Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = multi-source weighted-ensemble precipitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 8621 KB  
Article
Performance Assessment of Satellite-Based Rainfall Products in the Abbay Basin, Ethiopia
by Tadela Terefe Gashaw, Assefa M. Melesse and Brook Abate
Remote Sens. 2026, 18(1), 2; https://doi.org/10.3390/rs18010002 - 19 Dec 2025
Viewed by 264
Abstract
Satellite-based rainfall products (SRPs) are indispensable for hydro-climatological research, particularly in data-limited environments such as Ethiopia. This study systematically evaluates the performance of three widely used SRPs: Climate Hazards Group InfraRed Precipitation with Station data version 2 (CHIRPS), Tropical Applications of Meteorology using [...] Read more.
Satellite-based rainfall products (SRPs) are indispensable for hydro-climatological research, particularly in data-limited environments such as Ethiopia. This study systematically evaluates the performance of three widely used SRPs: Climate Hazards Group InfraRed Precipitation with Station data version 2 (CHIRPS), Tropical Applications of Meteorology using Satellite and ground-based observations version 3.1 (TAMSAT), and Multi-Source Weighted Ensemble Precipitation version 2.8 (MSWEP) across the North and South Gojjam sub-basins of the Abbay Basin. Using ground observations as benchmarks, spatial and temporal accuracy was assessed under varying elevation and rainfall intensity conditions, employing bias decomposition, error analysis, and detection metrics. Results show that rainfall variability in the region is shaped more by the local climate and topography than elevation, with elevation alone proving a weak predictor (R2 < 0.5). Among the products, MSWEP v2.8 demonstrated the highest daily rainfall detection skill (≈ 87–88%), followed by TAMSAT (≈78%), while CHIRPS detected only about half of rainfall events (≈54%) and tended to overestimate no-rain days. MSWEP’s error composition is dominated by low random error (~52%), though it slightly overestimates rainfall and rainy days. TAMSAT provides finer-resolution data that capture localized variability and dry conditions well, with the lowest false alarm rate and moderate random error (~59%). CHIRPS exhibits weaker daily performance, dominated by high random error (~66%) and missed bias, though it improves at monthly scales and better captures heavy and violent rainfall. Seasonally, SRPs reproduce MAM rainfall reasonably well across both sub-basins, but their performance deteriorates markedly in JJAS, particularly in the south. These findings highlight the importance of sub-basin scale analysis and demonstrate that random versus systematic error composition is critical for understanding product reliability. The results provide practical guidance for selecting and calibrating SRPs in mountainous regions, supporting improved water resource management, climate impact assessment, and hydrological modeling in data-scarce environments. Full article
(This article belongs to the Special Issue Hydrometeorological Modelling Based on Remotely Sensed Data)
Show Figures

Figure 1

19 pages, 3715 KB  
Article
Understanding Hydrological Changes at Chiang Saen in the Lancang–Mekong River by Integrating Satellite-Based Meteorological Observations into a Deep Learning Model
by Muzi Zhang, Jinqiang Wang, Hongbin Gu, Jian Zhou, Weiwei Wang, Yicheng Wang, Juanjuan Chen, Xueqian Yang, Qiyue Wang, Zhiwen Yi, Yi Huo and Wenchao Sun
Remote Sens. 2025, 17(24), 4002; https://doi.org/10.3390/rs17244002 - 11 Dec 2025
Viewed by 415
Abstract
Understanding the temporal variation in streamflow in the Lancang–Mekong River and its driving mechanism is essential for water resource management of this important international river. In this study, streamflow at the Chiang Saen gauging station was simulated using a long short-term memory (LSTM) [...] Read more.
Understanding the temporal variation in streamflow in the Lancang–Mekong River and its driving mechanism is essential for water resource management of this important international river. In this study, streamflow at the Chiang Saen gauging station was simulated using a long short-term memory (LSTM) model driven by satellite-based Multi-Source Weighted-Ensemble Precipitation (MSWEP) and Multi-Source Weather (MSWX) datasets, with the aim of quantifying the contributions of climate change and human activities to streamflow variations. A key contribution of this work lies in the use of LSTM to reproduce naturalized streamflow conditions—using only climate inputs—thereby providing a data-driven alternative to conventional process-based modeling approaches in this data-scarce basin. The monthly precipitation and temperature data of Chiang Saen station from 1979 to 1991 are used for model training and validation. The natural streamflow of Chiang Saen station from 1992 to 2021 is reconstructed based on the trained model. The results show that the annual average precipitation of the basin from 1979 to 2021 only exhibits a statistically insignificant decreasing trend, while the annual average temperature shows a statistically significant upward trend, and the inter-annual variation in the annual average streamflow shows a non-significant downward trend. Periodic analysis shows that the main periodicity of precipitation, temperature, and streamflow data is 12 months, following annual periodicity in climate. LSTM simulations demonstrate high accuracy in predicting the streamflow in T month based on the MSWEP precipitation and MSWX temperature data in T-2, T-1, and T months. On an annual scale, the streamflow in the changing period (1992–2021) decreases by only 4.6% compared with the reference period (1979–1991). In spring, the streamflow in the changing period is 30.6% higher than that of the reference period, and climate change and human activities contribute 40.8% and 59.2%, respectively. Increases in streamflow (3.4%) are also detected in the winter, with human activity as the dominant contributing factor. For the summer, the streamflow in the changing period is −8.2% lower than that in the reference period, with a greater contribution from human activities (68.7%) than climate change (31.3%). The streamflow in autumn of the changing period is −12.1% lower than that in the reference period, with a greater contribution from human activities (90.2%) than climate change (9.8%). In general, the findings of this study indicate that the driving mechanisms behind streamflow changes at Chiang Saen are complex at different temporal scales, and they provide valuable insights for improving our understanding of hydrological changes within the Lancang–Mekong River Basin. Full article
Show Figures

Figure 1

21 pages, 60611 KB  
Article
Development of a Drought Assessment Index Coupling Physically Based Constraints and Data-Driven Approaches
by Helong Yu, Zeyu An, Beisong Qi, Yihao Wang, Huanjun Liu, Jiming Liu, Chuan Qin, Hongjie Zhang, Xinyi Han, Xinle Zhang and Yuxin Ma
Remote Sens. 2025, 17(20), 3452; https://doi.org/10.3390/rs17203452 - 16 Oct 2025
Viewed by 652
Abstract
To improve the physical consistency and interpretability of traditional drought indices, this study proposes a drought assessment model that couples physically based constraints with data-driven approaches, leading to the development of a Multivariate Drought Index (MDI). The model employs convolutional neural networks to [...] Read more.
To improve the physical consistency and interpretability of traditional drought indices, this study proposes a drought assessment model that couples physically based constraints with data-driven approaches, leading to the development of a Multivariate Drought Index (MDI). The model employs convolutional neural networks to achieve physically consistent downscaling, thereby obtaining a high-resolution Normalized Difference Water Index (NDWI), Temperature Vegetation Dryness Index (TVDI), Vegetation Condition Index (VCI), and Temperature Condition Index (TCI). Objective weights are determined using the Criteria Importance Through Intercriteria Correlation method, while random forest and Shapley Additive Explanations are integrated for nonlinear interpretation and physics-guided calibration, forming an ensemble framework that incorporates multi-source and multi-scale factors. Validation with multi-source data from 2000 to 2024 in the major maize-growing areas of Heilongjiang Province demonstrates that MDI outperforms single indices and the Vegetation Health Index (VHI), achieving a correlation coefficient (r = 0.87), coefficient of determination (R2 = 0.87), RMSE (0.08), and classification accuracy (87.4%). During representative drought events, MDI identifies signals 16–20 days earlier than the Standardized Precipitation Evapotranspiration Index (SPEI) and the Soil Moisture Condition Index (SMCI), and effectively captures localized drought patches at a 250 m scale. Feature importance analysis indicates that the NDWI and TVDI are consistently identified as dominant factors across all three methods, aligning physically interpretable analysis with statistical contribution. Long-term risk zoning reveals that the central–western region of the study area constitutes a high-risk zone, accounting for 42.6% of the total. This study overcomes the limitations of single indices by integrating physical consistency with the advantages of data-driven methods, achieving refined spatiotemporal characterization and enhanced overall performance, while also demonstrating potential for application across different crops and regions. Full article
Show Figures

Figure 1

24 pages, 7680 KB  
Article
Warm-Season Precipitation in the Eastern Pamir Plateau: Evaluation from Multi-Source Datasets and Elevation Dependence
by Mengying Yao, Junqiang Yao, Weiyi Mao and Jing Chen
Remote Sens. 2025, 17(19), 3302; https://doi.org/10.3390/rs17193302 - 26 Sep 2025
Viewed by 656
Abstract
As the Pamir Plateau is known as the “Water Tower of Central Asia”, accurate precipitation dataset is essential for the study of climate and hydrology in this region. Based on the monthly precipitation observations from 268 meteorological stations in the Eastern Pamir Plateau [...] Read more.
As the Pamir Plateau is known as the “Water Tower of Central Asia”, accurate precipitation dataset is essential for the study of climate and hydrology in this region. Based on the monthly precipitation observations from 268 meteorological stations in the Eastern Pamir Plateau (EPP) during the April-to-September warm season of 2010–2024, this paper comprehensively evaluates the applicability of eight multi-source precipitation datasets in complex terrains by using statistical indicators, constructs a skill-weighted ensemble mean dataset (Skill-Ens), and analyzes the elevation-dependent characteristics of precipitation in the EPP. The research findings are as follows: (1) The warm-season precipitation in the EPP shows a significant elevation-dependent feature, with the maximum precipitation altitude (MPA) in the range of 2400–2800 m. Precipitation is reduced above this elevation range, but a second MPA may appear in the glacier area above 4000 m. (2) Among the studied eight datasets, the first-generation Chinese Global Land-surface Reanalysis (CRA40/Land) performs the best overall. A long-term (1979–2020) high-resolution (1/30°) precipitation dataset for the Third Pole region (TPHiPr) can most accurately capture the elevation-dependent characteristics of precipitation, while the satellite datasets are relatively poor in this respect. (3) The skill-weighted ensemble mean dataset (Skill-Ens) constructed in this study can significantly improve precipitation estimation (DISO = 0.35), especially in the MPA region, and can accurately depict the elevation-dependent characteristics of precipitation as well (CC = 0.92). In a word, this paper provides the applicable options for precipitation data in complex terrain areas. With the Skill-Ens, the limitation of the individual dataset has been compensated for, which is of significant application value in improving the accuracy of hydrological simulations in high-elevation mountainous areas. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

30 pages, 2710 KB  
Article
Improving Daily CMIP6 Precipitation in Southern Africa Through Bias Correction— Part 2: Representation of Extreme Precipitation
by Amarech Alebie Addisuu, Gizaw Mengistu Tsidu and Lenyeletse Vincent Basupi
Climate 2025, 13(5), 93; https://doi.org/10.3390/cli13050093 - 2 May 2025
Cited by 4 | Viewed by 2785
Abstract
Accurate simulation of extreme precipitation events is crucial for managing climate-vulnerable sectors in Southern Africa, as such events directly impact agriculture, water resources, and disaster preparedness. However, global climate models frequently struggle to capture these phenomena, which limits their practical applicability. This study [...] Read more.
Accurate simulation of extreme precipitation events is crucial for managing climate-vulnerable sectors in Southern Africa, as such events directly impact agriculture, water resources, and disaster preparedness. However, global climate models frequently struggle to capture these phenomena, which limits their practical applicability. This study investigates the effectiveness of three bias correction techniques—scaled distribution mapping (SDM), quantile distribution mapping (QDM), and QDM with a focus on precipitation above and below the 95th percentile (QDM95)—and the daily precipitation outputs from 11 Coupled Model Intercomparison Project Phase 6 (CMIP6) models. The Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) dataset was served as a reference. The bias-corrected and native models were evaluated against three observational datasets—the CHIRPS, Multi-Source Weighted Ensemble Precipitation (MSWEP), and Global Precipitation Climatology Center (GPCC) datasets—for the period of 1982–2014, focusing on the December-January-February season. The ability of the models to generate eight extreme precipitation indices developed by the Expert Team on Climate Change Detection and Indices (ETCCDI) was evaluated. The results show that the native and bias-corrected models captured similar spatial patterns of extreme precipitation, but there were significant changes in the amount of extreme precipitation episodes. While bias correction generally improved the spatial representation of extreme precipitation, its effectiveness varied depending on the reference dataset used, particularly for the maximum one-day precipitation (Rx1day), consecutive wet days (CWD), consecutive dry days (CDD), extremely wet days (R95p), and simple daily intensity index (SDII). In contrast, the total rain days (RR1), heavy precipitation days (R10mm), and extremely heavy precipitation days (R20mm) showed consistent improvement across all observations. All three bias correction techniques enhanced the accuracy of the models across all extreme indices, as demonstrated by higher pattern correlation coefficients, improved Taylor skill scores (TSSs), reduced root mean square errors, and fewer biases. The ranking of models using the comprehensive rating index (CRI) indicates that no single model consistently outperformed the others across all bias-corrected techniques relative to the CHIRPS, GPCC, and MSWEP datasets. Among the three bias correction methods, SDM and QDM95 outperformed QDM for a variety of criteria. Among the bias-corrected strategies, the best-performing models were EC-Earth3-Veg, EC-Earth3, MRI-ESM2, and the multi-model ensemble (MME). These findings demonstrate the efficiency of bias correction in improving the modeling of precipitation extremes in Southern Africa, ultimately boosting climate impact assessments. Full article
Show Figures

Figure 1

22 pages, 4618 KB  
Article
Understanding Climate Change Impacts on Streamflow by Using Machine Learning: Case Study of Godavari Basin
by Ravi Ande, Chandrashekar Pandugula, Darshan Mehta, Ravikumar Vankayalapati, Prashant Birbal, Shashikant Verma, Hazi Mohammad Azamathulla and Nisarg Nanavati
Water 2025, 17(8), 1171; https://doi.org/10.3390/w17081171 - 14 Apr 2025
Cited by 2 | Viewed by 2480
Abstract
The study aims to assess future streamflow forecasts in the Godavari basin of India under climate change scenarios. The primary objective of the Coupled Model Inter-comparison Project Phase 6 (CMIP6) was to evaluate future streamflow forecasts across different catchments in the Godavari basin, [...] Read more.
The study aims to assess future streamflow forecasts in the Godavari basin of India under climate change scenarios. The primary objective of the Coupled Model Inter-comparison Project Phase 6 (CMIP6) was to evaluate future streamflow forecasts across different catchments in the Godavari basin, India, with an emphasis on understanding the impacts of climate change. This study employed both conceptual and machine learning models to assess how changing precipitation patterns and temperature variations influence streamflow dynamics. Seven satellite precipitation products CMORPH, Princeton Global Forcing (PGF), Tropical Rainfall Measuring Mission (TRMM), Climate Prediction Centre (CPC), Infrared Precipitation with Stations (CHIRPS), and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN-CDR) were evaluated in a gridded precipitation evaluation over the Godavari River basin. Results of Multi-Source Weighted-Ensemble Precipitation (MSWEP) had a Nash–Sutcliffe efficiency (NSE), coefficient of determination (R2), and root mean square error (RMSE) of 0.806, 0.831, and 56.734 mm/mon, whereas the Tropical Rainfall Measuring Mission had 0.768, 0.846, and 57.413 mm, respectively. MSWEP had the highest accuracy, the lowest false alarm ratio, and the highest Peirce’s skill score (0.844, 0.571, and 0.462). Correlation and pairwise correlation attribution approaches were used to assess the input parameters, which included a two-day lag of streamflow, maximum and minimum temperatures, and several precipitation datasets (IMD, EC-Earth3, EC-Earth3-Veg, MIROC6, MRI-ESM2-0, and GFDL-ESM4). CMIP6 datasets that had been adjusted for bias were used in the modeling process. R, NSE, RMSE, and R2 assessed the model’s effectiveness. RF and M5P performed well when using CMIP6 datasets as input. RF demonstrated adequate performance in testing (0.4 < NSE < 0.50 and 0.5 < R2 < 0.6) and extremely good performance in training (0.75 < NSE < 1 and 0.7 < R < 1). Likewise, M5P demonstrated good performance in both training and testing (0.4 < NSE < 0.50 and 0.5 < R2 < 0.6). While RF was the best performer for both datasets, Indian Meteorological Department outperformed all CMIP6 datasets in streamflow modeling. Using the Indian Meteorological Department gridded precipitation, RF’s NSE, R, R2, and RMSE values during training were 0.95, 0.979, 0.937, and 30.805 m3/s. The test results were 0.681, 0.91, 0.828, and 41.237 m3/s. Additionally, the Multi-Layer Perceptron (MLP) model demonstrated consistent performance across both the training and assessment phases, reinforcing the reliability of machine learning approaches in climate-informed hydrological forecasting. This study underscores the significance of incorporating climate change projections into hydrological modeling to enhance water resource management and adaptation strategies in the Godavari basin and similar regions facing climate-induced hydrological shifts. Full article
(This article belongs to the Special Issue Climate Change and Hydrological Processes, 2nd Edition)
Show Figures

Figure 1

25 pages, 7970 KB  
Article
Bayesian Model Averaging for Satellite Precipitation Data Fusion: From Accuracy Estimation to Runoff Simulation
by Shaowei Ning, Yang Cheng, Yuliang Zhou, Jie Wang, Yuliang Zhang, Juliang Jin and Bhesh Raj Thapa
Remote Sens. 2025, 17(7), 1154; https://doi.org/10.3390/rs17071154 - 25 Mar 2025
Cited by 4 | Viewed by 2230
Abstract
Precipitation plays a vital role in the hydrological cycle, directly affecting water resource management and influencing flood and drought risk prediction. This study proposes a Bayesian Model Averaging (BMA) framework to integrate multiple precipitation datasets. The framework enhances estimation accuracy for hydrological simulations. [...] Read more.
Precipitation plays a vital role in the hydrological cycle, directly affecting water resource management and influencing flood and drought risk prediction. This study proposes a Bayesian Model Averaging (BMA) framework to integrate multiple precipitation datasets. The framework enhances estimation accuracy for hydrological simulations. The BMA framework synthesizes four precipitation products—Climate Hazards Group Infrared Precipitation with Station (CHIRPS), the fifth-generation ECMWF Atmospheric Reanalysis (ERA5), Global Satellite Mapping of Precipitation (GSMaP), and Integrated Multi-satellitE Retrievals (IMERG)—over China’s Ganjiang River Basin from 2008 to 2020. We evaluated the merged dataset’s performance against its constituent datasets and the Multi-Source Weighted-Ensemble Precipitation (MSWEP) at daily, monthly, and seasonal scales. Evaluation metrics included the correlation coefficient (CC), root mean square error (RMSE), and Kling–Gupta efficiency (KGE). The Variable Infiltration Capacity (VIC) hydrological model was further applied to assess how these datasets affect runoff simulations. The results indicate that the BMA-merged dataset substantially improves precipitation estimation accuracy when compared with individual inputs. The merged product achieved optimal daily performance (CC = 0.72, KGE = 0.70) and showed superior seasonal skill, notably reducing biases in autumn and winter. In hydrological applications, the BMA-driven VIC model effectively replicated observed runoff patterns, demonstrating its efficacy for regional long-term predictions. This study highlights BMA’s potential for optimizing hydrological model inputs, providing critical insights for sustainable water management and risk reduction in complex basins. Full article
(This article belongs to the Special Issue Remote Sensing in Hydrometeorology and Natural Hazards)
Show Figures

Figure 1

24 pages, 5566 KB  
Article
Validation of CRU TS v4.08, ERA5-Land, IMERG v07B, and MSWEP v2.8 Precipitation Estimates Against Observed Values over Pakistan
by Haider Abbas, Wenlong Song, Yicheng Wang, Kaizheng Xiang, Long Chen, Tianshi Feng, Shaobo Linghu and Muneer Alam
Remote Sens. 2024, 16(24), 4803; https://doi.org/10.3390/rs16244803 - 23 Dec 2024
Cited by 7 | Viewed by 3492
Abstract
Global precipitation products (GPPs) are vital in weather forecasting, efficient water management, and monitoring floods and droughts. However, the precision of these datasets varies considerably across different climatic regions and topographic conditions. Therefore, the accuracy assessment of the precipitation dataset is crucial at [...] Read more.
Global precipitation products (GPPs) are vital in weather forecasting, efficient water management, and monitoring floods and droughts. However, the precision of these datasets varies considerably across different climatic regions and topographic conditions. Therefore, the accuracy assessment of the precipitation dataset is crucial at the local scale before its application. The current study initially compared the performance of recently modified and upgraded precipitation datasets, including Climate Research Unit Time-Series (CRU TS v4.08), fifth-generation ERA5-Land (ERA-5), Integrated Multi-satellite Retrievals for GPM (IMERG) final run (IMERG v07B), and Multi-Source Weighted-Ensemble Precipitation (MSWEP v2.8), against ground observations on the provincial basis across Pakistan from 2003 to 2020. Later, the study area was categorized into four regions based on the elevation to observe the impact of elevation gradients on GPPs’ skills. The monthly and seasonal precipitation estimations of each product were validated against in situ observations using statistical matrices, including the correlation coefficient (CC), root mean square error (RMSE), percent of bias (PBias), and Kling–Gupta efficiency (KGE). The results reveal that IMERG7 consistently outperformed across all the provinces, with the highest CC and lowest RMSE values. Meanwhile, the KGE (0.69) and PBias (−0.65%) elucidated, comparatively, the best performance of MSWEP2.8 in Sindh province. Additionally, all the datasets demonstrated their best agreement with the reference data toward the southern part (0–500 m elevation) of Pakistan, while their performance notably declined in the northern high-elevation glaciated mountain regions (above 3000 m elevation), with considerable overestimations. The superior performance of IMERG7 in all the elevation-based regions was also revealed in the current study. According to the monthly and seasonal scale evaluation, all the precipitation products except ERA-5 showed good precipitation estimation ability on a monthly scale, followed by the winter season, pre-monsoon season, and monsoon season, while during the post-monsoon season, all the datasets showed weak agreement with the observed data. Overall, IMERG7 exhibited comparatively superior performance, followed by MSWEP2.8 at a monthly scale, winter season, and pre-monsoon season, while MSWEP2.8 outperformed during the monsoon season. CRU TS showed a moderate association with the ground observations, whereas ERA-5 performed poorly across all the time scales. In the current scenario, this study recommends IMERG7 and MSWEP2.8 for hydrological and climate studies in this region. Additionally, this study emphasizes the need for further research and experiments to minimize bias in high-elevation regions at different time scales to make GPPs more reliable for future studies. Full article
Show Figures

Figure 1

21 pages, 15148 KB  
Article
Evaluation of Three High-Resolution Satellite and Meteorological Reanalysis Precipitation Datasets over the Yellow River Basin in China
by Meixia Xie, Zhenhua Di, Jianguo Liu, Wenjuan Zhang, Huiying Sun, Xinling Tian, Hao Meng and Xurui Wang
Water 2024, 16(22), 3183; https://doi.org/10.3390/w16223183 - 7 Nov 2024
Cited by 1 | Viewed by 1683
Abstract
Recently, Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (IMERG) mission and European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5) precipitation datasets have been widely used in remote sensing and atmospheric studies, respectively, because of their high accuracy. A dataset of 268 [...] Read more.
Recently, Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (IMERG) mission and European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5) precipitation datasets have been widely used in remote sensing and atmospheric studies, respectively, because of their high accuracy. A dataset of 268 site-gauge precipitation measurements over the Yellow River Basin in China was used in this study to comprehensively evaluate the performance of three high-resolution precipitation products, each with a spatial resolution of 0.1°, consisting of two satellite-derived datasets, IMERG and multisource weighted-ensemble precipitation (MSWEP), and one ERA5-derived dataset, ERA5-Land. The results revealed that the spatial distribution of IMERG annual precipitation closely resembled that of the observed rainfall and generally exhibited a downward trend from southeast to northwest. Among the three products, IMERG had the best performance at the annual scale, whereas ERA5-Land had the worst performance due to significant overestimation. Specifically, IMERG demonstrated the highest correlation coefficient (CC) above 0.8 and the lowest BIAS and root mean square error (RMSE), with values in most regions of 24.79 mm/a and less than 100 mm/a, respectively, whereas ERA5-Land presented the highest RMSE exceeding 500 mm/a, BIAS of 1265.7 mm/a, and the lowest CC below 0.2 in most regions. At the season scale, IMERG also exhibited the best performance across all four seasons, with a maximum of 17.99 mm/a in summer and a minimum of 0.55 mm/a in winter. Following IMERG, the MSWEP data closely aligned with the observations over the entire area in summer, southern China in spring and winter, and middle China in autumn. In addition, IMERG presented the highest Kling–Gupta efficiency coefficient (KGE) of 0.823 at the annual scale and the highest KGE (>0.77) across all four seasons among the three products compared with ERA5-Land and MSWEP, which had KEG values of −2.718 and −0.403, respectively. Notably, ERA5-Land exhibited a significant positive deviation from the observations at both the annual and seasonal scales, whereas the other products presented relatively smaller biases. Full article
Show Figures

Figure 1

32 pages, 95282 KB  
Article
Inter-Comparison of Multiple Gridded Precipitation Datasets over Different Climates at Global Scale
by Wenyan Qi, Shuhong Wang and Jianlong Chen
Water 2024, 16(11), 1553; https://doi.org/10.3390/w16111553 - 28 May 2024
Cited by 3 | Viewed by 3214
Abstract
Comprehensive evaluations of global precipitation datasets are imperative for gaining insights into their performance and potential applications. However, the existing evaluations of global precipitation datasets are often constrained by limitations regarding the datasets, specific regions, and hydrological models used for hydrologic predictions. The [...] Read more.
Comprehensive evaluations of global precipitation datasets are imperative for gaining insights into their performance and potential applications. However, the existing evaluations of global precipitation datasets are often constrained by limitations regarding the datasets, specific regions, and hydrological models used for hydrologic predictions. The accuracy and hydrological utility of eight precipitation datasets (including two gauged-based, five reanalysis and one merged precipitation datasets) were evaluated on a daily timescale from 1982 to 2015 in this study by using 2404 rain gauges, 2508 catchments, and four lumped hydrological models under varying climatic conditions worldwide. Specifically, the characteristics of different datasets were first analyzed. The accuracy of precipitation datasets at the site and regional scale was then evaluated with daily observations from 2404 gauges and two high-resolution gridded gauge-interpolated regional datasets. The effectiveness of precipitation datasets in runoff simulation was then assessed by using 2058 catchments around the world in combination with four conceptual hydrological models. The results show that: (1) all precipitation datasets demonstrate proficiency in capturing the interannual variability of the annual mean precipitation, but with magnitudes deviating by up to 200 mm/year among the datasets; (2) the precipitation datasets directly incorporating daily gauge observations outperform the uncorrected precipitation datasets. The Climate Precipitation Center dataset (CPC), Global Precipitation Climatology Center dataset (GPCC) and multi-source weighted-ensemble precipitation V2 (MSWEP V2) can be considered the best option for most climate regions regarding the accuracy of precipitation datasets; (3) the performance of hydrological models driven by different datasets is climate dependent and is notably worse in arid regions (with median Kling–Gupta efficiency (KGE) ranging from 0.39 to 0.65) than in other regions. The MSWEP V2 posted a stable performance with the highest KGE and Nash–Sutcliffe Efficiency (NSE) values in most climate regions using various hydrological models. Full article
Show Figures

Figure 1

18 pages, 3503 KB  
Article
Assessing the Impact of Climate Change on Snowfall Conditions in Poland Based on the Snow Fraction Sensitivity Index
by Urszula Somorowska
Resources 2024, 13(5), 60; https://doi.org/10.3390/resources13050060 - 24 Apr 2024
Cited by 8 | Viewed by 8879
Abstract
This study focuses on temperature and snowfall conditions in Poland, both of which were analyzed from 1981 to 2020. A 40-year record of daily snow fraction time series values was reconstructed using a unique and global multi-source weighted-ensemble precipitation (MSWEP) product, which provided [...] Read more.
This study focuses on temperature and snowfall conditions in Poland, both of which were analyzed from 1981 to 2020. A 40-year record of daily snow fraction time series values was reconstructed using a unique and global multi-source weighted-ensemble precipitation (MSWEP) product, which provided a spatially and temporally consistent reference for the assessment of meteorological conditions. The average states and trends in snow fraction and temperature were analyzed across several years, focusing on the 6-month cold season (November–April). The impact of temperature on the snow fraction pattern was assessed by introducing a snow fraction sensitivity index. To predict short-term changes in snow conditions, a proxy model was established; it incorporated historical trends in the snow fraction as well as its mean state. This study provides clear evidence that the snow fraction is principally controlled by increases in temperature. A warming climate will thus cause a decline in the snow fraction, as we observed in vast lowland areas. Given the ongoing global warming, by the 2050s, snow-dominated areas may go from covering 86% to only 30% of the country’s surface; they will be converted into transient rain–snow areas. Our results demonstrate that a decline in snow water resources has already occurred, and these resources are expected to diminish further in the near future. New insights into the sensitivity of the snow fraction to climate warming will expand our collective knowledge of the magnitude and spatial extent of snow degradation. Such widespread changes have implications for the timing and availability of soil and groundwater resources as well as the timing and likelihood of floods and droughts. Thus, these findings will provide valuable information that can inform environmental managers of the importance of changing snowfall conditions, guiding them to include this aspect in future climate adaptation strategies. Full article
(This article belongs to the Special Issue Risk Assessment of Water Resources)
Show Figures

Figure 1

20 pages, 13232 KB  
Article
Evaluation of Satellite-Derived Precipitation Products for Streamflow Simulation of a Mountainous Himalayan Watershed: A Study of Myagdi Khola in Kali Gandaki Basin, Nepal
by Aashutosh Aryal, Thanh-Nhan-Duc Tran, Brijesh Kumar and Venkataraman Lakshmi
Remote Sens. 2023, 15(19), 4762; https://doi.org/10.3390/rs15194762 - 28 Sep 2023
Cited by 42 | Viewed by 4730
Abstract
This study assesses four Satellite-derived Precipitation Products (SPPs) that are corrected and validated against gauge data such as Soil Moisture to Rain—Advanced SCATterometer V1.5 (SM2RAIN-ASCAT), Multi-Source Weighted-Ensemble Precipitation V2.8 (MSWEP), Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM Final run V6 (GPM IMERGF), [...] Read more.
This study assesses four Satellite-derived Precipitation Products (SPPs) that are corrected and validated against gauge data such as Soil Moisture to Rain—Advanced SCATterometer V1.5 (SM2RAIN-ASCAT), Multi-Source Weighted-Ensemble Precipitation V2.8 (MSWEP), Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM Final run V6 (GPM IMERGF), and Climate Hazards Group InfraRed Precipitation with Station (CHIRPS). We evaluate the performance of these SPPs in Nepal’s Myagdi Khola watershed, located in the Kali Gandaki River basin, for the period 2009–2019. The SPPs are evaluated by validating the gridded precipitation products using the hydrological model, Soil and Water Assessment Tool (SWAT). The results of this study show that the SM2RAIN-ASCAT and GPM IMERGF performed better than MSWEP and CHIRPS in accurately simulating daily and monthly streamflow. GPM IMERGF and SM2RAIN-ASCAT are found to be the better-performing models, with higher NSE values (0.63 and 0.61, respectively) compared with CHIRPS and MSWEP (0.45 and 0.41, respectively) after calibrating the model with monthly data. Moreover, SM2RAIN-ASCAT demonstrated the best performance in simulating daily and monthly streamflow, with NSE values of 0.57 and 0.63, respectively, after validation. This study’s findings support the use of satellite-derived precipitation datasets as inputs for hydrological models to address the hydrological complexities of mountainous watersheds. Full article
(This article belongs to the Topic Hydrology and Water Resources Management)
Show Figures

Graphical abstract

18 pages, 3346 KB  
Article
A Simple Method of Coupled Merging and Downscaling for Multi-Source Daily Precipitation Data
by Na Zhao and Kainan Chen
Remote Sens. 2023, 15(18), 4377; https://doi.org/10.3390/rs15184377 - 6 Sep 2023
Cited by 3 | Viewed by 2270
Abstract
High accuracy and a high spatiotemporal resolution of precipitation are essential for the hydrological, ecological, and environmental fields. However, the existing daily gridded precipitation datasets, such as remote sensing products, are limited both by the coarse resolution and the low accuracy. Despite considerable [...] Read more.
High accuracy and a high spatiotemporal resolution of precipitation are essential for the hydrological, ecological, and environmental fields. However, the existing daily gridded precipitation datasets, such as remote sensing products, are limited both by the coarse resolution and the low accuracy. Despite considerable efforts having been invested in downscaling or merging, a method of coupled and simultaneously downscaling and merging multiple datasets is currently lacking, which limits the wide application of individual popular satellite precipitation products. For the first time, in this study, we propose a simple coupled merging and downscaling (CMD) method for simultaneously obtaining multiple high-resolution and high-accuracy daily precipitation datasets. A pixel-repeated decomposition method was first proposed, and the random forest (RF) method was then applied to merge multiple daily precipitation datasets. The individual downscaled dataset was obtained by multiplying the result of merging by an explanatory rate obtained by RF. The results showed that the CMD method exhibited significantly better performance compared with the original datasets, with the mean absolute error (MAE) improving by up to 50%, the majority of the values of bias ranging between −1 mm and 1 mm, and the majority of the Kling–Gupta efficiency (KGE) values being greater than 0.7. CMD was more accurate than the widely used dataset, Multi-Source Weighted-Ensemble Precipitation (MSWEP), with a 43% reduction in the MAE and a 245% improvement in the KGE. In addition, the long-term estimation suggested that the proposed method exhibits stable good performance over time. Full article
Show Figures

Figure 1

22 pages, 35833 KB  
Article
Performance Evaluation of Multi-Typed Precipitation Products for Agricultural Research in the Amur River Basin over the Sino–Russian Border Region
by Yezhi Zhou, Juanle Wang, Elena Grigorieva, Kai Li and Huanyu Xu
Remote Sens. 2023, 15(10), 2577; https://doi.org/10.3390/rs15102577 - 15 May 2023
Cited by 1 | Viewed by 1920
Abstract
Precipitation data are crucial for research on agricultural production, vegetation growth, and other topics related to environmental resources and ecology. With an increasing number of multi-typed gridded precipitation products (PPs), it is important to validate the applicability of PPs and improve their subsequent [...] Read more.
Precipitation data are crucial for research on agricultural production, vegetation growth, and other topics related to environmental resources and ecology. With an increasing number of multi-typed gridded precipitation products (PPs), it is important to validate the applicability of PPs and improve their subsequent monitoring capabilities to ensure accurate precipitation-based research. This study evaluates the performance of four mainstream PPs—European Centre for Medium-Range Weather Forecasts Reanalysis V5 (ERA5), ERA5-Land, Multi-Source Weighted-Ensemble Precipitation (MSWEP), and integrated multi-satellite retrievals for the Global Precipitation Mission (GPM)—in capturing the characteristics of precipitation intensity and derived agricultural drought in the crop-enrichment area over the Sino–Russian border region. The results show that, overall, GPM has the most balanced capability among the different experimental scenarios, with well-identified seasonal precipitation intensities. ERA5-Land had strong abilities in depicting annual distribution from spatial/stationary outcomes and obtained advantages in daily multi-parameter consistency verification. When evaluating monthly data in different agroclimatic areas, MSWEP and GPM had outstanding performances in the regions of Russia and China, respectively. For evaluating precipitation intensities and agricultural drought based on daily and monthly precipitation, MSWEP and GPM demonstrated finer performances based on combined agricultural thematic areas (ATAs). However, seasonal effects and affiliated material features were found to be the main factors in exhibiting identification capabilities under different scenarios. Despite good handling of intensity recognition in the eastern Chinese area, ERA5′s capabilities need to be improved by extending sources for calibrating gauged data and information on dry–wet conditions. Overall, this study provides insight into the characterization of PP performances and supports optimal product selection for different applications. Full article
Show Figures

Figure 1

17 pages, 4198 KB  
Article
A Method for Merging Multi-Source Daily Satellite Precipitation Datasets and Gauge Observations over Poyang Lake Basin, China
by Na Zhao
Remote Sens. 2023, 15(9), 2407; https://doi.org/10.3390/rs15092407 - 4 May 2023
Cited by 6 | Viewed by 3098
Abstract
Obtaining precipitation estimates with high resolution and high accuracy is critically important for regional meteorological, hydrological, and other applications. Although satellite precipitation products can provide precipitation fields at various scales, their applications are limited by the relatively coarse spatial resolution and low accuracy. [...] Read more.
Obtaining precipitation estimates with high resolution and high accuracy is critically important for regional meteorological, hydrological, and other applications. Although satellite precipitation products can provide precipitation fields at various scales, their applications are limited by the relatively coarse spatial resolution and low accuracy. In this study, we propose a multi-source merging approach for generating accurate and high-resolution precipitation fields on a daily time scale. Specifically, a random effects eigenvector spatial filtering (RESF) method was first applied to downscale satellite precipitation datasets. The RESF method, together with Kriging, was then applied to merge the downscaled satellite precipitation products with station observations. The results were compared against observations and a data fusion dataset, the Multi-Source Weighted-Ensemble Precipitation (MSWEP). It was shown that the estimates of the proposed method significantly outperformed the individual satellite precipitation product, reducing the average value of mean absolute error (MAE) by 52%, root mean square error (RMSE) by 63%, and improving the mean value of Kling–Gupta efficiency (KGE) by 157%, respectively. Daily precipitation estimates exhibited similar spatial patterns to the MSWEP products, and were more accurate in almost all cases, with a 42% reduction in MAE, 46% reduction in RMSE, and 79% improvement in KGE. The proposed approach provides a promising solution to generate accurate daily precipitation fields with high spatial resolution. Full article
Show Figures

Figure 1

Back to TopTop