Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = multi-satellite formations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9605 KiB  
Article
Future Modeling of Urban Growth Using Geographical Information Systems and SLEUTH Method: The Case of Sanliurfa
by Songül Naryaprağı Gülalan, Fred Barış Ernst and Abdullah İzzeddin Karabulut
Sustainability 2025, 17(15), 6833; https://doi.org/10.3390/su17156833 - 28 Jul 2025
Viewed by 411
Abstract
This study was conducted using Geographic Information Systems (GISs), Remote Sensing (RS) techniques, and the SLEUTH model based on Cellular Automata (CA) to analyze the spatial and temporal dynamics of urban growth in Sanliurfa Province and to create future projections. The model in [...] Read more.
This study was conducted using Geographic Information Systems (GISs), Remote Sensing (RS) techniques, and the SLEUTH model based on Cellular Automata (CA) to analyze the spatial and temporal dynamics of urban growth in Sanliurfa Province and to create future projections. The model in question simulates urban sprawl by using Slope, Land Use/Land Cover (LULC), Excluded Areas, urban areas, transportation, and hill shade layers as inputs. In addition, disaster risk areas and public policies that will affect the urbanization of the city were used as input layers. In the study, the spatial pattern of urbanization in Sanliurfa was determined by using Landsat satellite images of six different periods covering the years 1985–2025. The Analytical Hierarchy Process (AHP) method was applied within the scope of Multi-Criteria Decision Analysis (MCDA). Weighting was made for each parameter. Spatial analysis was performed by combining these values with data in raster format. The results show that the SLEUTH model successfully reflects past growth trends when calibrated at different spatial resolutions and can provide reliable predictions for the future. Thus, the proposed model can be used as an effective decision support tool in the evaluation of alternative urbanization scenarios in urban planning. The findings contribute to the sustainability of land management policies. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

22 pages, 6192 KiB  
Article
Advanced DFE, MLD, and RDE Equalization Techniques for Enhanced 5G mm-Wave A-RoF Performance at 60 GHz
by Umar Farooq and Amalia Miliou
Photonics 2025, 12(5), 496; https://doi.org/10.3390/photonics12050496 - 16 May 2025
Viewed by 706
Abstract
This article presents the decision feedback equalizer (DFE), the maximum likelihood detection (MLD), and the radius-directed equalization (RDE) algorithms designed in MATLAB-R2018a to equalize the received signal in a dispersive optical link up to 120 km. DFE is essential for improving signal quality [...] Read more.
This article presents the decision feedback equalizer (DFE), the maximum likelihood detection (MLD), and the radius-directed equalization (RDE) algorithms designed in MATLAB-R2018a to equalize the received signal in a dispersive optical link up to 120 km. DFE is essential for improving signal quality in several communication systems, including WiFi networks, cable modems, and long-term evolution (LTE) systems. Its capacity to mitigate inter-symbol interference (ISI) and rapidly adjust to channel variations renders it a flexible option for high-speed data transfer and wireless communications. Conversely, MLD is utilized in applications that require great precision and dependability, including multi-input–multi-output (MIMO) systems, satellite communications, and radar technology. The ability of MLD to optimize the probability of accurate symbol detection in complex, high-dimensional environments renders it crucial for systems where signal integrity and precision are critical. Lastly, RDE is implemented as an alternative algorithm to the CMA-based equalizer, utilizing the idea of adjusting the amplitude of the received distorted symbol so that its modulus is closer to the ideal value for that symbol. The algorithms are tested using a converged 5G mm-wave analog radio-over-fiber (A-RoF) system at 60 GHz. Their performance is measured regarding error vector magnitude (EVM) values before and after equalization for different optical fiber lengths and modulation formats (QPSK, 16-QAM, 64-QAM, and 128-QAM) and shows a clear performance improvement of the output signal. Moreover, the performance of the proposed algorithms is compared to three commonly used algorithms: the simple least mean square (LMS) algorithm, the constant modulus algorithm (CMA), and the adaptive median filtering (AMF), demonstrating superior results in both QPSK and 16-QAM and extending the transmission distance up to 120 km. DFE has a significant advantage over LMS and AMF in reducing the inter-symbol interference (ISI) in a dispersive channel by using previous decision feedback, resulting in quicker convergence and more precise equalization. MLD, on the other hand, is highly effective in improving detection accuracy by taking into account the probability of various symbol sequences achieving lower error rates and enhancing performance in advanced modulation schemes. RDE performs best for QPSK and 16-QAM constellations among all the other algorithms. Furthermore, DFE and MLD are particularly suitable for higher-order modulation formats like 64-QAM and 128-QAM, where accurate equalization and error detection are of utmost importance. The enhanced functionalities of DFE, RDE, and MLD in managing greater modulation orders and expanding transmission range highlight their efficacy in improving the performance and dependability of our system. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

21 pages, 9306 KiB  
Article
An Integrated Approach Using Remote Sensing and Multi-Criteria Decision Analysis to Mitigate Agricultural Drought Impact in the Mazowieckie Voivodeship, Poland
by Magdalena Łągiewska and Maciej Bartold
Remote Sens. 2025, 17(7), 1158; https://doi.org/10.3390/rs17071158 - 25 Mar 2025
Cited by 2 | Viewed by 899
Abstract
Climate change, particularly the increasing frequency of droughts, poses a critical challenge for agriculture. Rising temperatures and water scarcity threaten both agricultural productivity and ecosystem stability, making the identification of effective drought mitigation strategies essential. This study introduces an innovative approach to agricultural [...] Read more.
Climate change, particularly the increasing frequency of droughts, poses a critical challenge for agriculture. Rising temperatures and water scarcity threaten both agricultural productivity and ecosystem stability, making the identification of effective drought mitigation strategies essential. This study introduces an innovative approach to agricultural drought monitoring in Poland, utilizing remote sensing (RS) satellite data, collected from 2001 to 2020, and the Drought Identification Satellite System (DISS) index at a 1 km × 1 km spatial resolution, in combination with Copernicus High-Resolution Layers (HRL). To assess areas’ capacities to mitigate drought risks, a multi-criteria decision (MCD) analysis of regional environmental conditions was conducted. Focusing on the Mazowieckie Voivodeship, an algorithm was developed to evaluate regional susceptibility to drought. Spatial datasets were used to analyze environmental indicators, producing a map of communal temperature mitigation capacities. Statistical analysis identified drought vulnerability, highlighting areas in need of urgent intervention, such as increased mid-field tree planting. The study revealed that the frequency of droughts in this region during the growing season from 2001 to 2020 exceeded 40%. As a result, 40 LAU 2 administrative units have been affected by multiple negative environmental factors that contribute to drought formation and its long-term persistence. The proposed methodology, integrating diverse satellite data sources and spatial analyses, offers an effective tool for drought monitoring, mitigation planning, and ecosystem protection in a changing climate. This approach provides valuable insights for policymakers and land managers in addressing agricultural drought challenges and enhancing regional resilience to the impacts of climate change. Full article
Show Figures

Figure 1

23 pages, 14330 KiB  
Article
Prediction Capability of Analytical Hierarchy Process (AHP) in Badland Susceptibility Mapping: The Foglia River Basin (Italy) Case of Study
by Margherita Bianchini, Stefano Morelli, Mirko Francioni and Roberta Bonì
Land 2025, 14(3), 651; https://doi.org/10.3390/land14030651 - 19 Mar 2025
Viewed by 1065
Abstract
Badland morphologies are prominent examples of linear erosion occurring on clay-rich slopes and are critical hotspots for sediment production. Traditional field-based mapping of these features can be both time-consuming and costly, particularly over larger basins. This research proposes a novel methodology for assessing [...] Read more.
Badland morphologies are prominent examples of linear erosion occurring on clay-rich slopes and are critical hotspots for sediment production. Traditional field-based mapping of these features can be both time-consuming and costly, particularly over larger basins. This research proposes a novel methodology for assessing badland susceptibility through a multi-criteria decision-making framework known as the Analytical Hierarchy Process (AHP). This methodology, developed and tested in the Foglia River basin of the Marche region (Italy), facilitates the identification and mapping of badland areas. More in detail, our study resulted in the creation of a comprehensive badland inventory and susceptibility map for the 102 km2 study area, identifying 276 badlands using a combination of satellite imagery, historical orthophotos, existing regional inventories, and field inspections. Key predisposing factors, including geological, land use, topographical, and hydrometric elements, were systematically analyzed using the AHP approach. The research findings indicate that badlands develop in medium to steep slopes oriented towards the southern quadrants and in proximity to watercourses; their formation is predominantly influenced by clayey–sandy lithology. The resulting inventory and susceptibility map serve as relevant tools for monitoring, preventing, and mitigating slope instability risks within the region. Full article
Show Figures

Figure 1

27 pages, 5373 KiB  
Article
Multi-Source Satellite Imagery and Machine Learning for Detecting Geological Formations in Cameroon’s Western Highlands
by Kacoutchy Jean Ayikpa, Valère-Carin Jofack Sokeng, Abou Bakary Ballo, Pierre Gouton and Koffi Fernand Kouamé
Signals 2025, 6(1), 12; https://doi.org/10.3390/signals6010012 - 11 Mar 2025
Viewed by 1811
Abstract
Accurate identification of geological formations is essential for understanding tectonic structures, planning mining activities, and sustainably managing natural resources. It goes beyond the scientific framework to play a key role in economic development, environmental preservation, and population security. This article proposes a study [...] Read more.
Accurate identification of geological formations is essential for understanding tectonic structures, planning mining activities, and sustainably managing natural resources. It goes beyond the scientific framework to play a key role in economic development, environmental preservation, and population security. This article proposes a study using machine learning to analyze different parameters from various sources of satellite imagery: multispectral optics (Landsat-8), radar (ALOS PALSAR), and soil and morphometric parameters (soil, altitude, slope, curvature, and shady). The data were preprocessed to remove atmospheric biases and harmonize spatial resolutions. Techniques such as principal component analysis, band ratios, and image fusion have made it possible to enrich imagery by highlighting spectral and textural characteristics. Finally, classifiers such as Random Forest, Gradient Boosting, and XGBoost (version 1.6.2) were used to evaluate the impact of each parameter on the classification. The results show that geographic parameters combined with PCA provide the best overall performance with Random Forest, achieving an accuracy of 55.29% and an MCC of 45.12% while ensuring a rapid training speed (3.6 s). The geographic parameters associated with the OLI spectrometric data show a good balance, with XGBoost achieving a slightly higher MCC (40.3%) with a moderate training time (7.9 s). On the other hand, the OLI spectrometric parameters coupled with PCA display significantly lower performance, with an accuracy of 45.05% and an MCC of 31.81% for Random Forest. These observations highlight the potential of geographic and geological parameters associated with suitable models to improve classification. The multi-source approach thus proves optimal for more robust and precise results. Full article
Show Figures

Figure 1

32 pages, 1019 KiB  
Article
Time Scale in Alternative Positioning, Navigation, and Timing: New Dynamic Radio Resource Assignments and Clock Steering Strategies
by Khanh Pham
Information 2025, 16(3), 210; https://doi.org/10.3390/info16030210 - 9 Mar 2025
Viewed by 892
Abstract
Terrestrial and satellite communications, tactical data links, positioning, navigation, and timing (PNT), as well as distributed sensing will continue to require precise timing and the ability to synchronize and disseminate time effectively. However, the supply of space-qualified clocks that meet Global Navigation Satellite [...] Read more.
Terrestrial and satellite communications, tactical data links, positioning, navigation, and timing (PNT), as well as distributed sensing will continue to require precise timing and the ability to synchronize and disseminate time effectively. However, the supply of space-qualified clocks that meet Global Navigation Satellite Systems (GNSS)-level performance standards is limited. As the awareness of potential disruptions to GNSS due to adversarial actions grows, the current reliance on GNSS-level timing appears costly and outdated. This is especially relevant given the benefits of developing robust and stable time scale references in orbit, especially as various alternatives to GNSS are being explored. The onboard realization of clock ensembles is particularly promising for applications such as those providing the on-demand dissemination of a reference time scale for navigation services via a proliferated Low-Earth Orbit (pLEO) constellation. This article investigates potential inter-satellite network architectures for coordinating time and frequency across pLEO platforms. These architectures dynamically allocate radio resources for clock data transport based on the requirements for pLEO time scale formations. Additionally, this work proposes a model-based control system for wireless networked timekeeping systems. It envisions the optimal placement of critical information concerning the implicit ensemble mean (IEM) estimation across a multi-platform clock ensemble, which can offer better stability than relying on any single ensemble member. This approach aims to reduce data traffic flexibly. By making the IEM estimation sensor more intelligent and running it on the anchor platform while also optimizing the steering of remote frequency standards on participating platforms, the networked control system can better predict the future behavior of local reference clocks paired with low-noise oscillators. This system would then send precise IEM estimation information at critical moments to ensure a common pLEO time scale is realized across all participating platforms. Clock steering is essential for establishing these time scales, and the effectiveness of the realization depends on the selected control intervals and steering techniques. To enhance performance reliability beyond what the existing Linear Quadratic Gaussian (LQG) control technique can provide, the minimal-cost-variance (MCV) control theory is proposed for clock steering operations. The steering process enabled by the MCV control technique significantly impacts the overall performance reliability of the time scale, which is generated by the onboard ensemble of compact, lightweight, and low-power clocks. This is achieved by minimizing the variance of the chi-squared random performance of LQG control while maintaining a constraint on its mean. Full article
(This article belongs to the Special Issue Sensing and Wireless Communications)
Show Figures

Graphical abstract

19 pages, 2621 KiB  
Article
Multi-Scale Debris Flow Warning Technology Combining GNSS and InSAR Technology
by Xiang Zhao, Linju He, Hai Li, Ling He and Shuaihong Liu
Water 2025, 17(4), 577; https://doi.org/10.3390/w17040577 - 17 Feb 2025
Viewed by 704
Abstract
The dynamic loads of fluid impact and static loads, such as the gravity of a rock mass during the formation of debris flows, exhibit a coupled effect of mutual influence. Under this coupling effect, surface monitoring points in disaster areas experience displacement. However, [...] Read more.
The dynamic loads of fluid impact and static loads, such as the gravity of a rock mass during the formation of debris flows, exhibit a coupled effect of mutual influence. Under this coupling effect, surface monitoring points in disaster areas experience displacement. However, existing methods do not consider the dynamic–static coupling effects of debris flows on the surface. Instead, they rely on GNSS or InSAR technology for dynamic or static single-scale monitoring, leading to high Mean Absolute Percentage Error (MAPE) values and low warning accuracy. To address these limitations and improve debris flow warning accuracy, a multi-scale warning method was proposed based on Global Navigation Satellite System (GNSS) and Synthetic Aperture Radar Interferometry (InSAR) technology. GNSS technology was utilized to correct coordinate errors at monitoring points, thereby enhancing the accuracy of monitoring data. Surface deformation images were generated using InSAR and Small Baseline Subset (SBAS) technology, with time series calculations applied to obtain multi-scale deformation data of the surface in debris flow disaster areas. A debris flow disaster morphology classification model was developed using a support vector mechanism. The actual types of debris flow disasters were employed as training labels. Digital Elevation Model (DEM) files were utilized to extract datasets, including plane curvature, profile curvature, slope, and elevation of the monitoring area, which were then input into the training model for classification training. The model outputted the classification results of the hidden danger areas of debris flow disasters. Finally, the dynamic and static coupling variables of surface deformation were decomposed into valley-type internal factors (rock mass static load) and slope-type triggering factors (fluid impact dynamic load) using the moving average method. Time series prediction models for the variable of the dynamic–static coupling effects on surface deformation were constructed using polynomial regression and particle swarm optimization (PSO)–support vector regression (SVR) algorithms, achieving multi-scale early warning of debris flows. The experimental results showed that the error between the predicted surface deformation results using this method and the actual values is less than 5 mm. The predicted MAPE value reached 6.622%, the RMSE value reached 8.462 mm, the overall warning accuracy reached 85.9%, and the warning time was under 30 ms, indicating that the proposed method delivered high warning accuracy and real-time warning. Full article
(This article belongs to the Special Issue Flowing Mechanism of Debris Flow and Engineering Mitigation)
Show Figures

Figure 1

14 pages, 6079 KiB  
Data Descriptor
The EDI Multi-Modal Simultaneous Localization and Mapping Dataset (EDI-SLAM)
by Peteris Racinskis, Gustavs Krasnikovs, Janis Arents and Modris Greitans
Data 2025, 10(1), 5; https://doi.org/10.3390/data10010005 - 7 Jan 2025
Viewed by 1249
Abstract
This paper accompanies the initial public release of the EDI multi-modal SLAM dataset, a collection of long tracks recorded with a portable sensor package. These include two global shutter RGB camera feeds, LiDAR scans, as well as inertial and GNSS data from an [...] Read more.
This paper accompanies the initial public release of the EDI multi-modal SLAM dataset, a collection of long tracks recorded with a portable sensor package. These include two global shutter RGB camera feeds, LiDAR scans, as well as inertial and GNSS data from an RTK-enabled IMU-GNSS positioning module—both as satellite fixes and internally fused interpolated pose estimates. The tracks are formatted as ROS1 and ROS2 bags, with separately available calibration and ground truth data. In addition to the filtered positioning module outputs, a second form of sparse ground truth pose annotation is provided using independently surveyed visual fiducial markers as a reference. This enables the meaningful evaluation of systems that directly utilize data from the positioning module into their localization estimates, and serves as an alternative when the GNSS reference is disrupted by intermittent signals or multipath scattering. In this paper, we describe the methods used to collect the dataset, its contents, and its intended use. Full article
Show Figures

Figure 1

19 pages, 25570 KiB  
Article
Surface Multi-Hazard Effects of Underground Coal Mining in Mountainous Regions
by Xuwen Tian, Xin Yao, Zhenkai Zhou and Tao Tao
Remote Sens. 2025, 17(1), 122; https://doi.org/10.3390/rs17010122 - 2 Jan 2025
Cited by 2 | Viewed by 1255
Abstract
Underground coal mining induces surface subsidence, which in turn impacts the stability of slopes in mountainous regions. However, research that investigates the coupling relationship between surface subsidence in mountainous regions and the occurrence of multiple surface hazards is scarce. Taking a coal mine [...] Read more.
Underground coal mining induces surface subsidence, which in turn impacts the stability of slopes in mountainous regions. However, research that investigates the coupling relationship between surface subsidence in mountainous regions and the occurrence of multiple surface hazards is scarce. Taking a coal mine in southwestern China as a case study, a detailed catalog of the surface hazards in the study area was created based on multi-temporal satellite imagery interpretation and Unmanned aerial vehicle (UAV) surveys. Using interferometric synthetic aperture radar (InSAR) technology and the logistic subsidence prediction method, this study investigated the evolution of surface subsidence induced by underground mining activities and its impact on the triggering of multiple surface hazards. We found that the study area experienced various types of surface hazards, including subsidence, landslides, debris flows, sinkholes, and ground fissures, due to the effects of underground mining activities. The InSAR monitoring results showed that the maximum subsidence at the back edge of the slope terrace was 98.2 mm, with the most severe deformation occurring at the mid-slope of the mountain, where the maximum subsidence reached 139.8 mm. The surface subsidence process followed an S-shaped curve, comprising the stages of initial subsidence, accelerated subsidence, and residual subsidence. Additionally, the subsidence continued even after coal mining operations concluded. Predictions derived from the logistic model indicate that the duration of residual surface subsidence in the study area is approximately 1 to 2 years. This study aimed to provide a scientific foundation for elucidating the temporal and spatial variation patterns of subsidence induced by underground coal mining in mountainous regions and its impact on the formation of multiple surface hazards. Full article
Show Figures

Graphical abstract

16 pages, 3949 KiB  
Technical Note
Precision Analysis of Multi-Parameter Multi-Epoch Emitter Localization Radar in Three-Satellite Formation
by Yiming Lian, Yuxuan Wu, Yaowen Chen, Xian Liu and Liming Jiang
Remote Sens. 2025, 17(1), 96; https://doi.org/10.3390/rs17010096 - 30 Dec 2024
Viewed by 797
Abstract
Emitter localization offers significant advantages such as high concealment, long detection range, and low cost, making it indispensable in target positioning. The utilization of low earth orbit satellite formation with AOA (Angle of Arrival) and TDOA (Time Difference of Arrival) measurements is a [...] Read more.
Emitter localization offers significant advantages such as high concealment, long detection range, and low cost, making it indispensable in target positioning. The utilization of low earth orbit satellite formation with AOA (Angle of Arrival) and TDOA (Time Difference of Arrival) measurements is a key technology for achieving emitter localization. To address the issues of requiring numerous cooperative platforms and the poor accuracy of single-epoch solutions with single-parameter closed-form algorithms, this paper proposes a multi-parameter multi-epoch positioning method based on a three-satellite formation. Simulation data are used to analyze the positioning accuracy under various epochs and different TDOA and AOA noise conditions. The experimental results demonstrate that, compared to the traditional single-parameter single-epoch localization method, utilizing a three-satellite formation with combined AOA and TDOA parameters, along with a multi-epoch solution approach, significantly improves localization accuracy to within an order of ten meters. This method enhances robustness and provides a viable strategy for addressing localization challenges caused by underdetermined systems of equations. Additionally, the results verify that an accumulated almanac element duration of 20 s ensures high positioning accuracy while maintaining a low computational cost. The combined multi-parameter multi-epoch method shows substantial advantages in improving both accuracy and robustness, providing valuable insights for future satellite-based emitter localization technologies. Full article
(This article belongs to the Special Issue Advances in Applications of Remote Sensing GIS and GNSS)
Show Figures

Figure 1

21 pages, 4383 KiB  
Article
Real-Time Contrail Monitoring and Mitigation Using CubeSat Constellations
by Nishanth Pushparaj, Luis Cormier, Chantal Cappelletti and Vilius Portapas
Atmosphere 2024, 15(12), 1543; https://doi.org/10.3390/atmos15121543 - 23 Dec 2024
Viewed by 1661
Abstract
Contrails, or condensation trails, left by aircraft, significantly contribute to global warming by trapping heat in the Earth’s atmosphere. Despite their critical role in climate dynamics, the environmental impact of contrails remains underexplored. This research addresses this gap by focusing on the use [...] Read more.
Contrails, or condensation trails, left by aircraft, significantly contribute to global warming by trapping heat in the Earth’s atmosphere. Despite their critical role in climate dynamics, the environmental impact of contrails remains underexplored. This research addresses this gap by focusing on the use of CubeSats for real-time contrail monitoring, specifically over major air routes such as the Europe–North Atlantic Corridor. The study proposes a 3 × 3 CubeSat constellation in highly eccentric orbits, designed to maximize coverage and data acquisition efficiency. Simulation results indicate that this configuration can provide nearly continuous monitoring with optimized satellite handovers, reducing blackout periods and ensuring robust multi-satellite visibility. A machine learning-based system integrating space-based humidity and temperature data to predict contrail formation and inform flight path adjustments is proposed, thereby mitigating environmental impact. The findings emphasize the potential of CubeSat constellations to revolutionize atmospheric monitoring practices, offering a cost-effective solution that aligns with global sustainability efforts, particularly the United Nations Sustainable Development Goal 13 (Climate Action). This research represents a significant step forward in understanding aviation’s non-CO2 climate impact and demonstrates the feasibility of real-time contrail mitigation through satellite technology. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

16 pages, 9121 KiB  
Technical Note
A Benchmark Dataset for Aircraft Detection in Optical Remote Sensing Imagery
by Jianming Hu, Xiyang Zhi, Bingxian Zhang, Tianjun Shi, Qi Cui and Xiaogang Sun
Remote Sens. 2024, 16(24), 4699; https://doi.org/10.3390/rs16244699 - 17 Dec 2024
Viewed by 1983
Abstract
The problem is that existing aircraft detection datasets rarely simultaneously consider the diversity of target features and the complexity of environmental factors, which has become an important factor restricting the effectiveness and reliability of aircraft detection algorithms. Although a large amount of research [...] Read more.
The problem is that existing aircraft detection datasets rarely simultaneously consider the diversity of target features and the complexity of environmental factors, which has become an important factor restricting the effectiveness and reliability of aircraft detection algorithms. Although a large amount of research has been devoted to breaking through few-sample-driven aircraft detection technology, most algorithms still struggle to effectively solve the problems of missed target detection and false alarms caused by numerous environmental interferences in bird-eye optical remote sensing scenes. To further aircraft detection research, we have established a new dataset, Aircraft Detection in Complex Optical Scene (ADCOS), sourced from various platforms including Google Earth, Microsoft Map, Worldview-3, Pleiades, Ikonos, Orbview-3, and Jilin-1 satellites. It integrates 3903 meticulously chosen images of over 400 famous airports worldwide, containing 33,831 annotated instances employing the oriented bounding box (OBB) format. Notably, this dataset encompasses a wide range of various targets characteristics including multi-scale, multi-direction, multi-type, multi-state, and dense arrangement, along with complex relationships between targets and backgrounds like cluttered backgrounds, low contrast, shadows, and occlusion interference conditions. Furthermore, we evaluated nine representative detection algorithms on the ADCOS dataset, establishing a performance benchmark for subsequent algorithm optimization. The latest dataset will soon be available on the Github website. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

26 pages, 8426 KiB  
Article
Development and Testing of a Helicon Plasma Thruster Based on a Magnetically Enhanced Inductively Coupled Plasma Reactor Operating in a Multi-Mode Regime
by Anna-Maria Theodora Andreescu, Daniel Eugeniu Crunteanu, Maximilian Vlad Teodorescu, Simona Nicoleta Danescu, Alexandru Cancescu, Adrian Stoicescu and Alexandru Paraschiv
Appl. Sci. 2024, 14(18), 8308; https://doi.org/10.3390/app14188308 - 14 Sep 2024
Viewed by 2372
Abstract
A disruptive Electric Propulsion system is proposed for next-generation Low-Earth-Orbit (LEO) small satellite constellations, utilizing an RF-powered Helicon Plasma Thruster (HPT). This system is built around a Magnetically Enhanced Inductively Coupled Plasma (MEICP) reactor, which enables acceleration of quasi-neutral plasma through a magnetic [...] Read more.
A disruptive Electric Propulsion system is proposed for next-generation Low-Earth-Orbit (LEO) small satellite constellations, utilizing an RF-powered Helicon Plasma Thruster (HPT). This system is built around a Magnetically Enhanced Inductively Coupled Plasma (MEICP) reactor, which enables acceleration of quasi-neutral plasma through a magnetic nozzle. The MEICP reactor features an innovative design with a multi-dipole magnetic confinement system, generated by neodymium iron boron (NdFeB) permanent magnets, combined with an azimuthally asymmetric half-wavelength right (HWRH) antenna and a variable-section ionization chamber. The plasma reactor is followed by a solenoid-free magnetic nozzle (MN), which facilitates the formation of an ambipolar potential drop, enabling the conversion of electron thermal energy into ion beam energy. This study explores the impact of an inhomogeneous magnetic field on the heating mechanism of the HPT and highlights its multi-mode operation within a pulsed power range of 200 to 500 W of RF. The discharge state, characterized by high-energy electron-excited ions and low-energy excited neutral particles in the plasma plume, was analyzed using optical emission spectroscopy (OES). The experimental testing campaign, conducted under pulsed power excitation, reveals that, as RF input power increases, the MEICP reactor transitions from inductive (H-mode) to wave coupling (W-mode) discharge modes. Spectrograms, electron temperature, and plasma density measurements were obtained for the Helicon Plasma Thruster within its operational envelope. Based on OES data, the ideal specific impulse was estimated to exceed 1000 s, highlighting the significant potential of this technology for future LEO/VLEO space missions. Full article
Show Figures

Figure 1

29 pages, 23715 KiB  
Article
Forecasting In-Flight Icing over Greece: Insights from a Low-Pressure System Case Study
by Petroula Louka, Ioannis Samos and Flora Gofa
Atmosphere 2024, 15(8), 990; https://doi.org/10.3390/atmos15080990 - 17 Aug 2024
Cited by 1 | Viewed by 1918
Abstract
Forecasting in-flight icing conditions is crucial for aviation safety, particularly in regions with variable and complex meteorological configurations, such as Greece. Icing accretion onto the aircraft’s surfaces is influenced by the presence of supercooled water in subfreezing environments. This paper outlines a methodology [...] Read more.
Forecasting in-flight icing conditions is crucial for aviation safety, particularly in regions with variable and complex meteorological configurations, such as Greece. Icing accretion onto the aircraft’s surfaces is influenced by the presence of supercooled water in subfreezing environments. This paper outlines a methodology of forecasting icing conditions, with the development of the Icing Potential Algorithm that takes into consideration the meteorological scenarios related to icing accretion, using state-of-the-art Numerical Weather Prediction model results, and forming a fuzzy logic tree based on different membership functions, applied for the first time over Greece. The synoptic situation of an organized low-pressure system passage, with occlusion, cold and warm fronts, over Greece that creates dynamically significant conditions for icing formation was investigated. The sensitivity of the algorithm was revealed upon the precipitation, cloud type and vertical velocity effects. It was shown that the greatest icing intensity is associated with single-layer ice and multi-layer clouds that are comprised of both ice and supercooled water, while convectivity and storm presence lead to also enhancing the icing formation. A qualitative evaluation of the results with satellite, radar and METAR observations was performed, indicating the general agreement of the method mainly with the ground-based observations. Full article
(This article belongs to the Special Issue Numerical Weather Prediction Models and Ensemble Prediction Systems)
Show Figures

Figure 1

19 pages, 4688 KiB  
Article
Enhancing the Resolution of Satellite Ocean Data Using Discretized Satellite Gridding Neural Networks
by Shirong Liu, Wentao Jia, Qianyun Wang, Weimin Zhang and Huizan Wang
Remote Sens. 2024, 16(16), 3020; https://doi.org/10.3390/rs16163020 - 17 Aug 2024
Viewed by 1509
Abstract
Ocean satellite data are often impeded by intrinsic limitations in resolution and accuracy. However, conventional data reconstruction approaches encounter substantial challenges when facing the nonlinear oceanic system and high-resolution fusion of variables. This research presents a Discrete Satellite Gridding Neural Network (DSGNN), a [...] Read more.
Ocean satellite data are often impeded by intrinsic limitations in resolution and accuracy. However, conventional data reconstruction approaches encounter substantial challenges when facing the nonlinear oceanic system and high-resolution fusion of variables. This research presents a Discrete Satellite Gridding Neural Network (DSGNN), a new machine learning method that processes satellite data within a discrete grid framework. By transforming the positional information of grid elements into a standardized vector format, the DSGNN significantly elevates the accuracy and resolution of data fusion through a neural network model. This method’s innovative aspect lies in its discretization and fusion technique, which not only enhances the spatial resolution of oceanic data but also, through the integration of multi-element datasets, better reflects the true physical state of the ocean. A comprehensive analysis of the reconstructed datasets indicates the DSGNN’s consistency and reliability across different seasons and oceanic regions, especially in its adept handling of complex nonlinear interactions and small-scale oceanic features. The DSGNN method has demonstrated exceptional competence in reconstructing global ocean datasets, maintaining small error variance, and achieving high congruence with in situ observations, which is almost equivalent to 1/12° hybrid coordinate ocean model (HYCOM) data. This study offers a novel and potent strategy for the high-resolution reconstruction and fusion of ocean satellite datasets. Full article
(This article belongs to the Special Issue Artificial Intelligence and Big Data for Oceanography)
Show Figures

Figure 1

Back to TopTop