Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = multiaxial compressive strength

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5802 KiB  
Article
Enhancing the Mechanical Performance of Dual-Phase Steel Through Multi-Axis Compression and Inter-Critical Annealing
by Pooja Dwivedi, Aditya Kumar Padap, Sachin Maheshwari, Faseeulla Khan Mohammad, Mohammed E. Ali Mohsin, SK Safdar Hossain, Hussain Altammar and Arshad Noor Siddiquee
Materials 2025, 18(13), 3139; https://doi.org/10.3390/ma18133139 - 2 Jul 2025
Viewed by 410
Abstract
This study examines the microstructural evolution, mechanical properties, and wear behavior of medium-carbon dual-phase steel (AISI 1040) processed via Multi-Axis Compression (MAC). The DP steel was produced through inter-critical annealing at 745 °C, followed by MAC at 500 °C, resulting in a refined [...] Read more.
This study examines the microstructural evolution, mechanical properties, and wear behavior of medium-carbon dual-phase steel (AISI 1040) processed via Multi-Axis Compression (MAC). The DP steel was produced through inter-critical annealing at 745 °C, followed by MAC at 500 °C, resulting in a refined grain microstructure. Optical micrographs confirmed the presence of ferrite and martensite phases after annealing, with significant grain refinement observed following MAC. The average grain size decreased from 66 ± 4 μm to 18 ± 1 μm after nine MAC passes. Mechanical testing revealed substantial improvements in hardness (from 145 ± 9 HV to 298 ± 18 HV) and ultimate tensile strength (from 557 ± 33 MPa to 738 ± 44 MPa), attributed to strain hardening and the Hall–Petch effect. Fractographic analysis revealed a ductile failure mode in the annealed sample, while DP0 and DP9 exhibited a mixed fracture mode. Both DP0 and DP9 samples demonstrated superior wear resistance compared to the annealed sample. However, the DP9 sample exhibited slightly lower wear resistance than DP0, likely due to the fragmentation of martensite induced by high accumulated strain, which could act as crack initiation sites during sliding wear. Furthermore, wear resistance was significantly enhanced due to the combined effects of the DP structure and Severe Plastic Deformation (SPD). These findings highlight the potential of MAC processing for developing high-performance steels suitable for lightweight automotive applications. Full article
Show Figures

Figure 1

11 pages, 2016 KiB  
Article
A Dynamic Damage Constitutive Model of Rock-like Materials Based on Elastic Tensile Strain
by Xuan Zou, Yibo Xiong, Leiyuan Wang, You Zhou, Wanpeng Wang and Fangping Zhong
Appl. Sci. 2024, 14(16), 6852; https://doi.org/10.3390/app14166852 - 6 Aug 2024
Cited by 1 | Viewed by 1618
Abstract
To accurately characterize the damage of rock-like materials under simultaneous or alternating tensile and compressive loading, a dynamic damage constitutive model for rock-like materials based on elastic tensile strain is developed by integrating the classical compressive plastic damage model and the tensile elastic [...] Read more.
To accurately characterize the damage of rock-like materials under simultaneous or alternating tensile and compressive loading, a dynamic damage constitutive model for rock-like materials based on elastic tensile strain is developed by integrating the classical compressive plastic damage model and the tensile elastic damage model. The model is based on the Holmquist–Johnson–Cook (HJC) and Kuszmaul (KUS) models, categorizing the element stress state into tensile and compressive states through positive and negative elastic volumetric strain. It utilizes elastic tensile strain to enhance the calculation method for tensile cracks, determining the tensile strength of the principal direction based on the contribution rate of tensile principal stress for uniaxial/multiaxial loading. Additionally, it establishes a maximum elastic tensile strain rate function to rectify the model’s effect on the tensile strain rate. Through the LS-DYNA subroutine development, the model proficiently delineates the distribution of ring-shaped cracks on the frontal side and strip-shaped cracks on the rear side of the reinforced concrete slab subjected to impact loading. Numerical simulations demonstrate that the model provides more accurate damage prediction results for stress conditions involving simultaneous or alternating compression and tension, offering valuable insights for damage analysis in engineering blasting or impact penetration. Full article
Show Figures

Figure 1

15 pages, 7891 KiB  
Article
Influential Factors on Diffusion Bonding Strength as Demonstrated by Bonded Multi-Layered Stainless Steel 316L and 430 Stack
by Da-Wei Liu, Chun-Nan Lin, Wei-Shuai Lin, Shyong Lee and Jyh Gwo
Materials 2024, 17(15), 3713; https://doi.org/10.3390/ma17153713 - 27 Jul 2024
Viewed by 1442
Abstract
In this study, we optimized the parameters of diffusion bonding on multi-layered stainless steel 316L and 430 stacks. The preparation process for diffusion bonding is crucial, as the bonding surfaces need to be polished and meticulously cleaned to ensure a smooth bonding process. [...] Read more.
In this study, we optimized the parameters of diffusion bonding on multi-layered stainless steel 316L and 430 stacks. The preparation process for diffusion bonding is crucial, as the bonding surfaces need to be polished and meticulously cleaned to ensure a smooth bonding process. We fabricated twelve-layer plates consisting of 55 mm × 55 mm × 3 mm and 100 mm × 50 mm × 3 mm dimensions, and the bonding response was investigated by evaluating the tensile strength of the bonding zone under varying bonding conditions, with a bonding temperature ranging from 1000 to 1048 °C, a bond time ranging from 15 to 60 min, pressure ranging from 10 to 25.3 MPa, and under a vacuum environment. SS430 exhibits a significantly higher compression creep rate than SS316L. The compressibility of diffusion welding materials does not impact the diffusion bonding strength. Multi-axial tensile strength tests confirmed strong bonding joint strength in various axes. The tensile strengths of monolithic and Diffusion bonding (DB) specimens tested in parallel are essentially identical. The optimized diffusion bonding parameters (Condition G2C: 1048 °C/25.3 MPa/15 min) are ideal for producing SS316L stainless steel cores in compact heat exchangers, offering a superior bonding quality and reduced costs. These findings have practical implications for the production of stainless steel cores in compact heat exchangers, demonstrating the relevance and applicability of our research. Full article
(This article belongs to the Special Issue Recent Research on Superplastic Forming of Metals and Alloys)
Show Figures

Figure 1

17 pages, 14967 KiB  
Article
Classification of Multiaxial Behaviour of Fine-Grained Concrete for the Calibration of a Microplane Plasticity Model
by Peter Betz, Verena Curosu, Stefan Loehnert, Steffen Marx and Manfred Curbach
Buildings 2023, 13(11), 2704; https://doi.org/10.3390/buildings13112704 - 26 Oct 2023
Cited by 5 | Viewed by 1236
Abstract
Fine-grained high-strength concrete has already been tested extensively regarding its uniaxial strength. However, there is a lack of research on the multiaxial performance. In this contribution, some biaxial tests are investigated in order to compare the multiaxial load-bearing behaviour of fine-grained concretes with [...] Read more.
Fine-grained high-strength concrete has already been tested extensively regarding its uniaxial strength. However, there is a lack of research on the multiaxial performance. In this contribution, some biaxial tests are investigated in order to compare the multiaxial load-bearing behaviour of fine-grained concretes with that of high-strength concretes with normal aggregate from the literature. The comparison pertains to the general biaxial load-bearing behaviour of concrete, the applicability of already existing fracture criteria and the extrapolation for the numerical investigation. This provides an insight into the applicability of existing data for the material characterisation of this fine-grained concrete and, in particular, to compensate for the lack of investigations on fine-grained concretes in general. It is shown, that the calibration of material models for fine-grained concretes based on literature results or normal-grained concrete with similar strength capacity is possible, as long as the uniaxial strength values and the modulus of elasticity are known. For the numerical simulation, a Microplane Drucker–Prager cap plasticity model is introduced and fitted in the first step to the biaxial compression tests. The model parameters are set into relation with the macroscopic quantities, gained from the observable behaviour of the concrete under uniaxial and biaxial compressive loading. It is shown that the model is able to capture the yielding and hardening effects of fine-grained high-strength concrete in different directions. Full article
(This article belongs to the Special Issue Research on the Performance of Non-metallic Reinforced Concrete)
Show Figures

Figure 1

26 pages, 16320 KiB  
Article
Design and Testing of Impacted Stiffened CFRP Panels under Compression with the VERTEX Test Rig
by Florent Grotto, Christophe Bouvet, Bruno Castanié and Joël Serra
Aerospace 2023, 10(4), 327; https://doi.org/10.3390/aerospace10040327 - 25 Mar 2023
Cited by 5 | Viewed by 2977
Abstract
Aeronautical composite primary structures must evidence sufficient residual strength in the presence of damage for compliance with damage tolerance requirements. The study of stiffener debonding on panels subjected to compression after impact is performed in that scope. Compression leads to the buckling of [...] Read more.
Aeronautical composite primary structures must evidence sufficient residual strength in the presence of damage for compliance with damage tolerance requirements. The study of stiffener debonding on panels subjected to compression after impact is performed in that scope. Compression leads to the buckling of the skin between the stiffeners, and thus a complex loading of the bonding between the skin and the stiffener. This paper describes the development of a stiffened specimen for the VERTEX multiaxial test rig as a first step towards the study of the damage tolerance evaluation of stiffened structures, under combined loadings and at the intermediate scale of the test pyramid. By using virtual testing, the specimen was designed to produce the phenomenology of interest as the first damage, i.e., the debonding of the stiffener from the centre. Three samples were manufactured and subjected to low velocity impacts at various locations and energies. Then the three samples were subjected to compression after impact, up to the stiffener debonding, under a post-buckling regime of the skin. Test loading evolution is described with force fluxes and global strains, obtained from in situ stereo-correlation. The different impacts were found to give different types of damage but similar residual strength to compression after impact. Full article
(This article belongs to the Topic Composites in Aerospace and Mechanical Engineering)
Show Figures

Figure 1

19 pages, 7175 KiB  
Article
The Numerical Fatigue Life Analysis of a Conformal HPDC Mould Core Additively Manufactured from Maraging Steel
by Jarosław Piekło, Aldona Garbacz-Klempka and Andriy Burbelko
Materials 2023, 16(1), 365; https://doi.org/10.3390/ma16010365 - 30 Dec 2022
Cited by 5 | Viewed by 2039
Abstract
This paper presents the results of a stress analysis and fatigue life calculation of an HPDC mould core. The calculations were performed using Abaqus and fe-safe software. The numerical model of a core cooled by a conformal channel was based on an existing [...] Read more.
This paper presents the results of a stress analysis and fatigue life calculation of an HPDC mould core. The calculations were performed using Abaqus and fe-safe software. The numerical model of a core cooled by a conformal channel was based on an existing and working counterpart made of additively manufactured high-strength 1.2709 maraging steel. This study shows that the conformal channel results in a lower average core temperature as compared to the temperature of the same core shape cooled by the conventional method. The course of the stress changes during the mould cycle was also determined. It was found that stresses on the core surface caused the cyclic compression and tension of the material. The necessary strength tests of 1.2709 steel produced by selective laser melting (SLM) within a temperature range of 25 to 550 °C, which were necessary to define the fatigue coefficients by the Seeger approximation method, were also carried out in this study, along with metallographic tests of the fractures of the specimens. Based on the multiaxial fatigue criterion and using the maximum principal deformation hypothesis, the fatigue life of the core and channel surfaces was determined. Based on the calculations, it was shown that crack initiation on the channel surface can occur earlier than on the outer surface of the core. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Properties of Steels - Volume II)
Show Figures

Figure 1

22 pages, 12627 KiB  
Article
Implementation of the Non-Associated Elastoplastic MSDPu Model in FLAC3D and Application for Stress Analysis of Backfilled Stopes
by Feitao Zeng, Li Li, Michel Aubertin and Richard Simon
Processes 2022, 10(6), 1130; https://doi.org/10.3390/pr10061130 - 5 Jun 2022
Cited by 2 | Viewed by 2441
Abstract
The multiaxial Mises-Schleicher and Drucker-Prager unified (MSDPu) criterion has been shown to exhibit several specific features compared to other yield and failure criteria, including a nonlinear mean stress dependency, influence of the Lode angle, use of independent uniaxial compressive and tensile [...] Read more.
The multiaxial Mises-Schleicher and Drucker-Prager unified (MSDPu) criterion has been shown to exhibit several specific features compared to other yield and failure criteria, including a nonlinear mean stress dependency, influence of the Lode angle, use of independent uniaxial compressive and tensile strength values and absence of an apex (singularity) on the envelope surface in the negative stress quadrant. However, MSDPu has been seldom used in practice to solve geotechnical and geomechanical engineering problems mainly because it had not yet been fully implemented into three-dimensional (3D) numerical codes. To fill this gap, a 3D elastoplastic MSDPu formulation is developed and implemented into FLAC3D. The proposed MSDPu elastic-perfectly plastic (EPP) constitutive model is then validated against existing analytical solutions developed for calculating the stress and displacement distributions around cylindrical openings. The FLAC3D MSDPu-EPP model is then applied to evaluate the vertical and horizontal stress distributions in a three-dimensional vertical backfilled stope. The numerical results obtained with the MSDPu-EPP model are compared with those obtained with the Mohr-Coulomb EPP model, to highlight key features of the new formulation. Full article
(This article belongs to the Special Issue Numerical Modeling in Civil and Mining Geotechnical Engineering)
Show Figures

Figure 1

16 pages, 7698 KiB  
Article
An Actuator Concept for Adaptive Concrete Columns
by Simon Steffen, Markus Nitzlader, Timon Burghardt, Hansgeorg Binz, Lucio Blandini and Werner Sobek
Actuators 2021, 10(10), 273; https://doi.org/10.3390/act10100273 - 16 Oct 2021
Cited by 9 | Viewed by 2938
Abstract
The building industry accounts for half of the global resource consumption and roughly one third of global CO2 emissions. Global population growth and increasing resource scarcities require engineers and architects to build for more people with less material and emissions. One promising [...] Read more.
The building industry accounts for half of the global resource consumption and roughly one third of global CO2 emissions. Global population growth and increasing resource scarcities require engineers and architects to build for more people with less material and emissions. One promising solution are adaptive load-bearing structures. Here, the load-bearing structure is equipped with actuators, sensors, and a control unit which allows the structure to adapt to different load cases, resulting in substantial material savings. While the first prototypes use industry standard actuators to manipulate deformations and stress states, it is essential to develop actuator concepts which fit the specific requirements of civil engineering structures. This paper introduces new concepts for linear actuators, developed within the Collaborative Research Centre (SFB) 1244 Adaptive Skins and Structures for the Built Environment of Tomorrow, which can be used as adaptive concrete columns. The concept of an actuator which actuates a concrete column by external compression through hydraulic pressure is discussed in further detail. This concept allows for controlled axial extension while also increasing the compressive strength of the concrete column. Full article
Show Figures

Figure 1

14 pages, 4513 KiB  
Article
Effects of Multi-Axial Compression on the Mechanical and Fretting Wear Properties of Ti-45Nb Alloys
by Zhuoqing Xu, Nan Hu, Yuan Lu and Xiaochang Xu
Metals 2021, 11(3), 454; https://doi.org/10.3390/met11030454 - 10 Mar 2021
Cited by 2 | Viewed by 2013
Abstract
Biocompatible β-type Ti-45Nb alloy with a low elastic modulus is promising in alleviating the stress shielding effect of Ti-based hard-tissue replacement implants. In this work, the ultra-fine-grained (UFG) microstructures with different grain sizes were prepared by multi-axial compression (MAC) processing of Ti-45Nb alloys, [...] Read more.
Biocompatible β-type Ti-45Nb alloy with a low elastic modulus is promising in alleviating the stress shielding effect of Ti-based hard-tissue replacement implants. In this work, the ultra-fine-grained (UFG) microstructures with different grain sizes were prepared by multi-axial compression (MAC) processing of Ti-45Nb alloys, and the mechanical properties and the fretting wear properties of Ti-45Nb alloys in different grain sizes were investigated. The results show that the yield strength and ultimate tensile strength of the sample processed by 27 passes MAC increase by 76% and 91%, respectively, with an elongation of more than 9%. After MAC processing, the friction coefficient and volume wear rate gradually decrease. In addition, before MAC processing, the Ti-45Nb sample shows a wear mechanism of severe adhesive wear, oxidative wear and fatigue delamination; while after MAC processing, the wear mechanism switches to abrasive wear and slight adhesive wear with slight oxidative wear, indicating that grain refinement helps to improve the anti-fretting properties of Ti-45Nb alloys. Full article
Show Figures

Graphical abstract

24 pages, 12311 KiB  
Article
Mesoscale Modelling of Concretes Subjected to Triaxial Loadings: Mechanical Properties and Fracture Behaviour
by Qingqing Chen, Yuhang Zhang, Tingting Zhao, Zhiyong Wang and Zhihua Wang
Materials 2021, 14(5), 1099; https://doi.org/10.3390/ma14051099 - 26 Feb 2021
Cited by 11 | Viewed by 2592
Abstract
The mechanical properties and fracture behaviour of concretes under different triaxial stress states were investigated based on a 3D mesoscale model. The quasistatic triaxial loadings, namely, compression–compression–compression (C–C–C), compression–tension–tension (C–T–T) and compression–compression–tension (C–C–T), were simulated using an implicit solver. The mesoscopic modelling with [...] Read more.
The mechanical properties and fracture behaviour of concretes under different triaxial stress states were investigated based on a 3D mesoscale model. The quasistatic triaxial loadings, namely, compression–compression–compression (C–C–C), compression–tension–tension (C–T–T) and compression–compression–tension (C–C–T), were simulated using an implicit solver. The mesoscopic modelling with good robustness gave reliable and detailed damage evolution processes under different triaxial stress states. The lateral tensile stress significantly influenced the multiaxial mechanical behaviour of the concretes, accelerating the concrete failure. With low lateral pressures or tensile stress, axial cleavage was the main failure mode of the specimens. Furthermore, the concretes presented shear failures under medium lateral pressures. The concretes experienced a transition from brittle fracture to plastic failure under high lateral pressures. The Ottosen parameters were modified by the gradient descent method and then the failure criterion of the concretes in the principal stress space was given. The failure criterion could describe the strength characteristics of concrete materials well by being fitted with experimental data under different triaxial stress states. Full article
(This article belongs to the Special Issue Concrete Technology and Mechanical Properties of Concretes)
Show Figures

Graphical abstract

18 pages, 1872 KiB  
Article
Mode-Independent and Mode-Interactive Failure Criteria for Unidirectional Composites Based on Strain Energy Density
by Nian Li and Cheng Ju
Polymers 2020, 12(12), 2813; https://doi.org/10.3390/polym12122813 - 27 Nov 2020
Cited by 5 | Viewed by 3166
Abstract
The strain energy released plays a crucial role in generating macroscopic failure in unidirectional (UD) composites. This paper proposes two new strain energy-based failure criteria, regarding fiber-dominated and matrix-dominated failure mode as independent and interactive, respectively. The failure expression is formulated based on [...] Read more.
The strain energy released plays a crucial role in generating macroscopic failure in unidirectional (UD) composites. This paper proposes two new strain energy-based failure criteria, regarding fiber-dominated and matrix-dominated failure mode as independent and interactive, respectively. The failure expression is formulated based on rigorous mathematical deducing, accompanied by physical interpretation. Based on the lack of experimentally feasible multi-axial strengths, a predefined assumption of infinite strength under bi-axial and tri-axial compressive stress provides the possibility for determining all coefficients only by using conventional uniaxial strengths. The failure envelopes predicted by the proposed criteria have been validated against experimental results under biaxial, off-axis and tri-axial loading cases. A better agreement with physical reality was achieved by the failure mode-interactive criterion, suggesting a wide range of applicability. Full article
Show Figures

Graphical abstract

18 pages, 6425 KiB  
Article
Experimental Investigation of Transverse Loading Behavior of Ultra-High Molecular Weight Polyethylene Yarns
by Karan Shah and Subramani Sockalingam
Fibers 2020, 8(10), 66; https://doi.org/10.3390/fib8100066 - 19 Oct 2020
Cited by 4 | Viewed by 3074
Abstract
Ultra-high molecular weight polyethylene (UHMWPE) Dyneema® SK-76 fibers are widely used in personnel protection systems. Transverse ballistic impact onto these fibers results in complex multiaxial deformation modes such as axial tension, axial compression, transverse compression, and transverse shear. Previous experimental studies on [...] Read more.
Ultra-high molecular weight polyethylene (UHMWPE) Dyneema® SK-76 fibers are widely used in personnel protection systems. Transverse ballistic impact onto these fibers results in complex multiaxial deformation modes such as axial tension, axial compression, transverse compression, and transverse shear. Previous experimental studies on single fibers have shown a degradation of tensile failure strain due to the presence of such multi-axial deformation modes. In this work, we study the presence and effects of such multi-axial stress-states on Dyneema® SK-76 yarns via transverse loading experiments. Quasi-static transverse loading experiments are conducted on Dyneema® SK-76 single yarn at different starting angles (5°, 10°, 15°, and 25°) and via four different indenter geometries: round (radius of curvature (ROC) = 3.8 mm), 200-micron, 20-micron, and razor blade (ROC ~2 micron). Additionally, transverse loading experiments were also conducted for a 0.30 cal. fragment simulating projectile (FSP) and compared to other indenters. Experimental results show that for the round, 200-micron indenter, and FSP geometry the yarn fails in tension with no degradation in axial failure strain compared to the uniaxial tensile failure strain of SK-76 yarn (2.58%). Whereas for the 20-micron indenter and razor blade, fibers fail progressively in transverse shear followed by progressive strength degradation of the yarn. Strength degradation of yarn occurs at relatively low strains of 0.6–0.7% with eventual failure of the yarn at approximately ~1.8% and ~1.5% strain for the 20-micron indenter and razor blade, respectively. Breaking angles (range of 10°–30°) are observed to have little effect on the failure strain for all indenter geometries. Full article
(This article belongs to the Special Issue Polymer Fibers and Composites)
Show Figures

Figure 1

17 pages, 7223 KiB  
Article
Strength Increasing Additive Manufacturing Fused Filament Fabrication Technology, Based on Spiral Toolpath Material Deposition
by Artem Avdeev, Andrey Shvets, Ilya Gushchin, Ivan Torubarov, Aleksey Drobotov, Aleksey Makarov, Aleksander Plotnikov and Yuri Serdobintsev
Machines 2019, 7(3), 57; https://doi.org/10.3390/machines7030057 - 5 Sep 2019
Cited by 15 | Viewed by 4483
Abstract
The paper provides an overview of ways to increase the strength of polymer products obtained by fused filament fabrication (FFF) technology. An algorithm for calculating the spiral toolpaths for the material deposition using multi-axis printing is proposed. The design of the five-axis device [...] Read more.
The paper provides an overview of ways to increase the strength of polymer products obtained by fused filament fabrication (FFF) technology. An algorithm for calculating the spiral toolpaths for the material deposition using multi-axis printing is proposed. The design of the five-axis device for spiral-shaped deposition of the material is shown. The description of the proposed printing method is given. The results of comparative three-point bend and compression tests are presented. The standard samples obtained in the usual way by FFF technology, as well as samples with 2, 4, 6, 8 and 10 reinforcing layers obtained by spiral deposition of the material were investigated. The description of the tests is given, the dependences of the strength of the products on the number of reinforcing layers are obtained. Conclusions about the influence of the layer deposition method on the strength of the products are formulated. Full article
(This article belongs to the Special Issue Selected Papers from the ICIEAM 2019 Conference)
Show Figures

Figure 1

16 pages, 5091 KiB  
Article
Stress–Strain Properties and Gas Permeability Evolution of Hybrid Fiber Engineered Cementitious Composites in the Process of Compression
by Zhenbo Wang, Jianping Zuo, Chang Liu, Zishan Zhang and Yudong Han
Materials 2019, 12(9), 1382; https://doi.org/10.3390/ma12091382 - 28 Apr 2019
Cited by 17 | Viewed by 3451
Abstract
Polyvinyl alcohol (PVA)-steel hybrid fiber reinforced engineered cementitious composites (ECC) characterized by optimal combination of high strength and high ductility were developed recently. These composites exhibit even tighter crack width than normal ECC, showing great potential for lower permeability in cracked state, and [...] Read more.
Polyvinyl alcohol (PVA)-steel hybrid fiber reinforced engineered cementitious composites (ECC) characterized by optimal combination of high strength and high ductility were developed recently. These composites exhibit even tighter crack width than normal ECC, showing great potential for lower permeability in cracked state, and consequently improving the durability of ECC structures. In addition, the wide variety of promising applications in underground or hydraulic structures calls for knowledge on the mechanical behavior and corresponding permeability properties of strained ECC under multiaxial stress, as they are essential for structural analysis and durability design. Experimental investigations into the compressive properties and the in-situ gas permeability of PVA-steel hybrid fiber ECC were performed in this study, with special focus on the impact of additional steel fiber content and confining pressure. The test results show that the presence of a low confinement level allows ECC to attain a substantial improvement on compressive behavior but impairs the enhancement efficiency of additional steel fiber. The permeability evolution of strained ECC corresponds to the variation of radial strains, both of which experience little change below the threshold stress but a rapid increase beyond the peak axial strain. Apart from exhibiting low permeability at relatively small strains in the pre-peak stage, ECC can also exhibit low permeability at higher levels of compressive strain up to 2.0%. However, unlike the case in tensile loading, impermeability of cracked ECC in compression would be weakened by additional steel fibers, especially in the post-peak stage. The present research is expected to provide insight into performance-based durability design of structures made of or strengthened with ECC. Full article
(This article belongs to the Special Issue Advanced Fiber-Reinforced Concrete Composites)
Show Figures

Graphical abstract

16 pages, 10687 KiB  
Article
Molecular Dynamics Modeling of the Effect of Axial and Transverse Compression on the Residual Tensile Properties of Ballistic Fiber
by Sanjib C. Chowdhury, Subramani Sockalingam and John W. Gillespie
Fibers 2017, 5(1), 7; https://doi.org/10.3390/fib5010007 - 14 Feb 2017
Cited by 31 | Viewed by 12386
Abstract
Ballistic impact induces multiaxial loading on Kevlar® and polyethylene fibers used in protective armor systems. The influence of multiaxial loading on fiber failure is not well understood. Experiments show reduction in the tensile strength of these fibers after axial and transverse compression. [...] Read more.
Ballistic impact induces multiaxial loading on Kevlar® and polyethylene fibers used in protective armor systems. The influence of multiaxial loading on fiber failure is not well understood. Experiments show reduction in the tensile strength of these fibers after axial and transverse compression. In this paper, we use molecular dynamics (MD) simulations to explain and develop a fundamental understanding of this experimental observation since the property reduction mechanism evolves from the atomistic level. An all-atom MD method is used where bonded and non-bonded atomic interactions are described through a state-of-the-art reactive force field. Monotonic tension simulations in three principal directions of the models are conducted to determine the anisotropic elastic and strength properties. Then the models are subjected to multi-axial loads—axial compression, followed by axial tension and transverse compression, followed by axial tension. MD simulation results indicate that pre-compression distorts the crystal structure, inducing preloading of the covalent bonds and resulting in lower tensile properties. Full article
(This article belongs to the Special Issue Polymer Fibers)
Show Figures

Figure 1

Back to TopTop