
Clinical Guidelines and Adoption | PSA + random biopsy remains standard but controversial. | Recommended pre-biopsy tool in AUA, EAU guidelines for elevated PSA or prior negative biopsy. | Used as adjuncts for better risk assessment and biopsy decision-making. | Increasingly preferred for biopsy guidance after MRI in guidelines. | [134,135] |
Limitations | PSA lacks specificity; random biopsy may miss csPCa; overdiagnosis common. | Operator-dependent interpretation; variability in MRI quality and reporting. | Lack of universal thresholds; not all biomarkers are widely validated. | Access to technology and expertise can be limited; requires MRI integration. | [136,137] |
7. PCa Overtreatment: Trends and Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, H.J.; Zhang, W.; Zhang, L.; Qu, Y.; Xu, Z.; Tan, Z.; Yan, P.; Tang, M.; Yang, C.; Wang, Y.; et al. Risk factors for prostate cancer: An umbrella review of prospective observational studies and mendelian randomization analyses. PLoS Med. 2024, 21, e1004362. [Google Scholar] [CrossRef] [PubMed]
- Urquijo-Moraza, A.; Guinea-Castañares, J.; Iturralde-Iriso, J.M. Prostate cancer screening with prostate-specific antigen (PSA) to men over 70 years old in an urban health zone, 2018–2020: A cross-sectional study. Med. Fam-Semer. 2023, 49, 101876. [Google Scholar]
- Varaprasad, G.L.; Gupta, V.K.; Prasad, K.; Kim, E.; Tej, M.B.; Mohanty, P.; Verma, H.K.; Raju, G.S.R.; Bhaskar, L.; Huh, Y.S. Recent advances and future perspectives in the therapeutics of prostate cancer. Exp. Hematol. Oncol. 2023, 12, 80. [Google Scholar] [CrossRef] [PubMed]
- Mumuni, S.; O’Donnell, C.; Doody, O. The Risk Factors and Screening Uptake for Prostate Cancer: A Scoping Review. Healthcare 2023, 11, 2780. [Google Scholar] [CrossRef]
- Ragavan, M.V.; Borno, H.T. The costs and inequities of precision medicine for patients with prostate cancer: A call to action. Urol. Oncol-Semin. Orig. Investig. 2023, 41, 369–375. [Google Scholar] [CrossRef]
- Tang, Y.X.; Hu, X.; Wang, Y.H.; Li, X. Gleason score 6: Overdiagnosis and overtreatment? Asian J. Surg. 2023, 46, 2637–2638. [Google Scholar] [CrossRef]
- Baseilhac, P.; Rouvière, O. Prostate cancer diagnosis: Present and future. Med. Nucl. 2023, 47, 233–240. [Google Scholar] [CrossRef]
- Kalavacherla, S.; Riviere, P.; Javier-DesLoges, J.; Banegas, M.P.; McKay, R.R.; Murphy, J.D.; Rose, B.S. Low-Value Prostate-Specific Antigen Screening in Older Males. Jama Netw. Open 2023, 6, e237504. [Google Scholar] [CrossRef]
- Maguire, N.; Moloney, A.; Fic, K. Prostate Specific Antigen (PSA) testing in a general practice 2009–2019. Ir. J. Med. Sci. 2025, 194, 1–3. [Google Scholar] [CrossRef]
- Denijs, F.B.; van Harten, M.J.; Meenderink, J.J.L.; Leenen, R.C.A.; Remmers, S.; Venderbos, L.D.F.; van den Bergh, R.C.N.; Beyer, K.; Roobol, M.J. Risk calculators for the detection of prostate cancer: A systematic review. Prostate Cancer Prostatic Dis. 2024, 27, 544–557. [Google Scholar] [CrossRef]
- Denijs, F.B.; Van Poppel, H.; Stenzl, A.; Villanueva, T.; Vilaseca, J.M.; Ungan, M.; Deschamps, A.; Collen, S.; Roobol, M.J. PSA testing in primary care: Is it time to change our practice? BMC Prim. Care 2024, 25, 436. [Google Scholar] [CrossRef] [PubMed]
- De Vrieze, M.; Hübner, A.; Al-Monajjed, R.; Albers, P.; Radtke, J.P.; Schimmöller, L.; Boschheidgen, M. Prostate cancer screening—Current overview. Radiologie 2024, 64, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.B. Contemporary Strategies for Clinical Chemoprevention of Localized Prostate Cancer. Cancer Control 2024, 31, 10732748241302863. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Tian, A.M.; Che, J.Z.; Miao, Y.D.; Liu, Y.Y.; Liu, Y.Y.; Xu, Y.K. Application and optimization of prostate-specific antigen screening strategy in the diagnosis of prostate cancer: A systematic review. Front. Oncol. 2024, 13, 1320681. [Google Scholar] [CrossRef]
- De Vrieze, M.; Al-Monajjed, R.; Boschheidgen, M.; Albers, P. Prostate Cancer Screening in Young Men. J. Pers. Med. 2024, 14, 818. [Google Scholar] [CrossRef]
- Hall, R.; Bancroft, E.; Pashayan, N.; Kote-Jarai, Z.; Eeles, R.A. Genetics of prostate cancer: A review of latest evidence. J. Med. Genet. 2024, 61, 915–926. [Google Scholar] [CrossRef]
- Sequeira, J.P.; Salta, S.; Freitas, R.; López-López, R.; Díaz-Lagares, A.; Henrique, R.; Jerónimo, C. Biomarkers for Pre-Treatment Risk Stratification of Prostate Cancer Patients: A Systematic Review. Cancers 2024, 16, 1363. [Google Scholar] [CrossRef] [PubMed]
- Persell, S.D.; Petito, L.C.; Lee, J.Y.; Meeker, D.; Doctor, J.N.; Goldstein, N.J.; Fox, C.R.; Rowe, T.A.; Linder, J.A.; Chmiel, R.; et al. Reducing Care Overuse in Older Patients Using Professional Norms and Accountability: A Cluster Randomized Controlled Trial. Ann. Intern. Med. 2024, 177, 324–334. [Google Scholar] [CrossRef]
- Sun, Z.N.; Wang, K.X.; Gao, G.; Wang, H.H.; Wu, P.S.; Li, J.L.; Zhang, X.D.; Wang, X.Y. Assessing the Performance of Artificial Intelligence Assistance for Prostate MRI: A Two-Center Study Involving Radiologists with Different Experience Levels. J. Magn. Reson. Imaging 2025, 61, 2234–2245. [Google Scholar] [CrossRef]
- Yim, K.; Ma, C.R.; Carlsson, S.; Lilja, H.; Mucci, L.; Penney, K.; Kibel, A.S.; Eggener, S.; Preston, M.A. Free PSA and Clinically Significant and Fatal Prostate Cancer in the PLCO Screening Trial. J. Urol. 2023, 210, 630–637. [Google Scholar] [CrossRef]
- Sweis, J.; Ofori, B.; Murphy, A.B. Concerns regarding prostate cancer screening guidelines in minority populations. Prostate Cancer Prostatic Dis. 2023, 27, 591–593. [Google Scholar] [CrossRef] [PubMed]
- de Vos, I.I.; Luiting, H.B.; Roobol, M.J. Active Surveillance for Prostate Cancer: Past, Current, and Future Trends. J. Pers. Med. 2023, 13, 629. [Google Scholar] [CrossRef] [PubMed]
- Beatrici, E.; Labban, M.; Stone, B.V.; Filipas, D.K.; Reis, L.O.; Lughezzani, G.; Buffi, N.M.; Kibel, A.S.; Cole, A.P.; Trinh, Q.D. Uncovering the Changing Treatment Landscape for Low-risk Prostate Cancer in the USA from 2010 to 2020: Insights from the National Cancer Data Base. Eur. Urol. 2023, 84, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Gulati, R. Reducing Prostate Cancer Overdiagnosis. N. Engl. J. Med. 2022, 387, 2187–2188. [Google Scholar] [CrossRef]
- Saliev, T.; Akhmad, N.; Altynbekova, S.; Nogaeva, M.; Tazhieva, A.; Dushimova, Z. Role of ethnic and genetic factors in the development of prostate cancer (Review). World Acad. Sci. J. 2024, 7, 13. [Google Scholar] [CrossRef]
- Ho, M.D.; Yeo, K.T.J.; Eggener, S.E. Time to stop reporting estimates of any prostate cancer risk with percentage of free prostate-specific antigen. Am. J. Clin. Pathol. 2024, 161, 1–3. [Google Scholar] [CrossRef]
- Rashid, P.; Zargar-Shoshtari, K.; Ranasinghe, W. Prostate-specific antigen testing for prostate cancer Time to reconsider the approach to screening. Aust. J. Gen. Pract. 2023, 52, 91–95. [Google Scholar] [CrossRef]
- Pinsky, P.F.; Parnes, H. Screening for Prostate Cancer. N. Engl. J. Med. 2023, 388, 1405–1414. [Google Scholar] [CrossRef]
- Sun, Z.A.; Wang, K.X.; Wu, C.C.; Chen, Y.T.; Kong, Z.X.; She, L.L.; Song, B.; Luo, N.; Wu, P.S.; Wang, X.P.; et al. Using an artificial intelligence model to detect and localize visible clinically significant prostate cancer in prostate magnetic resonance imaging: A multicenter external validation study. Quant. Imaging Med. Surg. 2023, 14, 43–60. [Google Scholar] [CrossRef]
- Jiang, M.J.; Yuan, B.H.; Kou, W.X.; Yan, W.; Marshall, H.; Yang, Q.Y.; Syer, T.; Punwani, S.; Emberton, M.; Barratt, D.C.; et al. Prostate cancer segmentation from MRI by a multistream fusion encoder. Med. Phys. 2023, 50, 5489–5504. [Google Scholar] [CrossRef]
- Feuer, Z.; Meng, X.S.; Rosenkrantz, A.B.; Kasivisvanathan, V.; Moore, C.M.; Huang, R.; Deng, F.M.; Lepor, H.; Wysock, J.S.; Huang, W.C.; et al. Application of the PRECISION Trial Biopsy Strategy to a Contemporary Magnetic Resonance Imaging-Targeted Biopsy Cohort—How Many Clinically Significant Prostate Cancers are Missed? J. Urol. 2021, 205, 740–747. [Google Scholar] [CrossRef]
- Kazerooni, A.F.; Bagley, S.J.; Akbari, H.; Saxena, S.; Bagheri, S.; Guo, J.; Chawla, S.; Nabavizadeh, A.; Mohan, S.; Bakas, S.; et al. Applications of Radiomics and Radiogenomics in High-Grade Gliomas in the Era of Precision Medicine. Cancers 2021, 13, 5921. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.U.; Bosaily, A.E.S.; Brown, L.C.; Gabe, R.; Kaplan, R.; Parmar, M.K.; Collaco-Moraes, Y.; Ward, K.; Hindley, R.G.; Freeman, A.; et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): A paired validating confirmatory study. Lancet 2017, 389, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xie, Y.Q.; Zheng, X.Y.; Liu, B.; Chen, H.; Li, J.F.; Ma, X.Y.; Xiang, J.J.; Weng, G.B.; Zhu, W.Z.; et al. A prospective multi-center randomized comparative trial evaluating outcomes of transrectal ultrasound (TRUS)-guided 12-core systematic biopsy, mpMRI-targeted 12-core biopsy, and artificial intelligence ultrasound of prostate (AIUSP) 6-core targeted biopsy for prostate cancer diagnosis. World J. Urol. 2023, 41, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Kasivisvanathan, V.; Chan, V.W.S.; Clement, K.D.; Levis, B.; Ng, A.; Asif, A.; Haider, M.A.; Emberton, M.; Pond, G.R.; Agarwal, R.; et al. VISION: An Individual Patient Data Meta-analysis of Randomised Trials Comparing Magnetic Resonance Imaging Targeted Biopsy with Standard Transrectal Ultrasound Guided Biopsy in the Detection of Prostate Cancer. Eur. Urol. 2025, 87, 512–523. [Google Scholar] [CrossRef]
- von Stauffenberg, F.; Poyet, C.; Beintner-Skawran, S.; Maurer, A.; Schmid, F.A. Current Clinical Applications of PSMA-PET for Prostate Cancer Diagnosis, Staging, and Treatment. Cancers 2024, 16, 4263. [Google Scholar] [CrossRef]
- Mohammadi, T.; Guh, D.P.; Tam, A.C.T.; Pataky, R.E.; Black, P.C.; So, A.L.; Lynd, L.D.; Zhang, W.; Conklin, A.I. Economic evaluation of prostate cancer risk assessment methods: A cost-effectiveness analysis using population data. Cancer Med. 2023, 12, 20106–20118. [Google Scholar] [CrossRef]
- Welch, H.G.; Bergmark, R. Cancer Screening, Incidental Detection, and Overdiagnosis. Clin. Chem. 2024, 70, 179–189. [Google Scholar] [CrossRef]
- Englman, C.; Barrett, T.; Moore, C.M.; Giganti, F. Active Surveillance for Prostate Cancer Expanding the Role of MR Imaging and the Use of PRECISE Criteria. Radiol. Clin. N. Am. 2024, 62, 69–92. [Google Scholar] [CrossRef]
- Fanshawe, J.B.; Chan, V.W.S.; Asif, A.; Ng, A.; Van Hemelrijck, M.; Cathcart, P.; Challacombe, B.; Brown, C.; Popert, R.; Elhage, O.; et al. Decision Regret in Patients with Localised Prostate Cancer: A Systematic Review and Meta-analysis. Eur. Urol. Oncol. 2023, 6, 456–466. [Google Scholar] [CrossRef]
- Peyrottes, A.; Rouprêt, M.; Fiard, G.; Fromont, G.; Barret, E.; Brureau, L.; Créhange, G.; Gauthé, M.; Baboudjian, M.; Renard-Penna, R.; et al. Early detection of prostate cancer: Towards a new paradigm? Prog. Urol. 2023, 33, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Estevan-Vilar, M.; Parker, L.A.; Caballero-Romeu, J.P.; Ronda, E.; Hernández-Aguado, I.; Lumbreras, B. Barriers and facilitators of shared decision-making in prostate cancer screening in primary care: A systematic review. Prev. Med. Rep. 2024, 37, 102539. [Google Scholar] [CrossRef] [PubMed]
- Jalloh, M.; Cassell, A.; Niang, L.; Rebbeck, T. Global viewpoints: Updates on prostate cancer in Sub-Saharan Africa. Bju Int. 2024, 133, 6–13. [Google Scholar] [CrossRef]
- Orecchia, L.; Katz-Summercorn, C.; Grainger, R.; Fletcher, P.; Ippoliti, S.; Barrett, T.; Kastner, C. Clinical and economic impact of the introduction of pre-biopsy MRI-based assessment on a large prostate cancer centre diagnostic population and activity: 10 years on. World J. Urol. 2024, 42, 82. [Google Scholar] [CrossRef]
- Paterson, C.; Anderson, H.; Rosano, M.; Cowan, D.; Schulz, D.; Santoro, K.; Forshaw, T.; Hawks, C.; Roberts, N.; Australia, C.N.S. What are the perceived unmet needs for patient care, education, and research among genitourinary cancer nurses in Australia? A mixed method study. Asia-Pac. J. Oncol. Nurs. 2024, 11, 100564. [Google Scholar] [CrossRef] [PubMed]
- Krausewitz, P.; Büttner, T.; von Danwitz, M.; Weiten, R.; Cox, A.; Kluemper, N.; Stein, J.; Luetkens, J.; Kristiansen, G.; Ritter, M.; et al. Elucidating the need for prostate cancer risk calculators in conjunction with mpMRI in initial risk assessment before prostate biopsy at a tertiary prostate cancer center. Bmc Urol. 2024, 24, 71. [Google Scholar] [CrossRef]
- Chiu, P.K.; Lam, T.Y.; Ng, C.F.; Teoh, J.Y.; Cho, C.C.; Hung, H.Y.; Hong, C.Y.; Roobol, M.J.; Chu, W.C.; Wong, S.Y.; et al. The combined role of MRI prostate and prostate health index in improving detection of significant prostate cancer in a screening population of Chinese men. Asian J. Androl. 2023, 25, 674–679. [Google Scholar] [CrossRef]
- Van Poppel, H.; Albreht, T.; Basu, P.; Hogenhout, R.; Collen, S.; Roobol, M. Serum PSA-based early detection of prostate cancer in Europe and globally: Past, present and future. Nat. Rev. Urol. 2022, 19, 562–572. [Google Scholar] [CrossRef]
- Van Poppel, H.; Albers, P.; van den Bergh, R.C.N.; Barentsz, J.O.; Roobol, M.J. A European Model for an Organised Risk-stratified Early Detection Programme for Prostate Cancer. Eur. Urol. Oncol. 2021, 4, 731–739. [Google Scholar] [CrossRef]
- Weng, X.T.; Lin, W.L.; Pan, Q.M.; Chen, T.F.; Li, S.Y.; Gu, C.M. Aggressive variant prostate cancer: A case report and literature review. World J. Clin. Cases 2023, 11, 6213–6222. [Google Scholar] [CrossRef]
- Wasim, S.; Park, J.; Nam, S.; Kim, J. Review of Current Treatment Intensification Strategies for Prostate Cancer Patients. Cancers 2023, 15, 5615. [Google Scholar] [CrossRef] [PubMed]
- Tayebi, S.; Debnath, N.; Sidana, A. A Review of Energy Modalities Used for Focal Therapy of Prostate Cancer. Curr. Surg. Rep. 2023, 11, 331–346. [Google Scholar] [CrossRef]
- Miszczyk, M.; Slusarczyk, A.; Quhal, F.; Klemm, J.; Matsukawa, A.; Przydacz, M.; Bryniarski, P.; Shariat, S.F.; Rajwa, P. Management of oligometastatic prostate cancer. Memo-Mag. Eur. Med. Oncol. 2024, 17, 35–39. [Google Scholar] [CrossRef]
- Rajwa, P.; Zattoni, F.; Maggi, M.; Marra, G.; Kroyer, P.; Shariat, S.F.; Briganti, A.; Montorsi, F.; Heidegger, I.; Gandaglia, G.; et al. Cytoreductive Radical Prostatectomy for Metastatic Hormone-sensitive Prostate Cancer-Evidence from Recent Prospective Reports. Eur. Urol. Focus 2023, 9, 637–641. [Google Scholar] [CrossRef]
- Rog, M.; Perennec, T.; Guimas, V.; Hetet, J.F.; Rio, E.; Vaugier, L.; Supiot, S. Salvage radiotherapy after initial cryotherapy for localized prostate cancer: A systematic review of the literature. Crit. Rev. Oncol. Hemat 2023, 192, 104149. [Google Scholar] [CrossRef]
- Efstathiou, J.A.; Morgans, A.K.; Bland, C.S.; Shore, N.D. Novel hormone therapy and coordination of care in high-risk biochemically recurrent prostate cancer. Cancer Treat. Rev. 2024, 122, 102630. [Google Scholar] [CrossRef]
- Zhao, J.E.; Chen, J.R.; Sun, G.X.; Shen, P.F.; Zeng, H. Luteinizing hormone-releasing hormone receptor agonists and antagonists in prostate cancer: Effects on long-term survival and combined therapy with next-generation hormonal agents. Cancer Biol. Med. 2024, 21, 1012–1032. [Google Scholar] [CrossRef]
- Ruplin, A.; Segal, E.; McFarlane, T. Review of drug-drug interactions in patients with prostate cancer. J. Oncol. Pharm. Pract. 2024, 30, 1057–1072. [Google Scholar] [CrossRef]
- Leuva, H.; Moran, G.; Jamaleddine, N.; Meseha, M.; Zhou, M.X.; Im, Y.; Rosenberg, T.C.M.; Park, Y.H.A.; Luhrs, C.; Bates, S.E.; et al. Assessment of PSA responses and changes in the rate of tumor growth (g-rate) with immune checkpoint inhibitors in US Veterans with prostate cancer. Semin. Oncol. 2024, 51, 59–68. [Google Scholar] [CrossRef]
- Wong, H.M.C.; Cheung, B.C.S.; Yuen, V.W.F.; Teoh, J.Y.C.; Chiu, P.K.F.; Ng, C.F. Patient preference on once-daily oral versus injectable androgen deprivation therapy for Asian patients with advanced prostate cancer. Int. Urol. Nephrol. 2024, 56, 2923–2928. [Google Scholar] [CrossRef]
- Shbeer, A.M. Current state of knowledge and challenges for harnessing the power of dendritic cells in cancer immunotherapy. Pathol. Res. Pract. 2024, 253, 155025. [Google Scholar] [CrossRef] [PubMed]
- Tiruye, T.; O’Callaghan, M.; Ettridge, K.; Moretti, K.; Jay, A.; Higgs, B.; Santoro, K.; Kichenadasse, G.; Beckmann, K. Clinical and functional outcomes for risk-appropriate treatments for prostate cancer. BJUI Compass 2024, 5, 109–120. [Google Scholar] [CrossRef]
- Subramanian, L.; Hawley, S.T.; Skolarus, T.A.; Rankin, A.; Fetters, M.D.; Witzke, K.; Chen, J.S.; Radhakrishnan, A. Patient perspectives on factors influencing active surveillance adherence for low-risk prostate cancer: A qualitative study. Cancer Med. 2024, 13, e6847. [Google Scholar] [CrossRef] [PubMed]
- Jing, Q.; Gu, J.J.; Li, Z.W.; Sun, X.; Chen, Q.Y.; Li, S.H.; Xu, W.Z. Prostatectomy postoperative urinary incontinence: From origin to treatment. Precis. Med. Sci. 2023, 12, 224–232. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Dobbs, R.W.; Vuong, H.G.; Quy, K.; Ngo, H.T.T.; Mai, A.T.; Tuyet, M.T.T.; Thai, M.S.; Tiong, H.Y.; Choi, S.Y.; et al. Single-port and multiport robot-assisted radical prostatectomy: A meta-analysis. Prostate Int. 2023, 11, 187–194. [Google Scholar] [CrossRef]
- Fairweather, D.; Taylor, R.M.; Simo, R. Choosing the right questions—A systematic review of patient reported outcome measures used in radiotherapy and proton beam therapy. Radiother. Oncol. 2024, 191, 110071. [Google Scholar] [CrossRef]
- Thompson, C.; Murray, J. Management considerations for adjunct hormone therapy in prostate cancer. Trends Urol. Men’s. Health 2023, 14, 17–22. [Google Scholar] [CrossRef]
- Aziz, M.K.; Molony, D.; Smith, C.T.; Holder, T.; Mody-Bailey, N.; Brunckhorst, O.; Magill, R.; Fatakdawala, M.; Roland, J.; Kostrzanowska, G. A Systematic Review and Network Meta-Analysis of Metastatic Hormone- Sensitive Prostate Cancer Therapy Cardiotoxicity. Circulation 2023, 148, A12240. [Google Scholar] [CrossRef]
- Denis, C.; Sautois, B. Advanced and metastatic prostate cancer: Work-up and treatment strategy. Med. Nucl. 2023, 47, 300–308. [Google Scholar] [CrossRef]
- Zhao, J.N.C.; Guercio, B.J.; Sahasrabudhe, D. Current Trends in Chemotherapy in the Treatment of Metastatic Prostate Cancer. Cancers 2023, 15, 3969. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, K.C.; Zhu, H.H.; Wei, F.K.; Ma, S.; Kan, Y.; Li, B.H.; Mao, L.J. Current status and progress of the development of prostate cancer vaccines. J. Cancer 2023, 14, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.B.; Yang, Y.Q.; Mortazavi, A.; Zhang, J.S. Emerging Immunotherapy Approaches for Treating Prostate Cancer. Int. J. Mol. Sci. 2023, 24, 14347. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.M.; Li, J.K.; Dorado, J.; Sierra, A.; González-Díaz, H.; Duardo, A.; Shen, B.R. From molecular mechanisms of prostate cancer to translational applications: Based on multi-omics fusion analysis and intelligent medicine. Health Inf. Sci. Syst. 2023, 12, 6. [Google Scholar] [CrossRef] [PubMed]
- Pauchard, F.; Kramer, F.; Kirmayr, M.; Escobar, M. Stage at diagnosis of prostate cancer in an institutional hospital. Review and comparison of national and international data. Rev. Med. Chil. 2023, 151, 711–716. [Google Scholar] [CrossRef]
- Zuur, L.G.; de Barros, H.A.; van der Mijn, K.J.C.; Vis, A.N.; Bergman, A.M.; Pos, F.J.; van Moorselaar, J.A.; van der Poel, H.G.; Vogel, W.V.; van Leeuwen, P.J. Treating Primary Node-Positive Prostate Cancer: A Scoping Review of Available Treatment Options. Cancers 2023, 15, 2962. [Google Scholar] [CrossRef]
- Li, Y.D.; Ren, Z.J.; Gou, Y.Q.; Liu, C.; Gao, L. Development and validation of a model for predicting the risk of prostate cancer. Int. Urol. Nephrol. 2024, 56, 973–980. [Google Scholar] [CrossRef]
- Zhou, J.T.; Yu, M.H.; Ding, J.; Qi, J. Does the Gleason Score 7 Upgrading Always Predict Worse Prognosis? Clin. Genitourin. Cancer 2023, 21, E412–E421. [Google Scholar] [CrossRef]
- Chen, J.Y.; Wang, P.Y.; Liu, M.Z.; Lyu, F.; Ma, M.W.; Ren, X.Y.; Gao, X.S. Biomarkers for Prostate Cancer: From Diagnosis to Treatment. Diagnostics 2023, 13, 3350. [Google Scholar] [CrossRef]
- Warli, S.M.; Warli, M.H.; Prapiska, F.F. PCA3 and TMPRSS2: ERG Urine Level as Diagnostic Biomarker of Prostate Cancer. Res. Rep. Urol. 2023, 15, 149–155. [Google Scholar] [CrossRef]
- Nabok, A.; Abu-Ali, H.; Takita, S.; Smith, D.P. Electrochemical Detection of Prostate Cancer Biomarker PCA3 Using Specific RNA-Based Aptamer Labelled with Ferrocene. Chemosensors 2021, 9, 59. [Google Scholar] [CrossRef]
- Li, Y.W.; Su, H.; Liu, K.D.; Zhao, Z.X.; Wang, Y.Q.; Chen, B.; Xia, J.; Yuan, H.T.; Huang, D.S.; Gu, Y.Y. Individualized detection of TMPRSS2-ERG fusion status in prostate cancer: A rank-based qualitative transcriptome signature. World J. Surg. Oncol. 2024, 22, 49. [Google Scholar] [CrossRef]
- Stopsack, K.H.; Su, X.A.; Vaselkiv, J.B.; Graff, R.E.; Ebot, E.M.; Pettersson, A.; Lis, R.T.; Fiorentino, M.; Loda, M.; Penney, K.L.; et al. Transcriptomes of Prostate Cancer with TMPRSS2:ERG and Other ETS Fusions. Mol. Cancer Res. 2023, 21, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Ho, J.-N.; Kim, D.H.; Song, S.H.; Kim, H.; Lee, H.; Jeong, S.J.; Hong, S.K.; Byun, S.-S.; Ahn, H.; et al. The Prostate Health Index and multi-parametric MRI improve diagnostic accuracy of detecting prostate cancer in Asian populations. Investig. Clin. Urol. 2022, 63, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Castillo, Y.M.; Melgarejo-Segura, M.T.; Funes-Padilla, C.; Folgueral-Corral, M.E.; García-Larios, J.V.; Arrabal-Polo, M.A.; Muñoz, T.D.; Arrabal-Martín, M. Prostate health index (PHI) as an accurate prostate cancer predictor. J. Cancer Res. Clin. 2023, 149, 9329–9335. [Google Scholar] [CrossRef] [PubMed]
- Chiu, P.K.F.; Leow, J.J.; Chiang, C.H.; Mok, A.; Zhang, K.; Hsieh, P.F.; Zhu, Y.; Lam, W.; Tsang, W.C.; Fan, Y.H.; et al. Prostate Health Index Density Outperforms Prostate-specific Antigen Density in the Diagnosis of Clinically Significant Prostate Cancer in Equivocal Magnetic Resonance Imaging of the Prostate: A Multicenter Evaluation. J. Urol. 2023, 210, 88–98. [Google Scholar] [CrossRef]
- Hoyer, G.; Crawford, E.D.; Arangua, P.; Stanton, W.; La Rosa, F.G.; Poage, W.; Lucia, M.S.; van Bokhoven, A.; Werahera, P.N. SelectMDx versus Prostate Health Index in the identification of high-grade prostate cancer. J. Clin. Oncol. 2019, 37, 30. [Google Scholar] [CrossRef]
- Wagaskar, V.G.; Levi, M.; Ratnani, P.; Sullimada, S.; Gerenia, M.; Schlussel, K.; Choudhury, S.; Gabriele, M.; Haas, I.; Haines, K.; et al. A SelectMDx/magnetic resonance imaging-based nomogram to diagnose prostate cancer. Cancer Rep. 2023, 6, e1668. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Gvozdenovic, A.; Aceto, N. A Molecular Voyage: Multiomics Insights into Circulating Tumor Cells. Cancer Discov. 2024, 14, 920–933. [Google Scholar] [CrossRef]
- Halabi, S.; Guo, S.Y.; Park, J.J.; Nanus, D.M.; George, D.J.; Antonarakis, E.S.; Danila, D.C.; Szmulewitz, R.Z.; Mcdonnell, D.P.; Norris, J.D.; et al. The Impact of Circulating Tumor Cell HOXB13 RNA Detection in Men with Metastatic Castration-Resistant Prostate Cancer (mCRPC) Treated with Abiraterone or Enzalutamide. Clin. Cancer Res. 2024, 30, 1152–1159. [Google Scholar] [CrossRef]
- Mjaess, G.; Haddad, L.; Jabbour, T.; Baudewyns, A.; Bourgeno, H.A.; Lefebvre, Y.; Ferriero, M.; Simone, G.; Fourcade, A.; Fournier, G.; et al. Refining clinically relevant cut-offs of prostate specific antigen density for risk stratification in patients with PI-RADS 3 lesions. Prostate Cancer Prostatic Dis. 2025, 28, 173–179. [Google Scholar] [CrossRef]
- Ayranci, A.; Caglar, U.; Yazili, H.B.; Erdal, F.S.; Erbin, A.; Sarilar, O.; Ozgor, F. PSA Density and Lesion Volume: Key Factors in Avoiding Unnecessary Biopsies for PI-RADS 3 Lesions. Prostate 2025, 85, 385–390. [Google Scholar] [CrossRef]
- Ren, L.; Chen, Y.L.; Liu, Z.X.; Huang, G.K.; Wang, W.F.; Yang, X.; Bai, B.H.; Guo, Y.; Ling, J.; Mao, X.P. Integration of PSAd and multiparametric MRI to forecast biopsy outcomes in biopsy-naive patients with PSA 4∼20 ng/ml. Front. Oncol. 2024, 14, 1413953. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.M.; Fu, M.; Tang, Y.Z.; Li, J.X. The value of adjusted PSAD in prostate cancer detection in the Chinese population. Front. Oncol. 2024, 14, 1462997. [Google Scholar] [CrossRef] [PubMed]
- Scuderi, S.; Tin, A.; Gandaglia, G.; Stabile, A.; Montorsi, F.; Briganti, A.; Vickers, A.J. Implementation of 4Kscore as a Secondary Test Before Prostate Biopsy: Impact on US Population Trends for Prostate Cancer. Eur. Urol. Open Sci. 2023, 52, 1–3. [Google Scholar] [CrossRef]
- Bhattu, A.S.; Zappala, S.M.; Parekh, D.J.; Punnen, S. A 4Kscore Cut -off of 7.5% for Prostate Biopsy Decisions Provides High Sensitivity and Negative Predictive Value for Significant Prostate Cancer. Urology 2021, 148, 53–58. [Google Scholar] [CrossRef]
- Amini, A.E.; Hunter, A.E.; Almashad, A.; Feng, A.J.; Patel, N.D.; O’Dea, M.R.; Mccormick, S.R.; Rodgers, L.H.; Salari, K. Magnetic Resonance Imaging-based Prostate Cancer Screening in Carriers of Pathogenic Germline Mutations: Interim Results from the Initial Screening Round of the Prostate Cancer Genetic Risk Evaluation and Screening Study. Eur. Urol. Oncol. 2024, 7, 1358–1366. [Google Scholar] [CrossRef]
- Zattoni, F.; Gandaglia, G.; van den Bergh, R.C.N.; Marra, G.; Valerio, M.; Martini, A.; Olivier, J.; Puche-Sanzi, I.; Rajwa, P.; Maggi, M.; et al. Follow-up on patients with initial negative mpMRI target and systematic biopsy for PI-RADS ≥ 3 lesions—An EAU-YAU study enhancing prostate cancer detection. Prostate Cancer Prostatic Dis. 2024. [Google Scholar] [CrossRef]
- Ploussard, G.; Barret, E.; Fiard, G.; Lenfant, L.; Malavaud, B.; Giannarini, G.; Almeras, C.; Aziza, R.; Renard-Penna, R.; Descotes, J.L.; et al. Transperineal Versus Transrectal Magnetic Resonance Imaging-targeted Biopsies for Prostate Cancer Diagnosis: Final Results of the Randomized PERFECT trial (CCAFU-PR1). Eur. Urol. Oncol. 2024, 7, 1080–1087. [Google Scholar] [CrossRef] [PubMed]
- Couchoux, T.; Jaouen, T.; Melodelima-Gonindard, C.; Baseilhac, P.; Branchu, A.; Arfi, N.; Aziza, R.; Delongchamps, N.B.; Bladou, F.; Bratan, F.; et al. Performance of a Region of Interest-based Algorithm in Diagnosing International Society of Urological Pathology Grade Group ≥2 Prostate Cancer on the MRI-FIRST Database-CAD-FIRST Study. Eur. Urol. Oncol. 2024, 7, 1113–1122. [Google Scholar] [CrossRef]
- Moschovas, M.C.; Chew, C.; Bhat, S.; Sandri, M.; Rogers, T.; Dell’Oglio, P.; Roof, S.; Reddy, S.; Sighinolfi, M.C.; Rocco, B.; et al. Association Between Oncotype DX Genomic Prostate Score and Adverse Tumor Pathology After Radical Prostatectomy. Eur. Urol. Focus 2022, 8, 418–424. [Google Scholar] [CrossRef]
- Freedland, S.; Boyer, M.J.; Janes, J.; Bennett, J.; Thomas, V.M.; De, H.A.M.; Abran, J.; Aboushwareb, T.; Salama, J.K. The Oncotype DX Genomic Prostate Score® assay is associated with time to distant metastasis and prostate cancer death after external beam radiation therapy in localized prostate cancer: A retrospective study. Eur. Urol. 2022, 81, S1413–S1414. [Google Scholar] [CrossRef]
- Tuzova, A.V.; Moran, B.; Russell, N.M.; Das, S.; Delahaye, F.; Silva, R.; Barrett, C.; Watson, R.W.G.; O’Neill, A.; Gallagher, W.M.; et al. Deciphering epigenetic regulation of enhancers in high-risk prostate cancer. Gene Chromosome Cancer 2024, 63, e23218. [Google Scholar] [CrossRef]
- Zhu, A.; Ramaswamy, A.; Proudfoot, J.; Ross, A.; Liu, Y.; Davicioni, E.; Zaorsky, N.; Jia, A.; Spratt, D.; Schaeffer, E.; et al. Use of Decipher Prostate Biopsy Test in Men with Favorable Risk Disease Undergoing Conservative Management in the Seer Registry. J. Urol. 2023, 209, E618. [Google Scholar] [CrossRef]
- Coradduzza, D.; Solinas, T.; Balzano, F.; Culeddu, N.; Rossi, N.; Cruciani, S.; Azara, E.; Maioli, M.; Zinellu, A.; De Miglio, M.R.; et al. miRNAs as Molecular Biomarkers for Prostate Cancer. J. Mol. Diagn. 2022, 24, 1171–1180. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Valbuena, G.N.; Curry, E.; Bevan, C.L.; Keun, H.C. MicroRNAs as biomarkers for prostate cancer prognosis: A systematic review and a systematic reanalysis of public data. Br. J. Cancer 2022, 126, 502–513. [Google Scholar] [CrossRef]
- Yang, L.X.; Li, H.; Cheng, Z.H.; Sun, H.Y.; Huang, J.P.; Li, Z.P.; Li, X.X.; Hu, Z.G.; Wang, J. The Application of Non-Coding RNAs as Biomarkers, Therapies, and Novel Vaccines in Diseases. Int. J. Mol. Sci. 2025, 26, 3055. [Google Scholar] [CrossRef]
- Lu, M.L.; Zhan, H.L.; Liu, B.L.; Li, D.Y.; Li, W.B.; Chen, X.L.; Zhou, X.F. N6-methyladenosine-related non-coding RNAs are potential prognostic and immunotherapeutic responsiveness biomarkers for bladder cancer. Epma J. 2021, 12, 589–604. [Google Scholar] [CrossRef]
- John, A.; Almulla, N.; Elboughdiri, N.; Gacem, A.; Yadav, K.K.; Abass, A.M.; Alam, M.W.; Wani, A.; Bashir, S.M.; Rab, S.O.; et al. Non-coding RNAs in Cancer: Mechanistic insights and therapeutic implications. Pathol. Res. Pract. 2025, 266, 155745. [Google Scholar] [CrossRef]
- Yuan, F.; Hu, Y.; Lei, Y.M.; Jin, L.N. Recent progress in microRNA research for prostate cancer. Discov. Oncol. 2024, 15, 480. [Google Scholar] [CrossRef]
- Wang, Z.H.; Wang, H.X.; Zhou, S.H.; Mao, J.S.; Zhan, Z.Q.; Duan, S.W. miRNA interplay: Mechanisms and therapeutic interventions in cancer. Medcomm-Oncol. 2024, 3, e93. [Google Scholar] [CrossRef]
- Luo, X.; Wen, W. MicroRNA in prostate cancer: From biogenesis to applicative potential. Bmc Urol. 2024, 24, 244. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Rajak, N.; Singh, Y.; Singh, A.K.; Giri, R.; Garg, N. Role of MicroRNA-21 in Prostate Cancer Progression and Metastasis: Molecular Mechanisms to Therapeutic Targets. Ann. Surg. Oncol. 2024, 31, 4795–4808. [Google Scholar] [CrossRef] [PubMed]
- Giordo, R.; Ahmadi, F.A.M.; Al Husaini, N.; Ahmad, S.M.S.; Pintus, G.; Zayed, H. microRNA 21 and long non-coding RNAs interplays underlie cancer pathophysiology: A narrative review. Non-Coding Rna Res. 2024, 9, 831–852. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Zhan, L.J.; Jiang, X.; Tang, X.Z. Comprehensive review for non-coding RNAs: From mechanisms to therapeutic applications. Biochem. Pharmacol. 2024, 224, 116218. [Google Scholar] [CrossRef] [PubMed]
- Avasthi, K.K.; Choi, J.W.; Glushko, T.; Manley, B.J.; Yu, A.; Park, J.Y.; Brown, J.S.; Pow-Sang, J.; Gantenby, R.; Wang, L.; et al. Extracellular Microvesicle MicroRNAs and Imaging Metrics Improve the Detection of Aggressive Prostate Cancer: A Pilot Study. Cancers 2025, 17, 835. [Google Scholar] [CrossRef]
- Panebianco, V.; Paci, P.; Pecoraro, M.; Conte, F.; Carnicelli, G.; Besharat, Z.; Catanzaro, G.; Splendiani, E.; Sciarra, A.; Farina, L.; et al. Network Analysis Integrating microRNA Expression Profiling with MRI Biomarkers and Clinical Data for Prostate Cancer Early Detection: A Proof of Concept Study. Biomedicines 2021, 9, 1470. [Google Scholar] [CrossRef]
- Sellers, J.; de Riese, W.T.W. Evolving Hypothesis that Prostate/BPH Size Matters in Protection against Prostate Cancer. Explor. Res. Hypothesis Med. 2022, 7, 179–183. [Google Scholar] [CrossRef]
- Sellers, J.; Horne, S.N.S.; de Riese, W.T.W. The Origin of BPH and Prostate Cancer in Different Prostate Zones and the Impact on the Incidence of Prostate Cancer: A Systematic Review and Update of the Literature for Urologists and Clinicians. Explor. Res. Hypothesis Med. 2023, 9, 44–51. [Google Scholar] [CrossRef]
- Volz, Y.; Apfelbeck, M.; Pyrgidis, N.; Pfitzinger, P.L.; Berg, E.; Ebner, B.; Enzinger, B.; Ivanova, T.; Atzler, M.; Kazmierczak, P.M.; et al. The Impact of Prostate Volume on the Prostate Imaging and Reporting Data System (PI-RADS) in a Real-World Setting. Diagnostics 2023, 13, 2677. [Google Scholar] [CrossRef]
- Smani, S.; Sundaresan, V.; Lokeshwar, S.D.; Choksi, A.U.; Carbonella, J.; Brito, J.; Renzulli, J.; Sprenkle, P.; Leapman, M.S. Risk factors for Gleason score upgrade from prostate biopsy to radical prostatectomy. Explor. Target. Anti-Tumor Ther. 2024, 5, 981–996. [Google Scholar] [CrossRef]
- Park, D.H.; Yu, J.H. Prostate-specific antigen density as the best predictor of low- to intermediate-risk prostate cancer: A cohort study. Transl. Cancer Res. 2023, 12, 502–514. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; Xiao, L.; Zhou, M.; Fang, Z.; Cai, Y.; Tang, Y.; Hu, S. 68Ga-PSMA PET/CT-based multivariate model for highly accurate and noninvasive diagnosis of clinically significant prostate cancer in the PSA gray zone. Cancer Imaging 2023, 23, 81. [Google Scholar] [CrossRef]
- Lu, F.; Zhao, Y.; Wang, Z.; Feng, N. Biparametric MRI-based radiomics for prediction of clinically significant prostate cancer of PI-RADS category 3 lesions. BMC Cancer 2025, 25, 615. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, L.; Cangemi, D.; Farolfi, A.; Sgro, C.M.P.; Giorgio, A.D.; Castellucci, P.; Gaudiano, C.; Corcioni, B.; Giunchi, F.; Degiovanni, A.; et al. PSMA-Targeted Biopsy with Fusion Guidance for Detecting Clinically Significant Prostate Cancer in Men with Negative MRI-Feasibility and Diagnostic Performance of a Pilot Single-Center Prospective Study. Clin. Genitourin. Cancer 2025, 23, 102348. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Qian, C.; Wang, C.; Lin, Y.; Huang, Y.; Hou, J.; Wei, X. Multiparametric MRI lesion dimension as a significant predictor of positive surgical margins following laparoscopic radical prostatectomy for transitional zone prostate cancer. World J. Urol. 2025, 43, 295. [Google Scholar] [CrossRef]
- Soeterik, T.F.W.; Wu, X.; Van den Bergh, R.C.N.; Kesch, C.; Zattoni, F.; Falagario, U.; Martini, A.; Miszczyk, M.; Fasulo, V.; Maggi, M.; et al. Personalised Prostate Cancer Diagnosis: Evaluating Biomarker-based Approaches to Reduce Unnecessary Magnetic Resonance Imaging and Biopsy Procedures. Eur. Urol. Open Sci. 2025, 75, 106–119. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Yang, J.; Xiao, L.; Zhou, M.; Cai, Y.; Rominger, A.; Shi, K.; Seifert, R.; Gao, X.; et al. Using a novel PSMA-PET and PSA-based model to enhance the diagnostic accuracy for clinically significant prostate cancer and avoid unnecessary biopsy in men with PI-RADS </= 3 MRI. Eur. J. Nucl. Med. Mol. Imaging 2025, 52, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hatano, K.; Nonomura, N. Liquid Biomarkers in Prostate Cancer Diagnosis: Current Status and Emerging Prospects. World J. Men’s Health 2025, 43, 8–27. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, J.; Tu, X.; Chen, B.; Jiang, J.; Ye, J.; Zheng, L.; He, C.; Tang, B.; Bao, Y.; et al. Optimizing the strategies to perform prostate biopsy in MRI-positive patients: A systematic review and network meta-analysis. EClinicalMedicine 2025, 82, 103164. [Google Scholar] [CrossRef]
- Launer, B.M.; Ellis, T.A.; Scarpato, K.R. A contemporary review: mpMRI in prostate cancer screening and diagnosis. Urol. Oncol. 2025, 43, 15–22. [Google Scholar] [CrossRef]
- Maffei, D.; Moore, C.M. Personalized risk-adapted models in prostate cancer during active surveillance using MRI—A narrative review. Eur. Radiol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Mikulas, C.J.; Ali, K.; Onteddu, N. Prostate cancer screening: Is it time for a new approach? A review article. J. Investig. Med. 2025, 73, 27–34. [Google Scholar] [CrossRef]
- Prive, B.M.; Govers, T.M.; Israel, B.; Janssen, M.J.R.; Timmermans, B.J.R.; Peters, S.M.B.; de Groot, M.; Zamecnik, P.; Wijn, S.R.W.; Hoepping, A.; et al. A cost-effectiveness study of PSMA-PET/CT for the detection of clinically significant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2025. [Google Scholar] [CrossRef]
- Chelebian, E.; Avenel, C.; Jaremo, H.; Andersson, P.; Wahlby, C.; Bergh, A. A clinical prostate biopsy dataset with undetected cancer. Sci. Data 2025, 12, 423. [Google Scholar] [CrossRef] [PubMed]
- Dave, P.; Carlsson, S.V.; Watts, K. Randomized trials of PSA screening. Urol. Oncol. 2025, 43, 23–28. [Google Scholar] [CrossRef]
- Obiora, D.; Orikogbo, O.; Davies, B.J.; Jacobs, B.L. Controversies in prostate cancer screening. Urol. Oncol. 2025, 43, 49–53. [Google Scholar] [CrossRef]
- Raychaudhuri, R.; Lin, D.W.; Montgomery, R.B. Prostate Cancer: A Review. JAMA 2025, 333, 1433–1446. [Google Scholar] [CrossRef]
- Barocas, D.A.; Alvarez, J.; Resnick, M.J.; Koyama, T.; Hoffman, K.E.; Tyson, M.D.; Conwill, R.; McCollum, D.; Cooperberg, M.R.; Goodman, M.; et al. Association Between Radiation Therapy, Surgery, or Observation for Localized Prostate Cancer and Patient-Reported Outcomes After 3 Years. JAMA 2017, 317, 1126–1140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Qian, B.; Shi, J.; Xiao, Y. Radical prostatectomy versus brachytherapy for clinically localized prostate cancer on oncological and functional outcomes: A meta-analysis. Transl. Androl. Urol. 2020, 9, 332–343. [Google Scholar] [CrossRef]
- Han, J.H.; Herlemann, A.; Washington, S.L.; Lonergan, P.E.; Carroll, P.R.; Cooperberg, M.R.; Jeong, C.W. Observation, Radiotherapy, or Radical Prostatectomy for Localized Prostate Cancer: Survival Analysis in the United States. World J. Men’s Health 2023, 41, 940–950. [Google Scholar] [CrossRef]
- Eastham, J.A.; Auffenberg, G.B.; Barocas, D.A.; Chou, R.; Crispino, T.; Davis, J.W.; Eggener, S.; Horwitz, E.M.; Kane, C.J.; Kirkby, E.; et al. Clinically Localized Prostate Cancer: AUA/ASTRO Guideline, Part I: Introduction, Risk Assessment, Staging, and Risk-Based Management. J. Urol. 2022, 208, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Maljkovic, J.; Bill-Axelson, A.; Hållberg, H.; Berglund, A.; Stattin, P.; Bratt, O. Time trends for the use of active surveillance and deferred treatment for localised prostate cancer in Sweden: A nationwide study. Scand. J. Urol. 2024, 59, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Bock, C.H.; Janisse, J.; Woo, J.; Cher, M.L.; Ginsburg, K.; Yacoub, R.; Goodman, M. Determinants of active surveillance uptake in a diverse population-based cohort of men with low-risk prostate cancer: The Treatment Options in Prostate Cancer Study (TOPCS). Cancer 2024, 130, 1797–1806. [Google Scholar] [CrossRef]
- Halaseh, S.A.; Al-Karadsheh, A.; Mukherji, D.; Alhjahaja, A.; Farkouh, A.a.; Al-Ibraheem, A.; Abu Gheida, I.; Al-Khateeb, S.; Al-Shamsi, H.; Shahait, M. Prostate cancer clinical trials in low- and middle-income countries. ecancermedicalscience 2023, 17, 1629. [Google Scholar] [CrossRef]
- Bosland, M.C. Prostate cancer in low- and middle-income countries—Challenges and opportunities. Prostate Cancer Prostatic Dis. 2024. [Google Scholar] [CrossRef] [PubMed]
- Abila, D.B.; Wasukira, S.B.; Ainembabazi, P.; Kisuza, R.K.; Nakiyingi, E.K.; Mustafa, A.; Kangoma, G.; Adebisi, Y.A.; Lucero-Prisno, D.E.; Wabinga, H.; et al. Socioeconomic inequalities in prostate cancer screening in low- and middle-income countries: An analysis of the demographic and health surveys between 2010 and 2019. J. Cancer Policy 2022, 34, 100360. [Google Scholar] [CrossRef]
- Galloway, L.A.S.; Cortese, B.D.; Talwar, R. Urologic Cancer Drug Costs in Low and Middle-Income Countries. Urol. Oncol. Semin. Orig. Investig. 2025, 43, 8–9. [Google Scholar] [CrossRef]
- Cirne, F.; Kappel, C.; Zhou, S.; Mukherjee, S.D.; Dehghan, M.; Petropoulos, J.-A.; Leong, D.P. Modifiable risk factors for prostate cancer in low- and lower-middle-income countries: A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2022, 25, 453–462. [Google Scholar] [CrossRef]
Aspect | Description | Potential Risks of Inaction | Patient Outcomes and Long-Term Effects | Ethical Considerations | Global Perspectives | Ref. |
---|---|---|---|---|---|---|
Definition of Overdiagnosis | Detection of PCa through screening that would not have caused symptoms or death during a patient’s lifetime. | Continued unnecessary diagnoses leading to overburdened healthcare systems. | Increased anxiety and potential for overtreatment. | Ethical dilemma of informing patients about non-threatening cancers. | Some countries have restricted PSA testing to high-risk individuals. | [9] |
Causes of Overdiagnosis | Widespread use of PSA testing, increased imaging, detection of slow-growing cancers. | Rising false positives and unnecessary treatments. | Psychological burden and unnecessary treatments. | Challenge of balancing early detection with avoiding overtreatment. | Countries like Sweden emphasize risk-adapted screening. | [10] |
Impact of Overdiagnosis | Psychological distress, unnecessary medical consultations, strain on healthcare resources. | Wasted resources, leading to fewer available funds for life-threatening conditions. | Potential decline in trust in medical recommendations. | Ethical responsibility of physicians to ensure patients are not harmed by overdiagnosis. | Countries adopting stricter screening criteria. | [11] |
Definition of Overtreatment | Treatment of prostate cancer that would not have progressed or caused harm if left untreated. | Increased rates of avoidable complications and reduced quality of life. | Unnecessary exposure to treatment risks and lifelong side effects. | Ethical concerns regarding patient autonomy in treatment decisions. | Some nations promote active surveillance as a first-line strategy. | [12] |
Causes of Overtreatment | Inability to distinguish aggressive from indolent cancers, patient and physician preference for active treatment. | Overuse of aggressive treatments leading to resource depletion. | Complications such as incontinence and erectile dysfunction. | Patient pressure to “do something” despite low risk. | The UK and Canada emphasize shared decision-making in treatment. | [13] |
Impact of Overtreatment | Treatment-related side effects, reduced quality of life, financial burden. | Healthcare systems burdened with avoidable interventions. | Increased economic and emotional stress on patients. | Ethical tension between providing treatment vs. potential harm. | European guidelines encourage more conservative approaches. | [12] |
Strategies to Mitigate Overdiagnosis | Risk-based screening, use of biomarkers and imaging, patient education. | Continued unnecessary treatment and financial strain. | Lower burden of unnecessary diagnoses when applied correctly. | Ensuring informed patient choices without undue influence. | Countries adopting multi-parametric MRI for risk assessment. | [12] |
Strategies to Mitigate Overtreatment | Active surveillance, personalized treatment plans, shared decision-making. | Unchecked increase in unnecessary treatments. | Reduction in treatment-related morbidity when applied correctly. | Respecting patients’ preferences while ensuring medical necessity. | Adoption of less invasive treatments globally. | [14] |
Role of Active Surveillance | Monitoring low-risk cancer progression through periodic testing. | Delayed detection of aggressive cases if not properly managed. | Reduced need for immediate intervention, preserving quality of life. | Ethical challenge of balancing risks of waiting vs. acting too soon. | Widely adopted in European healthcare systems. | [15] |
Importance of Genetic Testing | Identifying mutations (e.g., BRCA1, BRCA2) to assess risk. | Failure to incorporate genetic risk can lead to mismanagement of cases. | More accurate treatment decisions and improved patient outcomes. | Ethical concerns regarding genetic discrimination. | Countries developing genetic databases for better risk profiling. | [16] |
Research and Policy Recommendations | Promoting biomarker research, revising screening guidelines. | Lack of innovation in screening may lead to continued overdiagnosis. | Evidence-based policies can enhance patient care. | Ensuring policies align with patient safety and informed choice. | Nations integrating genetic research into clinical practice. | [17] |
Patient Education and Awareness | Providing clear information on screening risks and benefits. | Patients making uninformed decisions leading to unnecessary treatment. | Better patient engagement and reduced anxiety over low-risk cancers. | Ethical responsibility to provide unbiased and transparent information. | National campaigns promoting informed decision-making. | [18] |
Technological Advancements | AI-driven imaging, molecular diagnostics, liquid biopsy research. | Stagnation in diagnostic progress leading to persistent challenges. | Improved accuracy in early detection and risk stratification. | Ethical issues surrounding AI in medical decision-making. | Countries adopting AI-based tools in radiology. | [19] |
Study | Population (n) | Avoided Biopsies | csPCa Detection | Reduction of Insignificant Cancer |
---|---|---|---|---|
PRECISION | 500 | 28% avoided biopsy | 38% (MRI-targeted) vs. 26% (TRUS) | 9% (MRI) vs. 22% (TRUS) |
PROMIS | 576 | Up to 27% biopsies avoided | Sensitivity 93% (MRI) vs. 48% (TRUS) | High NPV (89%) reduced unnecessary biopsy |
MRI-FIRST | 251 | Confirmed MRI triage value | More csPCa detected with MRI-targeted biopsy | Fewer low-grade cancers diagnosed |
Category | Challenges | Proposed Solutions | Ref. |
---|---|---|---|
Consequences of Overdiagnosis and Overtreatment | Unnecessary physical and psychological distress from invasive treatments | Enhance screening specificity with PSA testing combined with risk stratification tools | [17] |
Increased healthcare costs for testing, diagnosis, and treatment | Implement active surveillance and watchful waiting for low-risk cases | [43] | |
Resource diversion from more critical healthcare needs | Promote shared decision-making to reduce unnecessary interventions | [44] | |
Erosion of public confidence in cancer screening programs | Education and public campaigns to improve an awareness about PCa screening | [45] | |
Challenges in Identifying Aggressive PCa | Difficulty differentiating between indolent and aggressive tumors | Develop next-generation biomarkers for accurate risk stratification | [17] |
PSA levels and Gleason scores have limited accuracy in predicting disease progression | Introduce molecular and genetic profiling for better classification of aggressive cases | [2] | |
Lack of precise biomarkers for assessing metastatic risk and recurrence | Research on new biomarkers for assessing metastatic risk and PCs recurrence | [17] | |
Limitations of Imaging Techniques | Conventional imaging methods (TRUS, MRI, PET) have low sensitivity and specificity for detecting small or early-stage tumors | Improve imaging technologies with AI-assisted interpretation | [46] |
Interpretation of imaging results requires specialized expertise in prostate anatomy and pathology | Standardize diagnostic protocols to enhance accuracy and reduce variability among radiologists | [47] | |
Complexity of PCa Diagnosis | PSA-based screening has limitations in specificity | Adopt an interdisciplinary approach integrating technological advancements, biomarker research, and personalized medicine | [48] |
High risk of inaccurate biopsy results | [44] | ||
Lack of definitive diagnostic tools for aggressive disease | [49] |
Clinical Relevance | Challenges | Solutions | Ref. |
---|---|---|---|
Improved risk stratification: ncRNAs (miRNAs, lncRNAs) help distinguish aggressive from indolent PCa, reducing overtreatment. | Lack of assay standardization and reproducibility across labs and platforms. | Develop and implement international guidelines for ncRNA assay protocols and quality control. | [108,109] |
Non-invasive diagnostics: Detection of ncRNAs in blood/urine (e.g., PCA3, miR-141) allows for less invasive testing and fewer unnecessary biopsies. | Limited validation in large, multi-ethnic, and prospective cohorts. | Need in the multi-centre, prospective studies including diverse populations to validate biomarker performance. | [110,111] |
Prognostic value: Specific ncRNAs (e.g., miR-21, SChLAP1) correlate with tumor aggressiveness, recurrence risk, and therapy resistance. | Insufficient integration with existing clinical risk models and lack of consensus on cut-off values. | Integrate ncRNA panels into multiparametric risk models and establish clinically relevant thresholds. | [112,113] |
Therapeutic guidance: ncRNA profiles can inform personalized treatment decisions and predict response to therapy. | High cost and limited accessibility of advanced molecular testing in routine practice. | Invest in technology transfer, cost reduction strategies, and reimbursement frameworks for ncRNA assays. | [112,114] |
Complementary to imaging: ncRNAs can enhance the specificity of mpMRI and PSA-based screening, improving patient selection. | Regulatory and guideline adoption lag behind emerging evidence. | Generate robust outcome data and advocate for inclusion in clinical guidelines (e.g., NCCN, EAU, AUA). | [115,116] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dushimova, Z.; Iztleuov, Y.; Chingayeva, G.; Shepetov, A.; Mustapayeva, N.; Shatkovskaya, O.; Pashimov, M.; Saliev, T. Overdiagnosis and Overtreatment in Prostate Cancer. Diseases 2025, 13, 167. https://doi.org/10.3390/diseases13060167
Dushimova Z, Iztleuov Y, Chingayeva G, Shepetov A, Mustapayeva N, Shatkovskaya O, Pashimov M, Saliev T. Overdiagnosis and Overtreatment in Prostate Cancer. Diseases. 2025; 13(6):167. https://doi.org/10.3390/diseases13060167
Chicago/Turabian StyleDushimova, Zaure, Yerbolat Iztleuov, Gulnar Chingayeva, Abay Shepetov, Nagima Mustapayeva, Oxana Shatkovskaya, Marat Pashimov, and Timur Saliev. 2025. "Overdiagnosis and Overtreatment in Prostate Cancer" Diseases 13, no. 6: 167. https://doi.org/10.3390/diseases13060167
APA StyleDushimova, Z., Iztleuov, Y., Chingayeva, G., Shepetov, A., Mustapayeva, N., Shatkovskaya, O., Pashimov, M., & Saliev, T. (2025). Overdiagnosis and Overtreatment in Prostate Cancer. Diseases, 13(6), 167. https://doi.org/10.3390/diseases13060167