Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = multiblock copolymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5925 KB  
Article
Linear Radical Additions-Coupling Polymerization (LRAsCP): Model, Experiment and Application
by Yudian Jiang, Kun Cao and Qi Wang
Polymers 2025, 17(6), 741; https://doi.org/10.3390/polym17060741 - 12 Mar 2025
Cited by 1 | Viewed by 1028
Abstract
Exploring new polymerization strategies for currently available monomers is a challenge in polymer science. Herein, a bifunctional initiator (BFI) is introduced for the conventional radical polymerization of a vinyl monomer, resulting in linear radical additions-coupling polymerization (LRAsCP). In LRAsCP, the coupling reaction alongside [...] Read more.
Exploring new polymerization strategies for currently available monomers is a challenge in polymer science. Herein, a bifunctional initiator (BFI) is introduced for the conventional radical polymerization of a vinyl monomer, resulting in linear radical additions-coupling polymerization (LRAsCP). In LRAsCP, the coupling reaction alongside the addition reaction of the radicals contributes to the construction of polymer chains, which leads to stepwise growth of the multiblock structure. Theoretical analysis of LRAsCP predicted variation of some structural parameters of the resulting multiblock polymer (MBP) with the extent of initiation of the BFI and the termination factor of the radicals. Simultaneous and cascade initiations of the BFI were compared. LRAsCP of styrene was conducted, and a kinetics study was carried out. The increment in Mn with polymerization time demonstrated the stepwise mechanism of the formation of the MBP. The variation of the structural parameters of MBP fitted well with the theoretical prediction. Two-step LRAsCP was conducted and multiblock copolymers (MBcP) were obtained either by in situ copolymerization of styrene and MMA or by a second copolymerization of styrene and BMA. The current results demonstrate that the introduction of a BFI to conventional radical polymerization generates a new polymerization strategy, leading to a new chain architecture, which can be extended to other radical polymerizable monomers. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

17 pages, 4188 KB  
Article
Novel Biobased Double Crystalline Poly(butylene succinate)-b-poly(butylene 2,5-thiophenedicarboxylate) Multiblock Copolymers with Excellent Thermal and Mechanical Properties and Enhanced Crystallization Behavior
by Haidong Yang, Shiwei Feng and Zhaobin Qiu
Polymers 2025, 17(4), 450; https://doi.org/10.3390/polym17040450 - 8 Feb 2025
Cited by 1 | Viewed by 986
Abstract
Novel biobased double crystalline poly(butylene succinate)-b-poly(butylene 2,5-thiophenedicarboxylate) (PBS-b-PBTh) multiblock copolyesters with excellent thermal and mechanical properties were prepared from two hydroxyl-terminated PBS-diol and PBTh-diol prepolymers via a chain extension reaction. Both PBS and PBTh segments were semicrystalline, with the [...] Read more.
Novel biobased double crystalline poly(butylene succinate)-b-poly(butylene 2,5-thiophenedicarboxylate) (PBS-b-PBTh) multiblock copolyesters with excellent thermal and mechanical properties were prepared from two hydroxyl-terminated PBS-diol and PBTh-diol prepolymers via a chain extension reaction. Both PBS and PBTh segments were semicrystalline, with the aliphatic PBS segment being the soft segment while the aromatic PBTh segment was the hard segment. In the case of PBS-b-PBTh, the two segments were partially miscible in the amorphous region; moreover, the melting temperature of each segment still remained very high compared with that of each homopolyester PBS and PBTh. The melt crystallization behavior of both segments was enhanced in the case of PBS-b-PBTh, which was attributed to different mechanisms. The crystal structure study revealed that both segments crystallized separately and showed the characteristic diffraction peaks, respectively. Compared with that of PBS, PBS-b-PBTh displayed a significant increase in the elongation at break while still maintaining a relatively high break strength. This research provides some new insights to synthesize biobased polyesters with excellent thermal and mechanical properties, which should be interesting from a sustainable viewpoint. Full article
(This article belongs to the Special Issue Biobased Polymers and Their Structure-Property Relationships)
Show Figures

Figure 1

20 pages, 4834 KB  
Article
Thermal, Molecular Dynamics, and Mechanical Properties of Poly(Ethylene Furanoate)/Poly(ε-Caprolactone) Block Copolymers
by Johan Stanley, Panagiotis A. Klonos, Aikaterini Teknetzi, Nikolaos Rekounas, Apostolos Kyritsis, Lidija Fras Zemljič, Dimitra A. Lambropoulou and Dimitrios N. Bikiaris
Molecules 2024, 29(24), 5943; https://doi.org/10.3390/molecules29245943 - 16 Dec 2024
Cited by 1 | Viewed by 2716
Abstract
This study presents the synthesis and characterization of a series of multiblock copolymers, poly(ethylene 2,5-furandicarboxylate)-poly(ε-caprolactone) (PEF-PCL), created through a combination of the two-step melt polycondensation method and ring opening polymerization, as sustainable alternatives to fossil-based plastics. The structural confirmation of these block copolymers [...] Read more.
This study presents the synthesis and characterization of a series of multiblock copolymers, poly(ethylene 2,5-furandicarboxylate)-poly(ε-caprolactone) (PEF-PCL), created through a combination of the two-step melt polycondensation method and ring opening polymerization, as sustainable alternatives to fossil-based plastics. The structural confirmation of these block copolymers was achieved through Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), ensuring the successful integration of PEF and PCL segments. X-ray Photoelectron Spectroscopy (XPS) was employed for chemical bonding and quantitative analysis, providing insights into the distribution and compatibility of the copolymer components. Differential Scanning Calorimetry (DSC) analysis revealed a single glass transition temperature (Tg), indicating the effective plasticizing effect of PCL on PEF, which enhances the flexibility of the copolymers. X-ray Diffraction (XRD) studies highlight the complex relationship between PCL content and crystallization in PEF-PCL block copolymers, emphasizing the need to balance crystallinity and mechanical properties for optimal material performance. Broadband Dielectric Spectroscopy (BDS) confirmed excellent distribution of PEF-PCL without phase separation, which is vital for maintaining consistent material properties. Mechanical properties were evaluated using Nanoindentation testing, demonstrating the potential of these copolymers as flexible packaging materials due to their enhanced mechanical strength and flexibility. The study concludes that PEF-PCL block copolymers are promising candidates for sustainable packaging solutions, combining environmental benefits with desirable material properties. Full article
(This article belongs to the Special Issue Macromolecular Chemistry in Europe)
Show Figures

Graphical abstract

55 pages, 49774 KB  
Review
Structural Rheology in the Development and Study of Complex Polymer Materials
by Sergey O. Ilyin
Polymers 2024, 16(17), 2458; https://doi.org/10.3390/polym16172458 - 29 Aug 2024
Cited by 38 | Viewed by 5552
Abstract
The progress in polymer science and nanotechnology yields new colloidal and macromolecular objects and their combinations, which can be defined as complex polymer materials. The complexity may include a complicated composition and architecture of macromolecular chains, specific intermolecular interactions, an unusual phase behavior, [...] Read more.
The progress in polymer science and nanotechnology yields new colloidal and macromolecular objects and their combinations, which can be defined as complex polymer materials. The complexity may include a complicated composition and architecture of macromolecular chains, specific intermolecular interactions, an unusual phase behavior, and a structure of a multi-component polymer-containing material. Determination of a relation between the structure of a complex material, the structure and properties of its constituent elements, and the rheological properties of the material as a whole is the subject of structural rheology—a valuable tool for the development and study of novel materials. This work summarizes the author’s structural–rheological studies of complex polymer materials for determining the conditions and rheo-manifestations of their micro- and nanostructuring. The complicated chemical composition of macromolecular chains and its role in polymer structuring via block segregation and cooperative hydrogen bonds in melt and solutions is considered using tri- and multiblock styrene/isoprene and vinyl acetate/vinyl alcohol copolymers. Specific molecular interactions are analyzed in solutions of cellulose; its acetate butyrate; a gelatin/carrageenan combination; and different acrylonitrile, oxadiazole, and benzimidazole copolymers. A homogeneous structuring may result from a conformational transition, a mesophase formation, or a macromolecular association caused by a complex chain composition or specific inter- and supramolecular interactions, which, however, may be masked by macromolecular entanglements when determining a rheological behavior. A heterogeneous structure formation implies a microscopic phase separation upon non-solvent addition, temperature change, or intense shear up to a macroscopic decomposition. Specific polymer/particle interactions have been examined using polyethylene oxide solutions, polyisobutylene melts, and cellulose gels containing solid particles of different nature, demonstrating the competition of macromolecular entanglements, interparticle interactions, and adsorption polymer/particle bonds in governing the rheological properties. Complex chain architecture has been considered using long-chain branched polybutylene-adipate-terephthalate and polyethylene melts, cross-linked sodium hyaluronate hydrogels, asphaltene solutions, and linear/highly-branched polydimethylsiloxane blends, showing that branching raises the viscosity and elasticity and can result in limited miscibility with linear isomonomer chains. Finally, some examples of composite adhesives, membranes, and greases as structured polymeric functional materials have been presented with the demonstration of the relation between their rheological and performance properties. Full article
(This article belongs to the Special Issue Rheology and Processing of Polymer Materials)
Show Figures

Figure 1

19 pages, 4858 KB  
Article
Polyhydroxyurethane and Poly(ethylene oxide) Multiblock Copolymer Networks: Crosslinking with Polysilsesquioxane, Reprocessing and Solid Polyelectrolyte Properties
by Lei Li, Bingjie Zhao, Guohua Hang, Yuan Gao, Jiawei Hu, Tao Zhang and Sixun Zheng
Polymers 2023, 15(24), 4634; https://doi.org/10.3390/polym15244634 - 7 Dec 2023
Cited by 3 | Viewed by 2821
Abstract
This contribution reports the synthesis of polyhydroxyurethane (PHU)-poly(ethylene oxide) (PEO) multiblock copolymer networks crosslinked with polysilsesquioxane (PSSQ). First, the linear PHU-PEO multiblock copolymers were synthesized via the step-growth polymerization of bis(6-membered cyclic carbonate) (B6CC) with α,ω-diamino-terminated PEOs with variable molecular weights. Thereafter, the [...] Read more.
This contribution reports the synthesis of polyhydroxyurethane (PHU)-poly(ethylene oxide) (PEO) multiblock copolymer networks crosslinked with polysilsesquioxane (PSSQ). First, the linear PHU-PEO multiblock copolymers were synthesized via the step-growth polymerization of bis(6-membered cyclic carbonate) (B6CC) with α,ω-diamino-terminated PEOs with variable molecular weights. Thereafter, the PHU-PEO copolymers were allowed to react with 3-isocyanatopropyltriethoxysilane (IPTS) to afford the derivatives bearing triethoxysilane moieties, the hydrolysis and condensation of which afforded the PHU-PEO networks crosslinked with PSSQ. It was found that the PHU-PEO networks displayed excellent reprocessing properties in the presence of trifluoromethanesulfonate [Zn(OTf)2]. Compared to the PHU networks crosslinked via the reaction of difunctional cyclic carbonate with multifunctional amines, the organic–inorganic PHU networks displayed the decreased reprocessing temperature. The metathesis of silyl ether bonds is responsible for the improved reprocessing behavior. By adding lithium trifluoromethanesulfonate (LiOTf), the PHU-PEO networks were further transformed into the solid polymer electrolytes. It was found that the crystallization of PEO chains in the crosslinked networks was significantly suppressed. The solid polymer electrolytes had the ionic conductivity as high as 7.64 × 10−5 S × cm−1 at 300 K. More importantly, the solid polymer electrolytes were recyclable; the reprocessing did not affect the ionic conductivity. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Graphical abstract

15 pages, 2358 KB  
Article
Synthesis and Characterisation of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-b-poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Multi-Block Copolymers Produced Using Diisocyanate Chemistry
by Jingjing Mai, Steven Pratt, Bronwyn Laycock and Clement Matthew Chan
Polymers 2023, 15(15), 3257; https://doi.org/10.3390/polym15153257 - 31 Jul 2023
Cited by 11 | Viewed by 2920
Abstract
Bacterially derived polyhydroxyalkanoates (PHAs) are attractive alternatives to commodity petroleum-derived plastics. The most common forms of the short chain length (scl-) PHAs, including poly(3-hydroxybutyrate) (P3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), are currently limited in application because they are relatively stiff and brittle. The [...] Read more.
Bacterially derived polyhydroxyalkanoates (PHAs) are attractive alternatives to commodity petroleum-derived plastics. The most common forms of the short chain length (scl-) PHAs, including poly(3-hydroxybutyrate) (P3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), are currently limited in application because they are relatively stiff and brittle. The synthesis of PHA-b-PHA block copolymers could enhance the physical properties of PHAs. Therefore, this work explores the synthesis of PHBV-b-PHBV using relatively high molecular weight hydroxy-functionalised PHBV starting materials, coupled using facile diisocyanate chemistry, delivering industrially relevant high-molecular-weight block copolymeric products. A two-step synthesis approach was compared with a one-step approach, both of which resulted in successful block copolymer production. However, the two-step synthesis was shown to be less effective in building molecular weight. Both synthetic approaches were affected by additional isocyanate reactions resulting in the formation of by-products such as allophanate and likely biuret groups, which delivered partial cross-linking and higher molecular weights in the resulting multi-block products, identified for the first time as likely and significant by-products in such reactions, affecting the product performance. Full article
Show Figures

Figure 1

12 pages, 1114 KB  
Article
Effective Interaction between Homo- and Heteropolymer Block of Poly(n-butyl acrylate)-b-poly(methyl methacrylate-r-styrene) Diblock Copolymers
by Sang-In Lee, Min-Guk Seo, June Huh and Hyun-jong Paik
Polymers 2023, 15(13), 2915; https://doi.org/10.3390/polym15132915 - 30 Jun 2023
Viewed by 2897
Abstract
We investigated the segregation behavior of a molten diblock copolymer, poly(n-butyl acrylate)-b-poly(methyl methacrylate-r-styrene) (PBA-b-P(MMA-r-S)), wherein styrene (S) is incorporated as a comonomer in the second block to modulate the effective interaction between homopolymer [...] Read more.
We investigated the segregation behavior of a molten diblock copolymer, poly(n-butyl acrylate)-b-poly(methyl methacrylate-r-styrene) (PBA-b-P(MMA-r-S)), wherein styrene (S) is incorporated as a comonomer in the second block to modulate the effective interaction between homopolymer and a random copolymer block. The temperature dependence of the effective interaction parameter χeff between n-butyl acrylate (BA) and the average monomer of the MMA-r-S random block was evaluated from small-angle X-ray scattering (SAXS) analysis using the random phase approximation (RPA) approach. The calculated χeff, as a function of the styrene fraction in the random copolymer block, shows a good agreement with the mean-field binary interaction model. This consistency indicates that the effective interaction between component BA and the average monomer of the random copolymer block is smaller than the interactions between pure components (χBA,MMA,χBA,S). The present study suggests that the introduction of a random copolymer block to a block copolymer can effectively reduce the degree of incompatibility of the block copolymer system without altering the constituent species, which may serve as a viable methodology in designing novel thermoplastic elastomers based on triblock or multiblock copolymers. Full article
(This article belongs to the Special Issue Characterization and Application of Block Copolymers)
Show Figures

Graphical abstract

18 pages, 2038 KB  
Article
Effect of Chain Structure on the Various Properties of the Copolymers of Fluorinated Norbornenes with Cyclooctene
by Olga A. Adzhieva, Maria L. Gringolts, Yulia I. Denisova, Georgiy A. Shandryuk, Ekaterina A. Litmanovich, Roman Yu. Nikiforov, Nikolay A. Belov and Yaroslav V. Kudryavtsev
Polymers 2023, 15(9), 2157; https://doi.org/10.3390/polym15092157 - 30 Apr 2023
Cited by 9 | Viewed by 3491
Abstract
Fluorinated polymers are attractive due to their special thermal, surface, gas separation, and other properties. In this study, new diblock, multiblock, and random copolymers of cyclooctene with two fluorinated norbornenes, 5-perfluorobutyl-2-norbornene and N-pentafluorophenyl-exo-endo-norbornene-5,6-dicarboximide, are synthesized by ring-opening metathesis copolymerization and macromolecular cross-metathesis in [...] Read more.
Fluorinated polymers are attractive due to their special thermal, surface, gas separation, and other properties. In this study, new diblock, multiblock, and random copolymers of cyclooctene with two fluorinated norbornenes, 5-perfluorobutyl-2-norbornene and N-pentafluorophenyl-exo-endo-norbornene-5,6-dicarboximide, are synthesized by ring-opening metathesis copolymerization and macromolecular cross-metathesis in the presence of the first- to third-generation Grubbs’ Ru-catalysts. Their thermal, surface, bulk, and solution characteristics are investigated and compared using differential scanning calorimetry, water contact angle measurements, gas permeation, and light scattering, respectively. It is demonstrated that they are correlated with the chain structure of the copolymers. The properties of multiblock copolymers are generally closer to those of diblock copolymers than of random ones, which can be explained by the presence of long blocks capable of self-organization. In particular, diblock and multiblock fluorine-imide-containing copolymers show a tendency to form micelles in chloroform solutions well below the overlap concentration. The results obtained may be of interest to a wide range of researchers involved in the design of functional copolymers. Full article
(This article belongs to the Special Issue Recent Developments in Ring-Opening Polymerization)
Show Figures

Graphical abstract

18 pages, 3314 KB  
Article
Nanocarbon-Based Mixed Matrix Pebax-1657 Flat Sheet Membranes for CO2/CH4 Separation
by Athanasios N. Vasileiou, George V. Theodorakopoulos, Dionysios S. Karousos, Mirtat Bouroushian, Andreas A. Sapalidis and Evangelos P. Favvas
Membranes 2023, 13(5), 470; https://doi.org/10.3390/membranes13050470 - 28 Apr 2023
Cited by 18 | Viewed by 4470
Abstract
In the present work, Pebax-1657, a commercial multiblock copolymer (poly(ether-block-amide)), consisting of 40% rigid amide (PA6) groups and 60% flexible ether (PEO) linkages, was selected as the base polymer for preparing dense flat sheet mixed matrix membranes (MMMs) using the solution casting method. [...] Read more.
In the present work, Pebax-1657, a commercial multiblock copolymer (poly(ether-block-amide)), consisting of 40% rigid amide (PA6) groups and 60% flexible ether (PEO) linkages, was selected as the base polymer for preparing dense flat sheet mixed matrix membranes (MMMs) using the solution casting method. Carbon nanofillers, specifically, raw and treated (plasma and oxidized) multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) were incorporated into the polymeric matrix in order to improve the gas-separation performance and polymer’s structural properties. The developed membranes were characterized by means of SEM and FTIR, and their mechanical properties were also evaluated. Well-established models were employed in order to compare the experimental data with theoretical calculations concerning the tensile properties of MMMs. Most remarkably, the tensile strength of the mixed matrix membrane with oxidized GNPs was enhanced by 55.3% compared to the pure polymeric membrane, and its tensile modulus increased 3.2 times compared to the neat one. In addition, the effect of nanofiller type, structure and amount to real binary CO2/CH4 (10/90 vol.%) mixture separation performance was evaluated under elevated pressure conditions. A maximum CO2/CH4 separation factor of 21.9 was reached with CO2 permeability of 384 Barrer. Overall, MMMs exhibited enhanced gas permeabilities (up to fivefold values) without sacrificing gas selectivity compared to the corresponding pure polymeric membrane. Full article
(This article belongs to the Special Issue Structure and Performance of Porous Polymer Membranes)
Show Figures

Figure 1

13 pages, 2641 KB  
Article
Reversible Thermo-Optical Response Nanocomposites Based on RAFT Symmetric Triblock Copolymers (ABA) of Acrylamide and N-Isopropylacrylamide and Gold Nanoparticles
by Nery M. Aguilar, Jose Manuel Perez-Aguilar, Valeria J. González-Coronel, Hugo Martínez-Gutiérrez, Teresa Zayas Pérez, Enrique González-Vergara, Brenda L. Sanchez-Gaytan and Guillermo Soriano-Moro
Polymers 2023, 15(8), 1963; https://doi.org/10.3390/polym15081963 - 21 Apr 2023
Cited by 1 | Viewed by 3109
Abstract
The development of composite materials with thermo-optical properties based on smart polymeric systems and nanostructures have been extensively studied. Due to the fact of its ability to self-assemble into a structure that generates a significant change in the refractive index, one of most [...] Read more.
The development of composite materials with thermo-optical properties based on smart polymeric systems and nanostructures have been extensively studied. Due to the fact of its ability to self-assemble into a structure that generates a significant change in the refractive index, one of most attractive thermo-responsive polymers is poly(N-isopropylacrylamide) (PNIPAM), as well as its derivatives such as multiblock copolymers. In this work, symmetric triblock copolymers of polyacrylamide (PAM) and PNIPAM (PAMx-b-PNIPAMy-b-PAMx) with different block lengths were prepared by reversible addition−fragmentation chain-transfer polymerization (RAFT). The ABA sequence of these triblock copolymers was obtained in only two steps using a symmetrical trithiocarbonate as a transfer agent. The copolymers were combined with gold nanoparticles (AuNPs) to prepare nanocomposite materials with tunable optical properties. The results show that copolymers behave differently in solution due to the fact of variations in their composition. Therefore, they have a different impact on the nanoparticle formation process. Likewise, as expected, an increase in the length of the PNIPAM block promotes a better thermo-optical response. Full article
(This article belongs to the Special Issue Block Copolymers: Self-Assembly and Applications)
Show Figures

Figure 1

15 pages, 3027 KB  
Article
Multi-Block Copolymer Membranes Consisting of Sulfonated Poly(p-phenylene) and Naphthalene Containing Poly(arylene Ether Ketone) for Proton Exchange Membrane Water Electrolysis
by Eui Jin Ko, Eunju Lee, Jang Yong Lee, Duk Man Yu, Sang Jun Yoon, Keun-Hwan Oh, Young Taik Hong and Soonyong So
Polymers 2023, 15(7), 1748; https://doi.org/10.3390/polym15071748 - 31 Mar 2023
Cited by 17 | Viewed by 4503
Abstract
Glassy hydrocarbon-based membranes are being researched as a replacement for perfluorosulfonic acid (PFSA) membranes in proton exchange membrane water electrolysis (PEMWE). Here, naphthalene containing Poly(arylene Ether Ketone) was introduced into the Poly(p-phenylene)-based multi-block copolymers through Ni(0)-catalyzed coupling reaction to enhance π-π [...] Read more.
Glassy hydrocarbon-based membranes are being researched as a replacement for perfluorosulfonic acid (PFSA) membranes in proton exchange membrane water electrolysis (PEMWE). Here, naphthalene containing Poly(arylene Ether Ketone) was introduced into the Poly(p-phenylene)-based multi-block copolymers through Ni(0)-catalyzed coupling reaction to enhance π-π interactions of the naphthalene units. It is discovered that there is an optimum input ratio of the hydrophilic monomer and NBP oligomer for the multi-block copolymers with high ion exchange capacity (IEC) and polymerization yield. With the optimum input ratio, the naphthalene containing copolymer exhibits good hydrogen gas barrier property, chemical stability, and mechanical toughness, even with its high IEC value over 2.4 meq g−1. The membrane shows 3.6 times higher proton selectivity to hydrogen gas than Nafion 212. The PEMWE single cells using the membrane performed better (5.5 A cm−2) than Nafion 212 (4.75 A cm−2) at 1.9 V and 80 °C. These findings suggest that naphthalene containing copolymer membranes are a promising replacement for PFSA membranes in PEMWE. Full article
(This article belongs to the Topic Membranes for Electrochemical Energy Conversion)
Show Figures

Graphical abstract

23 pages, 3616 KB  
Article
A Single Injection with Sustained-Release Microspheres and a Prime-Boost Injection of Bovine Serum Albumin Elicit the Same IgG Antibody Response in Mice
by Renée S. van der Kooij, Martin Beukema, Anke L. W. Huckriede, Johan Zuidema, Rob Steendam, Henderik W. Frijlink and Wouter L. J. Hinrichs
Pharmaceutics 2023, 15(2), 676; https://doi.org/10.3390/pharmaceutics15020676 - 16 Feb 2023
Cited by 3 | Viewed by 3658
Abstract
Although vaccination is still considered to be the cornerstone of public health care, the increase in vaccination coverage has stagnated for many diseases. Most of these vaccines require two or three doses to be administered across several months or years. Single-injection vaccine formulations [...] Read more.
Although vaccination is still considered to be the cornerstone of public health care, the increase in vaccination coverage has stagnated for many diseases. Most of these vaccines require two or three doses to be administered across several months or years. Single-injection vaccine formulations are an effective method to overcome the logistical barrier to immunization that is posed by these multiple-injection schedules. Here, we developed subcutaneously (s.c.) injectable microspheres with a sustained release of the model antigen bovine serum albumin (BSA). The microspheres were composed of blends of two novel biodegradable multi-block copolymers consisting of amorphous, hydrophilic poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) blocks and semi-crystalline poly(dioxanone) (PDO) blocks of different block sizes. In vitro studies demonstrated that the release of BSA could be tailored over a period of approximately four to nine weeks by changing the blend ratio of both polymers. Moreover, it was found that BSA remained structurally intact during release. Microspheres exhibiting sustained release of BSA for six weeks were selected for the in vivo study in mice. The induced BSA-specific IgG antibody titers increased up to four weeks after administration and were of the same magnitude as found in mice that received a priming and a booster dose of BSA in phosphate-buffered saline (PBS). Determination of the BSA concentration in plasma showed that in vivo release probably took place up to at least four weeks, although plasma concentrations peaked already one week after administration. The sustained-release microspheres might be a viable alternative to the conventional prime-boost immunization schedule, but a clinically relevant antigen should be incorporated to assess the full potential of these microspheres in practice. Full article
Show Figures

Figure 1

17 pages, 3574 KB  
Article
Using Metal-Organic Framework HKUST-1 for the Preparation of High-Conductive Hybrid Membranes Based on Multiblock Copolymers for Fuel Cells
by Ivan Gorban, Nieves Ureña, María Teresa Pérez-Prior, Alejandro Várez, Belén Levenfeld, Carmen del Río and Mikhail Soldatov
Polymers 2023, 15(2), 323; https://doi.org/10.3390/polym15020323 - 8 Jan 2023
Cited by 6 | Viewed by 4591
Abstract
Novel proton-conducting hybrid membranes consisting of sulfonated multiblock copolymer of polysulfone and polyphenylsulfone (SPES) reinforced with a HKUST-1 metal-organic framework (MOF) (5, 10, and 20 wt. %) were prepared and characterized for fuel cell applications. The presence of the MOF in the copolymer [...] Read more.
Novel proton-conducting hybrid membranes consisting of sulfonated multiblock copolymer of polysulfone and polyphenylsulfone (SPES) reinforced with a HKUST-1 metal-organic framework (MOF) (5, 10, and 20 wt. %) were prepared and characterized for fuel cell applications. The presence of the MOF in the copolymer was confirmed by means of FE-SEM and EDS. The hybrid membranes show a lower contact angle value than the pure SPES, in agreement with the water uptake (WU%), i.e., by adding 5 wt. % of the MOF, this parameter increases by 20% and 40% at 30 °C and 60 °C, respectively. Additionally, the presence of the MOF increases the ion exchange capacity (IEC) from 1.62 to 1.93 mequivH+ g−1. Thermogravimetric analysis reveals that the hybrid membranes demonstrate high thermal stability in the fuel cell operation temperature range (<100 °C). The addition of the MOF maintains the mechanical stability of the membranes (TS > 85 MPa in the Na+ form). Proton conductivity was analyzed using EIS, achieving the highest value with a 5 wt. % load of the HKUST-1. This value is lower than that observed for the HKUST-1/Nafion system. However, polarization and power density curves show a remarkably better performance of the hybrid membranes in comparison to both the pure SPES and the pure Nafion membranes. Full article
(This article belongs to the Special Issue Advances in Hybrid Polymers)
Show Figures

Figure 1

15 pages, 4698 KB  
Article
Functionalization of Polylactide with Multiple Tetraphenyethane Inifer Groups to Form PLA Block Copolymers with Vinyl Monomers
by Mateusz Grabowski, Bartłomiej Kost, Agnieszka Bodzioch and Melania Bednarek
Int. J. Mol. Sci. 2023, 24(1), 19; https://doi.org/10.3390/ijms24010019 - 20 Dec 2022
Cited by 5 | Viewed by 2332
Abstract
In the present contribution, a new strategy for preparing block copolymers of polylactide (PLA), a bio-derived polymer of increasing importance, is described. The method should lead to multiblock copolymers of lactide with vinyl monomers (VM), i.e., monomers that polymerize according to different mechanisms, [...] Read more.
In the present contribution, a new strategy for preparing block copolymers of polylactide (PLA), a bio-derived polymer of increasing importance, is described. The method should lead to multiblock copolymers of lactide with vinyl monomers (VM), i.e., monomers that polymerize according to different mechanisms, and is based on the introduction of multiple “inifer” (INItiator/transFER agent) groups into PLA’s structure. As an “inifer” group, tetraphenylethane (TPE, known to easily thermally dissociate to radicals) was incorporated into PLA chains using diisocyanate. PLA that contained TPE groups (PLA-PU) was characterized, and its ability to form initiating radicals was demonstrated by ESR measurements. PLA-PU was used as a “macroinifer” for the polymerization of acrylonitrile and styrene upon moderate heating (85 °C) of the PLA-PU in the presence of monomers. The formation of block copolymers PLA/PVM was confirmed by 1H NMR, DOSY NMR, and FTIR spectroscopies and the SEC method. The prepared copolymers showed only one glass transition in DSC curves with Tg values higher than those of PLA-PU. Full article
(This article belongs to the Special Issue Biopolymer Composites 2022)
Show Figures

Graphical abstract

12 pages, 1973 KB  
Article
Morphological Analysis of Poly(4,4′-oxydiphenylene-pyromellitimide)-Based Organic Solvent Nanofiltration Membranes Formed by the Solution Method
by Tatyana E. Sukhanova, Andrey L. Didenko, Ilya L. Borisov, Tatyana S. Anokhina, Aleksey G. Ivanov, Anna S. Nesterova, Ilya A. Kobykhno, Alexey A. Yushkin, Vladimir V. Kudryavtsev and Alexey V. Volkov
Membranes 2022, 12(12), 1235; https://doi.org/10.3390/membranes12121235 - 7 Dec 2022
Cited by 10 | Viewed by 2523
Abstract
Poly-(4,4′-oxydiphenylene) pyromellitimide or Kapton is the most widely available polyimide with high chemical and thermal stability. It has great prospects for use as a membrane material for filtering organic media due to its complete insolubility. However, the formation of membranes based on it, [...] Read more.
Poly-(4,4′-oxydiphenylene) pyromellitimide or Kapton is the most widely available polyimide with high chemical and thermal stability. It has great prospects for use as a membrane material for filtering organic media due to its complete insolubility. However, the formation of membranes based on it, at the moment, is an unsolved problem. The study corresponds to the rediscovery of poly(4,4′-oxydiphenylene–pyromellitimide)-based soluble copoly(urethane-imides) as membrane polymers of a new generation. It is shown that the physical structure of PUI films prepared by the solution method becomes porous after the removal of urethane blocks from the polymer, and the pore size varies depending on the conditions of thermolysis and subsequent hydrolysis of the membrane polymer. The film annealed at 170 °C with a low destruction degree of polycaprolactam blocks exhibits the properties of a nanofiltration membrane. It is stable in the aprotic solvent DMF and has a Remasol Brilliant Blue R retention coefficient of 95%. After the hydrolysis of thermally treated films in acidic media, ultrafiltration size 66–82 nm pores appear, which leads to an increase in the permeate flow by more than two orders of magnitude. This circumstance provides opportunities for controlling the membrane polymer structure for further optimization of the performance characteristics of filtration membranes based on it. Thus, we proposed a new preparation method of ultra- and nanofiltration membranes based on poly(4,4′-oxydiphenylene–pyromellitimide) that are stable in aprotic solvents. Full article
(This article belongs to the Special Issue Mixed-Matrix Membranes and Polymeric Membranes 2.0)
Show Figures

Figure 1

Back to TopTop