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Abstract: Fine-grained high-strength concrete has already been tested extensively regarding its
uniaxial strength. However, there is a lack of research on the multiaxial performance. In this
contribution, some biaxial tests are investigated in order to compare the multiaxial load-bearing
behaviour of fine-grained concretes with that of high-strength concretes with normal aggregate from
the literature. The comparison pertains to the general biaxial load-bearing behaviour of concrete, the
applicability of already existing fracture criteria and the extrapolation for the numerical investigation.
This provides an insight into the applicability of existing data for the material characterisation of
this fine-grained concrete and, in particular, to compensate for the lack of investigations on fine-
grained concretes in general. It is shown, that the calibration of material models for fine-grained
concretes based on literature results or normal-grained concrete with similar strength capacity is
possible, as long as the uniaxial strength values and the modulus of elasticity are known. For the
numerical simulation, a Microplane Drucker–Prager cap plasticity model is introduced and fitted in
the first step to the biaxial compression tests. The model parameters are set into relation with the
macroscopic quantities, gained from the observable behaviour of the concrete under uniaxial and
biaxial compressive loading. It is shown that the model is able to capture the yielding and hardening
effects of fine-grained high-strength concrete in different directions.

Keywords: fine-grained concrete; multiaxial loading; microplane model; Drucker–Prager cap
plasticity

1. Introduction

Compared to traditional concrete with steel reinforcement, carbon-reinforced concrete
offers significant advantages, such as increased tensile strength, improved durability and a
much thinner coverage of the reinforcement [1–4]. This leads to the possibility of innovative
and resource-efficient construction strategies, as outlined in [5].

Newly developed high-strength fine-grained concretes with a maximum aggregate
size of 1 mm are mainly used to fully exploit the high-performance properties of the carbon
reinforcement while at the same time ensuring that they can be concreted together with the
close-meshed reinforcements [6]. To further optimise carbon-reinforced concrete structures,
numerical analysis is essential. An integral part of these investigations is appropriate
material models for the fine-grained concretes. However, in order to develop and calibrate
these models, the matrix material itself, the plain concrete, must be thoroughly investigated.

Whilst the uniaxial behaviour of fine-grained concretes has been extensively investi-
gated [7–10], an insight into their multi-axial behaviour is pending. For this purpose, both,
biaxial compression tests and combined compression-tension loading are considered within
this publication for one of the fine-grained concretes. Its behaviour has to be compared
with results for conventional high-strength concretes [11–17]. Ideally, the concrete should
fit into known approaches to describing material behaviour. Material models capable of
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covering the behaviour under all stress states could then be fitted, by referencing existing
research on similar high-strength concretes, to compensate for the lack of investigation.
Within this contribution, it is investigated how a classification of fine-grained concrete
within similar-strength concretes with normal grain size could help close the gap that
currently exists in the research.

The material model considered in this contribution is a Microplane plasticity model.
While plain concrete can be considered as an isotropic material on the macroscopic level at
first, the evolution of microcracks, the subsequent softening of the material and friction-slip
behaviour can introduce an orientation dependency. On the macroscopic scale, this evokes
a plasticity- and damage-induced anisotropy. One possibility for capturing this anisotropy
within a material model without the need for a tensorial formulation is the Microplane
model introduced by [18]. Here, the strain tensor is decomposed direction-wise, to which a
material model for each direction is then applied. The macroscopic stress tensor is obtained
by a transformation of the Microplane stresses and their integration over all directions.
Here, on the Microplane level, a plasticity model with a Drucker–Prager cap yield function
is employed. It is similar to the formulation presented in [19], however, a new additive yield
function with appropriate cap functions is developed. In this way, the plasticity formulation
is adapted to ensure a larger convergence radius while keeping the characteristic shape
of the original function [19] intact and therefore allowing for a higher numerical stability.
In the next step, the microscopic model parameters are set in relation to the material
parameters that can be identified from the macroscopic material behaviour. This discussion
of model parameters takes into account the direction of the Microplanes in contrast to
such discussion in already existing research [19,20]. The macroscopic material parameters
required for a full fit are deduced. The material model is, as a first step, tested exemplarily
by comparing the stress–strain curves of the biaxial compression tests. It can be seen that
the simulation results and the experimental data show good agreement.

2. Microplane Drucker–Prager Cap Plasticity
2.1. Formulation of the Material Model

The basic idea of the Microplane model first introduced in [18] is the formulation
of inelastic constitutive relations between vector quantities of strains and stresses which
are assigned to planes with different orientations in space. This enables a direction-wise
evolution of plasticity or damage. A collection over all directions then yields an overall
anisotropic constitutive behaviour on the material point level. A detailed introduction to
the topic is given in [21]. In this contribution, the Microplane plasticity model of [19] is
used as a basis and adapted by means of an improved yield function to increase numerical
stability. For now, only the plasticity constitutive behaviour is considered, therefore, in
Section 4.2, only compressive states are simulated. Incorporating strain-softening with
a gradient-enhanced damage model or the phase-field method is part of future research.
Following the approach in [22], to ensure thermodynamic consistency, the macroscopic
free-energy potential per unit mass is assumed to be the integral of some Microplane free
energy over all orientations, i.e.,

ψmac =
3

4π

∫
Ω

ψmicdΩ . (1)

Hereby, the integration over all spatial orientations can be interpreted as a normed integra-
tion over a unit sphere. The numerical execution is discussed in [23]. Here, the decomposi-
tion of the sphere into 42 planes is employed since it was shown to yield sufficient accuracy.
Because of its symmetry, this leads to 21 Microplanes and subsequently 21 constitutive
laws to be evaluated. The Microplane free energy for plasticity with linear hardening [24]
is defined as

ψmic =
1
2

Kmic(εV − ε
pl
V )2 + Gmic(εD − ε

pl
D ) · (εD − ε

pl
D ) +

1
2

hκ2
mic , (2)
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with the volumetric strain εV and deviatoric strain εD associated with the Microplane, their
respective plastic parts ε

pl
V and ε

pl
D and the accumulated plastic strain κmic. Furthermore,

the Microplane bulk modulus Kmic, the Microplane shear modulus Gmic and the hardening
stiffness h are introduced. The Microplane strain quantities are defined in [24] as

εV = V : ε and εD = D : ε , (3)

where V = 1
3 1 and D = n · (I− 1

3 1⊗ 1) with the second-order identity tensor 1 and the
fourth-order identity tensor I. With that, the Microplane stresses can be derived from the
Microplane free energy. They read [24]

σV =
∂ψmic

∂εV
= Kmic(εV − ε

pl
V ) and σD =

∂ψmic

∂εD
= 2Gmic(εD − ε

pl
D ) . (4)

Furthermore, the hardening-conjugated internal variable reads [24]

qmic = −
∂ψmic

∂κmic
= −hκmic . (5)

To account for the pressure-dependent yielding of concrete, the Drucker–Prager yield
function is chosen, which was reformulated in [24] to be applied with respect to the
Microplane quantities. In [19], the yield function was modified to cover the response of
concrete under all possible stress triaxialities. For this, caps to the compression and tension
regions are applied to the yield function. To ensure the smooth transition of the cone to
the caps, the yield function is formulated in a quadratic form and the functions describing
the caps are multiplied by it. However, with this multiplicative formulation, the required
iterative stress return mapping might pose a problem at stress states close to the tension
cap. This is due to the flow direction of the volumetric plastic strain mV , which undergoes
a change in sign in front of the tension cap, therefore reducing the convergence radius. This
can be seen in Figure 1 on the left, where the tension cap part of the yield function is shown
and the plastic flow direction is plotted as a vector field.

Hence, depending on the stress state and the chosen material parameters, the load step
size has to be chosen rather small to ensure the convergence of the stress return algorithm.
The cap formulation proposed in [20] holds similar properties. There, the authors try to
remedy this problem with the utilisation of a penalty term. In this contribution, a novel
and different approach is taken for the yield function (Equation (6)), the tension cap
(Equation (8)) and the compression cap (Equation (9)). The yield function with caps is
formulated in an additive form instead of the multiplicative approach, it reads

fmic(σV , σD, κmic) =
3
2

σD · σD − ( f 2
1 (σV , κmic) + ft(σV) + fc(σV)) ≤ 0 , (6)

with the Drucker–Prager cone

f1(σV , κmic) = σ0 − ασV + h κmic , (7)

the tension cap

ft(σV) = −H(σV − σT
V)(σV − σT

V)
2
( σ0 − α xT

σT
V − α xT

)2
(8)

and the compression cap

fc(σV) = −H(σC
V − σV)(σV − σC

V )
2
( σ0 − α xC

σC
V − α xC

)2
. (9)

Here, H(x) = 1
2 (1 + sign(x)) denotes the Heaviside function. The shape of the yield

function is defined by the cohesive angle α, the initial yield stress σ0, the transition from the
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Drucker–Prager cone to the tension and compression cap (σT
V and σC

V ) and the yield limits
in the fully triaxial state (xT and xC), cf. Figure 2. For an associated potential flow the flow
directions read

mV =
∂ f mic

∂σV
, mD =

∂ f mic

∂σD
and mq =

∂ f mic

∂qmic
. (10)

Therefore, the evolution of the plastic volumetric and deviatoric strain and the accumulated
plastic strain can be defined by the flow rules

ε̇
pl
V = λ̇mV , ε̇

pl
D = λ̇mD and κ̇mic = λ̇mq , (11)

where λ̇ is the plastic multiplier. For the derivation of the flow directions (Equation (10)),
the flow rules (Equation (11)) and the formulation of the stress return algorithm, refer
to [25]. In Figure 1 on the right, the flow direction is again plotted as a vector field over σV ,
this time for the new formulation. It can be seen that the flow direction does not reverse
anymore with this new formulation, increasing the convergence radius and enabling the
utilisation of bigger load steps.

Figure 1. Comparison of the directions of plastic flow with the Drucker–Prager cap model as
presented in [19] (left) and with the new model (right) plotted over the respective yield function.

Figure 2. Drucker–Prager cap yield function and the parameters describing it.
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2.2. A Discussion of Material Parameter Fitting for the Numerical Model

The fitting of the material model encompasses the elastic material parameters (Kmic,
Gmic) and the plastic material parameters, namely to describe the yield condition (σ0, α,
σT

V , σC
V , xT , xC) and the hardening stiffness (h). The Microplane values connected to the

elastic material behaviour are set in relation to the corresponding macroscopic quantities
in [19,26]. Thus, the Microplane bulk and shear moduli are set to [26]

Kmic =
E

1− 2ν
and Gmic =

E
2(1 + ν)

, (12)

respectively. E denotes the macroscopic Young’s modulus and ν the Poisson’s ratio.
The fitting of the material parameters connected to the plastic material behaviour

poses a more complex task. In [19], the uniaxial and biaxial yield stresses are assumed to be
directly linked to the yield function on the microscopic level in a manner, which neglects the
influence of the different Microplane orientations on the yielding behaviour. Even during
initial loading prior to any plasticity effects, the value of σD is different for every direction,
except for a fully volumetric state, such as in triaxial compression or tension. As a result,
the yield limit might be reached on different Microplanes at different stages of loading. This
leads to a successive plasticising of Microplanes within one material point, which might
cause a macroscopic hardening effect even with the assumption of ideal plasticity (h = 0).

Since the volumetric elastic strains are orientation-independent, σV takes the same
value for each direction during initial loading. It will only diverge with the evolution of
ε

pl
V on individual Microplanes. This implies that, for initial loading, the Microplane with

maxi=1,nmp ||σD||i will first reach the plastic regime, which leads to a redistribution of
stresses across all Microplanes in one material point and potentially a much more complex
macroscopic stress state. Linking the macroscopic yield stresses to the microscopic yield
function therefore requires the consideration of direction.

The macroscopic yield stresses for uniaxial compression and tension, biaxial com-
pression and triaxial compression are denoted σuc

yield, σut
yield, σbc

yield and σtc
yield, respectively.

As demonstrated in Figure 3 on the right, these quantities indicate the deviation from linear
elastic material behaviour and can be obtained from stress–strain curves.

For a uniaxial stress state, the first Microplane plasticising is the one oriented in
the direction of the loading, resulting in the microscopic volumetric and deviatoric yield

stresses of− 1
3 σuc

yield and
√

2
3 σuc

yield ( 1
3 σut

yield and
√

2
3 σut

yield for tension). For a biaxial stress state
(−1/−1/0), where negative signs indicate compressive loads, it is the one perpendicular

to both loading directions. Here, the microscopic yield stresses are − 2
3 σbc

yield and
√

2
3 σbc

yield.
For a triaxial stress state (−1/−1/−1), all Microplanes will plasticise simultaneously at
a microscopic volumetric yield stress of −σtc

yield since the deviatoric part of the stress
tensor vanishes.

With this connection between the first yielding observable in the macroscopic be-
haviour and the Microplane yielding stresses for different stress states, a first estimate of
the geometry of the yield function is possible; see Figure 3 on the left. In [19], it is assumed
that the original Drucker–Prager cone, and therefore σ0 and α, is to be determined by the
uniaxial and biaxial compressive stress state. This assumption could be checked with
the biaxial experiments presented in this paper with different load ratios, cf. Section 4.2.
The tension cap (σT

V , xT) and the compression cap (σC
V , xC) can be evaluated by means of a

uniaxial tension test and the triaxial compression test (−1/−1/−1), respectively. For now,
it is assumed that, following [19], σT

V = − 1
3 σuc

yield and σC
V = − 2

3 σbc
yield. This results in

α =

√
6(σbc

yield − σuc
yield)

2σbc
yield − σuc

yield
and σ0 =

√
2
3

σuc
yield −

α

3
σuc

yield . (13)
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Figure 3. Yield function set into relation with macroscopic yield stresses (left) and exemplary stress–
strain plot with these macroscopic yield stresses for uniaxial compression (blue), biaxial compression
(orange), triaxial compression (grey) and uniaxial tension (green) (right, not true to scale).

The hardening stiffness h is to be determined by means of a comparison of simulated
and experimentally obtained stress–strain curves. Since the hardening parameter is in-
dependent of the Microplane direction, this theoretically can be determined for any and
all tests. However, due to the consecutive plasticising of Microplanes and the resulting
macroscopic hardening effects, it is reasonable to give an initial prediction for h based on
the triaxial compression test, since, as mentioned above, all Microplanes will plasticise at
once at those stress states. In further comparisons, this assumption ought to be tested.

Lastly, more experiments, especially cyclic tests and tests with varying load directions,
are necessary to validate and elaborate the material parameter fits and the material model.
For this, however, damage or fracture effects have to be included in the model, as they were
in [19,27,28], for the initial formulation of the yield function and is still part of ongoing
research for this specific yield function formulation.

3. Experimental Investigations
3.1. Background

The previous chapter described in detail which material parameters are required for
the assumed material model. This material model was developed in the context of the
CRC/TRR 280 project [5]. However, for the concretes used in this project no multiaxial
tests are available. As mentioned at the beginning, there is little experimental basis for the
multiaxial material behaviour of high-strength fine-grained concretes in general. In order
to draw conclusions on many of these parameters, similar concretes from other projects
have to be considered.

Initial findings were drawn from the DFG-funded project “Experimental Investigation
of the Load-bearing Behaviour of Textile Concrete under Uniaxial Compressive Loading
—2nd Stage: Influence of Biaxial Loading”. Out of the various high-strength fine-grained
concretes that have been developed to meet the requirements of carbon concrete con-
struction, Pagel TF10 [29] was chosen as a representative material. With a characteristic
compressive strength of at least 80 N/mm2, after 28 days, it is similar to the concretes
used within the SFB/TRR 280 project. An initial classification of high-strength fine-grained
concretes in the literature will be made on the basis of the biaxial tests carried out on
this concrete. In particular, biaxial compressive loading and compressive loading with
transverse tensile stress were used. Ideally, the material behaviour should match that of
other concretes of the same strength made from standard aggregates. If this is the case, the
literature results can be used for initial approximations with the material model, even for
those tests not yet performed with fine-grained concretes.
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3.2. Experimental Methodology

The analysis of the test results is conducted in two steps. First, the strengths obtained
in the two-dimensional stress space are compared with those in the literature. By compar-
ing the strengths, a general statement can be made about the classification of the concrete.
For parameter fitting, a more detailed observation of the stress–strain curves is also neces-
sary to draw conclusions about the required parameters shown in Figure 3.

Concrete biaxial strength is usually plotted in a two-dimensional stress space. The stress
values (σi) obtained in each loading direction are related to a reference strength ( f ′c), which
is typically the uniaxial compressive strength obtained in the test setup used; see Figure 4.
To determine the fracture curve, various loading ratios have to be considered. The load
increase in the second load axis is chosen in some proportion to that in the principal com-
pressive direction. As shown in Figure 4, the uniaxial compressive loading (−1/0) and a
simultaneous compressive load increase in both load axes (−1/−1) have to be considered
for the parameter fitting of the material model. These were also the main support points in
determining the fracture curve in the 2D stress space. In addition, the load ratio (−1/−0.5)
was investigated, as this shows the maximum strength increase especially for concretes
of higher strength [12–15]. During the parameter fitting, the stress–strain curves of this
load ratio can be used to check the material model for stress states that were not specified
during the calibration.

For the combined compressive-tensile loading, the uniaxial tensile strength of the
specimens (0/1) had to be investigated. As shown in Figure 4, it has been found in the
literature that a large influence on compressive strength already occurs in the range of
small tensile loads [12,14,15]. This effect becomes more pronounced at higher compressive
strengths due to the proportionally lower tensile strength. To cover this case, the stress ratio
(−1/0.05) was considered. In addition, the stress level (−1/0.5), which in the literature often
represents a transition point from which the residual compressive strength is approximately
at its lowest for high-strength concretes, was investigated.

Figure 4. Results in 2D stress space from the literature [12–15] related to the unconfined compressive
strength in the same test setup ((left): biaxial compression; (right): compression-tension loading).

3.3. Material

The Pagel TF10 is marketed by Pagel Spezial-Beton GmbH & Co. KG and has been
developed within the framework of the general technical approval (abZ) “CARBOrefit®”
(formerly TUDALIT) for use in the strengthening of ferro-concrete components with car-
bon concrete [30]. As defined by the standard [31], this product is a dry mortar with a
maximum grain size of 1 mm. As with other mortars, all the dry components are already
packaged in bags, so that only water needs to be added on site. The concrete guarantees a
compressive strength of at least 80 N/mm2 after 28 days and a modulus of elasticity above
25,000 N/mm2. The actual concrete properties of the specimens tested are given in the
following description of the test results.
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3.4. Test Setup

The tests were carried out in the triaxial testing machine (“Triax”) at the Otto Mohr
Laboratory of the Dresden University of Technology (see Figure 5 left). This is a single-
piece cast steel frame whose high rigidity minimises the mutual influence of the three load
axes. It has a compressive capacity of 5000 kN and a tensile capacity of 500 kN. The load
is applied by loading brushes, which enable a uniform load application. They consist
of several high-strength steel bristles with a yield strength of over 1000 N/mm2 that are
separated by small gaps (see Figure 5 right). The load in the main compression axis is
applied displacement controlled at a speed of 0.003 mm/s, and the second load axis is then
adjusted force controlled at the desired ratio.

Figure 5. Test setup (left), arrangement of measuring equipment (middle) and specimen placed
between the load brushes (right).

The biaxial compression tests were carried out on cubes with an edge length of 100 mm.
This geometry is well known for biaxial compression tests from the literature [12,15–17].
These results were then compared with biaxial compression tests previously carried out by
other researchers on high-strength concretes [12–15]. For compressive tests with transversal
tensile stresses, disc-shaped specimens are mainly known from the literature [12,14,15].
Based on the experiments by Kupfer [12] and Hampel [15], discs with a base area of
200× 200 mm2 were chosen. A thickness of 40 mm was chosen based on realistic compo-
nent thicknesses of carbon concrete components, e.g., [32]. The tests were predominantly
carried out after a minimum of 42 days, as testing after 28 days could not be guaranteed
due to the complexity of the testing machine. The Pagel TF10 shows little change in com-
pressive strength after this age [9,33]. An overview of the tested specimens can be found in
Table 1. The following plots in two-dimensional stress space show the mean values of the
specimens for each loading ratio of the respective geometry. To determine the standard
compressive and flexural tensile strength of each batch of concrete, additional prisms
measuring 160× 40× 40 mm3 were made in accordance with DIN EN 196-1 [34].

Table 1. Number of test specimens per load ratio.

Biaxial Compressive Loads Compressive-Tensile Loads
−1/0 −1/−0.5 −1/−1 −1/0.05 −1/0.5 0/1

Cubes (100× 100× 100 mm)
Batch 1 (tested after 28 days) 4 4 4 - - -
Batch 2 (tested after 43 days) 4 4 4 - - -
Discs (200× 200× 40 mm)
Batch 1 (tested after 56 days) - - - 2 2 2
Batch 2 (tested after 63 days) - - - 2 2 2
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For strain measurement, a strain gage cross was placed in the centre of each of the
two unloaded specimen surfaces and additionally for the disc specimens horizontal and
vertical strain gages were placed in the rim area on the two sides offset from each other; see
Figure 5 in the middle. This provided two vertical and two horizontal readings for each
side, from which total strain averages were calculated. Transverse strains orthogonal to the
slice plane were measured with a linear variable displacement transducer (LVDT) fixed
with a measuring clamp in the centre of each side of the specimen.

3.5. Biaxial Compressive Strength

The average compressive strength of the prisms from the concrete batches used for the
biaxial compression tests was 105.9 N/mm2. The uniaxial compression test in the triaxial
testing machine gave a strength of 96.7 N/mm2, as shown in Table 2. This means that the
ratio between the strength of the specimen tested with load brushes and the prism strength
tested with rigid load introduction is approximately 0.9. In addition, the prism tests gave a
flexural tensile strength of 7.9 N/mm2 and a Young’s modulus of approx. 39,250 N/mm2.
The Young’s modulus calculated at 30% of the maximum load in the uniaxial tests was
slightly higher at 41,750 N/mm2, with an average Poisson’s ratio of 0.26.

Table 2. Material parameters of the fine-grained concrete for biaxial compressive tests.

Compressive Flexural Young’s Poisson’s
Strength Strength Modulus Ratio
[N/mm2] [N/mm2] [N/mm2] [-]

Mean value prisms 105.9 7.86 39,250 -
(acc. to EN 196-1 [34])
Batch 1 102.9 6.9 38,750 -
Batch 2 108.9 8.9 39,750 -

Mean value cubes 96.7 - 41,750 0.26
(uniaxial compressive test)
Batch 1 99.6 - 41,250 0.27
Batch 2 93.7 - 42,250 0.24

As shown in Figure 6, an initial classification of the fine-grained concrete in the two-
dimensional stress space was made by comparing the biaxial compressive test results with
the results from the literature of high-strength concretes subjected to biaxial compressive
loading [12–15]. In this comparison, the strengths obtained were in close agreement with
the material behaviour known from the literature, although the strength increases obtained
were slightly higher at 14% for the (−1/−1) load ratio and lower at 27% for (−1/−0.5).

Figure 6. Comparison of the results of biaxial compressive loading with the literature [12–15].
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In addition, the stress–strain curves could be compared with those of Hampel [15],
who performed tests on concrete of the same compressive strength and, very conveniently
for comparison, the same instrument layout. He also used similar load levels; the exact
load levels being shown in the corresponding graphs in Figure 7. It should be noted that
the exact data for Hampel’s results were not available; the curves were plotted from [15].
In order to improve the clarity of the graph, only the curves for the second batch of the
cube tests are displayed. This confirmed the previously observed fairly good agreement
in the two-dimensional stress space between the two sets of tests, which differ mainly in
the grain size used (Hampel used a maximum grain size of 16 mm). Similar stiffnesses as
well as changes in the shape of the curves were found in each of the three main axes at all
load levels.

Figure 7. Stress-strain curves of the cubic specimens (batch 2) compared with curves by Hampel [15].

Alongside the increased strength under multi-axial loading, a change in the fracture
pattern was observed; see Figure 8. Whereas failure under uniaxial loading was charac-
terised by free crack development, failure under biaxial loading was dominated by splitting
in the plane of the two loading directions. This is due to the fact that transverse tensile
strains orthogonal to the plane of the disc are mainly possible. The observed behaviour is
also consistent with the findings of Hampel [15].

Figure 8. Comparison of a typical fracture pattern with uniaxial (left) and biaxial (right) loading.
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3.6. Compressive Strength with Transversal Tensile Stress

The disc specimens for compressive tests with transversal tensile forces were tested
around 56 and 63 days after concreting. The specimens were produced in two batches,
with two specimens per batch tested at the same tensile loading level; see Table 1. The uni-
axial compressive strength of these disc-shaped specimens was previously determined to
be 87% of the prism strength [35]. This is in line with the results for the cubic specimens
previously mentioned where a ratio of 0.9 was found. Therefore, no additional uniaxial
compression tests were performed on the disc specimens. The resulting arithmetic com-
pressive strengths for the discs were determined to be f ′c of 88.3 N/mm2 and 86.8 N/mm2

resulted; see Table 3.
The uniaxial tensile strength f ′t of the discs was found to be relatively low at 2.37 N/mm2

for the first and 3.22 N/mm2 for the second batch. The resulting ratio of the tensile strength
to the compressive strength f ′t / f ′c of 0.032 (0.027 for the first and 0.037 for the second
batch) is significantly lower than previously known for standard concretes. Furthermore,
the impact of the size effect [21,36] on the tensile strength is greater than on the compressive
strength. Additional tensile tests on prisms of the two batches gave a f ′t,pr/ f ′c,pr-ratio of 0.04.

Table 3. Material parameters of the fine-grained concrete for compressive-tensile tests.

Compressive Flexural Tensile Young’s Poisson’s
Strength Strength Strength Modulus Ratio
[N/mm2] [N/mm2] [N/mm2] [N/mm2] [-]

Mean value prisms 100.7 7.76 4.06 - -
(acc. to EN 196-1 [34])
Batch 1 101.5 6.84 3.79
Batch 2 99.8 8.68 4.33

Mean value discs 87.6 - 2.79 35,000 0.26
(uniaxial tensile tests) (calc. 0.87 f ′c,pr) (tensile) (tensile)
Batch 1 88.3 (calc.) - 2.37
Batch 2 86.8 (calc.) - 3.22

As mentioned, compared to other concretes, this f ′t / f ′c -ratio is relatively low; see
Figure 9. The ratios for high-strength concretes known from the literature vary between 0.05
and 0.08. Under biaxial loading, it is evident that the results for small tensile loads (−1/0.05)
resemble very closely the literature results of Hampel [15] and Hussein/Marzouk [14].
At a transverse strain level of σ2/ f ′c = 0.019, a reduction in compressive strength to 40%
was monitored. However, for greater tensile loads (−1/0.5), with a marginally higher
transverse strain level of σ2/ f ′c = 0.022, drastic reductions to just about 5% of the uniaxial
compressive strength occur.

Figure 9. Results for combined compressive and tensile loading compared with the literature [14,15].
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All specimens failed in the form of a smooth crack as shown in Figure 10. The failure
point moved towards the edge of the specimen as the tensile stress level decreased and the
compressive stress increased. At (−1/0.05), it could be assumed that the adhesive joint
failed as the failure occurred very close to the load application. However, the fracture
surface in the lower right image shows that it was the concrete body that failed and not the
adhesive joint.

Figure 10. Comparison of a typical fracture pattern with different combined compressive and tensile
load paths.

As different batches and geometries are considered here, the stress–strain analysis is
relative to the uniaxial strength of the specific specimens. This procedure is well estab-
lished in the literature [12,14,15]. Unfortunately, the LVDT bracket for measuring strains
orthogonal to the plane of the discs did not work on those specimens; therefore, only the
results in directions 1 and 2 could be evaluated.

The compressive strain curves in the vertical direction ε1 of the uniaxial compression
tests and the low transverse strain tests (−1/0.05) show similar stiffness, but failure occurs
earlier; see Figure 11 left. As the compressive strength of the Hampel discs is lower this
time, the curves deviate somewhat from each other, but the effect of the almost congruent
curves for (−1/0) and (−1/0.05) just described is also evident here; see Figure 11 right.

Hampel found a greater reduction in stiffness in the main compression axis in the
tests with high transverse tension. This effect, although less pronounced than Hampel’s
when compared to the other two curves, can also be seen in our own tests at the load
level (−1/0.5). In this load regime, our own curves are almost congruent with Hampel’s
but with failure at a lower load level. The curves thus confirm the previously observed
effect that at low tensile loads there is relatively good agreement between our own tests and
the literature results, but, at higher tensile loads, deviations occur due to the low tensile
strength in relation to the compressive strength.

Figure 11. Stress-strain curves of the cubic specimens compared with curves from Hampel [15].
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4. Discussion
4.1. Experimental Results

The material behaviour in the biaxial compressive stress space between fine-grained
concrete and concretes of similar strength but larger maximum grain size is in good
agreement in itself. For verification purposes, a comparison with fracture criteria from the
literature is given here. For this purpose, the fracture criteria established in the standard
by Kupfer [12] for concretes with a compressive strength greater than 35 N/mm2 were
used. However, Hampel’s tests showed that these models did not give good agreement
for high-strength concretes [15]. He therefore developed his own fracture criterion. These
criteria are also used for comparison due to the similarity of the concretes.

It was shown that the Kupfer models gave a fairly good agreement with the test results
presented here for fine-grained high-strength concrete, see Figure 12 left. With the Hampel
model, however, there is an underestimation of the strength increase, particularly for the
design-relevant load path (−1/−1).

For combined compressive-tensile loading, the fracture criteria from the literature do
not fit very well; see Figure 12 right. As seen in the direct comparison above, the ratio
of tensile strength to compressive strength is particularly different in the fine-grained
concrete compared to the normal grain size concretes. Approximation formulae for tensile
strength based on the compressive strength of standard concretes do not work for fine-
grained concrete, for which the tensile strength needs to be determined more accurately.
For Pagel, the ratio of tensile strength to compressive strength determined with load
brushes was 0.032. Using prisms as a reference, the compressive strength is 0.87 f ′c,pr. In the
compression-tension region, Hampel’s fracture criteria can be used to err on the side of
caution by using the actual uniaxial compression–tension stress ratios, but this results in a
clear underestimation of the ultimate strength at (−1/0.05). The Kupfer criterion, on the
other hand, clearly overestimates the remaining compressive strength at high transverse
tensile stresses. Therefore, a new fracture criterion for compressive-tensile loading is
recommended for fine-grained concretes.

Figure 12. Comparison of the test results with fracture criteria for the 2D stress space from the
literature [12,15].

4.2. Parameter Fitting

As discussed in Section 2.2, some triaxial, biaxial and uniaxial compressive and uni-
axial tensile testing is required to reproduce the behaviour of the fine-grained concrete
for each stress state. However, as mentioned before, in this publication, only compres-
sive loads can be considered since no damage or fracture model is incorporated in the
formulation yet. In the following, the material model is fitted exemplarily via the uni-
axial strain–stress curve shown in Figure 7 on the left. Following the argumentation, as
presented in Section 3.5, that the biaxial compressive strength increases by 11% compared
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to the uniaxial compressive strength, the same assumption is made here for the yielding
stress. Choosing a uniaxial compressive yield stress of σuc

yield = 75 N/mm2, the biaxial

yield stress is therefore σbc
yield = 83.25 N/mm2. With these macroscopic parameters, re-

ferring to Section 2.2, the yield function parameters can be calculated. They are given in
Table 4, with the exception of the triaxial yield limits xT and xC. Those were chosen to
be xT = 1 N/mm2 and xC = −75 N/mm2 somewhat arbitrarily and ought to be verified
in further research when considering triaxial compression and tension tests. The elastic
material parameters are taken from Table 2.

Table 4. Material parameters of the fine-grained concrete for numerical modelling of biaxial tests.

α σ0 σT
V σC

V h
[-] [N/mm2] [N/mm2] [N/mm2] [N/mm2]

0.221 55.716 −25 −55.5 5000

The simulation was carried out in the finite element program feap under the assumption
of quasi-static conditions. The loading is applied in a force-controlled manner up to the
maximum loads which were observed in the experiments and then the simulation is
stopped. It should be mentioned that, since it is reasonable to assume a homogeneous
stress state, the discretisation itself is not relevant here. Furthermore, note that since no
strain-softening is incorporated into the model, the simulation is not yet able to estimate
the maximum force and also not the macroscopic cracking behaviour. The simulated strain–
stress curves are depicted in Figure 13 on top of the experimental results. The results for the
uniaxial compression test (−1/0) and to biaxial compression tests (−1/−0.5) and (−1/−1)
are shown. Here, the ordinate σ1 refers to the stress in the first principal (loading) direction.
For each test, the strains in all three principal directions (ε1, ε2 and ε3) are plotted. It can be
seen that the model is able to not only capture the (−1/0) test but also is able to predict the
material behaviour under the biaxial compressive loads of (−1/−0.5) and (−1/−1) in the
principal directions experiencing negative (compressive) strains. However, the model is not
quite able to fit the positive (tensile) lateral strain outside of the elastic regime in the third
direction. This might be partly due to the mentioned missing strain-softening formulation.
However, beyond that, the different results for the transversal directions in the uniaxial
compression test would suggest an influence of the two different measuring procedures
(c.p. Section 3.4) on the result. Considering this, the choice of the yielding stresses and
the assumptions of the relation between macroscopic measurable material parameters and
their Microplane counterparts (cf. Section 2.2), especially for the calculation of α and σ0,
therefore seem reasonable.

Note that, with a positive α, one could argue that dilatancy effects are somewhat
taken into account within the material model, and the match of the numerical result
and the experimental data may suggest that dilatancy effects are reproduced adequately.
However, it is necessary to specify this statement with an additional targeted numerical
and experimental investigation, for which the required tests are not yet available for fine-
grained high-strength concrete. Hence, in this contribution, the topic is left out, though it
is an important topic regarding the multiaxial behaviour of concrete. For a more detailed
overview, refer to [37], who present an in-depth discussion of the different dilatancy
measures and to [38] for a comparison of different Drucker–Prager plasticity models with
respect to dilatancy effects.
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Figure 13. Comparison of the numerical results with the experimental results for biaxial compression
tests of cube batch 2.

5. Conclusions

In general, it can be assumed that the multiaxial load-bearing behaviour of the fine-
grained concretes is similar to that of the conventional concretes with similar compressive
strengths. The tensile strength is lower for the fine-grained concretes relative to the com-
pressive strength than for the normal concretes. This is the main reason for the deviations
from the results reported in the literature.

As long as the uniaxial compressive and tensile strengths and the modulus of elasticity
are known, the calibration of material models for fine-grained concretes based on literature
results for concretes with similar strength values is possible. Increases and decreases in
strength under multiaxial loading should be represented sufficiently accurately. This is
particularly relevant as a large number of fine-grained concretes have been and are being
developed for use in carbon concrete, for which multi-axial tests are often not yet available.

If fracture criteria are introduced in the future, Kupfers’s biaxial compressive stress
criteria [11,12] can be used, but, for compressive-tensile stress, a new criterion should be
defined to make better use of the material.

Furthermore, a Microplane plasticity material model with Drucker–Prager cap yield
function for plain concrete has been introduced. For now, it has been fitted to the biax-
ial compressive behaviour of the high-strength fine-grained concrete. The macroscopic
yield stresses were successfully related to the required model parameters to match the
macroscopic concrete behaviour. As a next step, based on the investigation presented in
this contribution, already existing experimental data of the multiaxial behaviour of high-
strength normal-grained concrete will be utilised for a more comprehensive parameter fit.
Additionally, the model needs to be extended to be able to account for material softening.
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