Prediction Capability of Analytical Hierarchy Process (AHP) in Badland Susceptibility Mapping: The Foglia River Basin (Italy) Case of Study
Abstract
:1. Introduction
Purpose of the Study | Applied Methods | Author(s) (Year) | Location of the Study Area (Region) |
---|---|---|---|
Study of the factors | Field surveying Laboratory analysis Photointerpretation Rainfall analysis | Azzi (1913) [10] Castiglioni (1933) [11] Passerini (1937) [21] Alexander (1980) [1] Dramis (1982) [3] Sdao (1984) [22] Farabollini (1992) [17] Moretti and Rodolfi (2000) [23] Battaglia (2003) [12] Piccarreta (2005) [24] Buccolini (2007) [13] De Santis (2010) [25] Vergari (2013) [26] Pulice (2013) [27] Cocco (2015) [19] Torri (2018) [28] Rossi (2022) [29] | Emilia-Romagna Tuscany Abruzzo Basilicata Calabria Marche |
Mapping | Photointerpretation Field Surveying GIS Analysis Laboratory analysis Interpretation of multispectral satellite images (integrated with morphological characteristics) Morphometric analysis | Anselmi (1994) [30] Nisio (1997) [9] Liberti (2009) [31] Battaglia (2011) [32] Bosino (2019) [33] Coratza and Parenti (2021) [34] Bufalini (2022) [20] | Abruzzo Basilicata Tuscany Lombardy Emilia-Romagna Marche |
Morphometric analysis | Field Surveying Photointerpretation GIS Analysis Remote sensing | Farabegoli and Agostini (2000) [35] Buccolini and Coco (2010, 2013) [18,36] Buccolini (2012) [37] Caraballo-Arias and Ferro (2016) [38] Cappadonia (2016) [39] Caraballo-Arias (2018) [40] Bosino (2022) [41] | Emilia-Romagna Abruzzo Sicily Marche Tuscany Lombardy |
Evaluation of erosion rates | Site monitoring Field Surveying Photointerpretation Morphometric analysis Development of erosion models Unit Stream Power Erosion Deposition (USPED) model integrated with GIS analysis GIS Analysis Paleosols analysis and dating | Clarke and Rendell (2006) [42] Ciccacci (2008, 2009) [43,44] Della Seta (2009) [45] Capolongo (2008) [46] Castaldi and Chiocchini (2012) [47] Buccolini e Coco (2013) [18] Bollati (2016) [48] | Basilicata Tuscany Lazio Umbria |
Susceptibility study | GIS Analysis Application of a bivariate statistical method | Vergari (2015) [15] Bianchini (2016) [16] | Tuscany |
2. Data
2.1. Geomorphological and Geological Setting
2.2. Aerial/Satellite Photos
2.3. Land Use
2.4. Pluviometric Data
3. Methods
3.1. Phase I: Development of the Inventory of Badlands Phenomena
- On 25 May 2023, the south sector of the Foglia River;
- On 12 and 16 June 2023 the slopes of Valle Avellana and the eastern part of Val di Teva;
- On 17 June 2023, the western part of Val di Teva and the slopes of Ca’ Antonio.
3.2. Phase II: Susceptibility Assessment
3.2.1. Predisposing Factors
3.2.2. AHP Method
- Selection of the explanatory variables;
- Relative importance of each explanatory variable;
- Preference scale and ratings for each explanatory variable;
- Synthetizing judgments;
- Consistency checking.
3.2.3. Validation
4. Results
4.1. Badlands Inventory
4.2. Susceptibility Mapping
4.2.1. Statistical Analysis
4.2.2. AHP Method Matrix
4.2.3. Validation of the Susceptibility Map
- Scenario: zero weights to hydrometric factors;
- Scenario: zero weight to topographical factors;
- Scenario: zero weight to land use factor;
- Scenario: zero weight to lithological factors;
- Scenario: same weights for all AHP criteria.
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alexander, D.E. I Calanchi-Accelerated Erosion in Italy. Geography 1980, 65, 95–100. [Google Scholar] [CrossRef]
- Gallart, F.; Solé-Benet, A.; Puigdefabragas, J.; Lazaro, R. Badland Systems in the Mediterranean. In Dryland Rivers: Hydrology and Geomorphology of Semi-Arid Channels; John Wiley & Sons: Hoboken, NJ, USA, 2002; pp. 299–326. [Google Scholar]
- Dramis, F.; Gentili, B.; Coltorti, M.; Cherubini, C. Osservazioni Geomorfologiche Sui Calanchi Marchigiani: Geomorphological Observations on Badlands in the Marche Region. Geogr. Fis. Din. Quat. 1982, 5, 38–45. [Google Scholar]
- Bryan, R.; Yair, A. Badland Geomorphology and Piping; Geo Books, 1982; ISBN 978-0-86094-113-2. [Google Scholar]
- Gallart, F.; Marignani, M.; Pérez-Gallego, N.; Santi, E.; Maccherini, S. Thirty Years of Studies on Badlands, from Physical to Vegetational Approaches. A Succinct Review. Catena 2013, 106, 4–11. [Google Scholar] [CrossRef]
- Avcıoğlu, A.; Görüm, T.; Akbaş, A.; Moreno-de las Heras, M.; Yıldırım, C.; Yetemen, Ö. Regional Distribution and Characteristics of Major Badland Landscapes in Turkey. Catena 2022, 218, 106562. [Google Scholar] [CrossRef]
- Arabameri, A.; Pradhan, B.; Rezaei, K.; Conoscenti, C. Gully Erosion Susceptibility Mapping Using GIS-Based Multi-Criteria Decision Analysis Techniques. Catena 2019, 180, 282–297. [Google Scholar] [CrossRef]
- Torra, O.; Hürlimann, M.; Puig-Polo, C.; Moreno-de-Las-Heras, M. Assessment of Badland Susceptibility and Its Governing Factors Using a Random Forest Approach. Application to the Upper Llobregat River Basin and Catalonia (Spain). Environ. Res. 2023, 237, 116901. [Google Scholar] [CrossRef] [PubMed]
- Nisio, S.; Prestininzi, A.; Mugnozza, G.S. Della Fascia Periadriatica Abruzzese: Quadro Morfotettonico e Loro Caratterizzazione. Studi Geol. Camerti 1996, 14, 29–45. [Google Scholar]
- Azzi, G. I Fenomeni Della Erosione Nelle Argille Azzurre Del Pliocene Nel Bacino Del Santerno (Romagna). Boll. Della Soc. Geogr. Ital. 1912, 111–142. [Google Scholar]
- Castiglioni, B. Osservazioni Sui Calanchi Appenninici. Boll. Della Soc. Geol. Ital. 1933, 52, 357–360. [Google Scholar]
- Battaglia, S.; Leoni, L.; Sartori, F. Mineralogical and Grain Size Composition of Clays Developing Calanchi and Biancane Erosional Landforms. Geomorphology 2003, 49, 153–170. [Google Scholar] [CrossRef]
- Buccolini, M.; Gentili, B.; Materazzi, M.; Aringoli, D.; Pambianchi, G.; Piacentini, T. Human Impact and Slope Dynamics Evolutionary Trends in the Monoclinal Relief of Adriatic Area of Central Italy. Catena 2007, 71, 96–109. [Google Scholar] [CrossRef]
- Guzzetti, F.; Reichenbach, P.; Ardizzone, F.; Cardinali, M.; Galli, M. Estimating the Quality of Landslide Susceptibility Models. Geomorphology 2006, 81, 166–184. [Google Scholar] [CrossRef]
- Vergari, F. Assessing Soil Erosion Hazard in a Key Badland Area of Central Italy. Nat. Hazards 2015, 79, 71–95. [Google Scholar] [CrossRef]
- Bianchini, S.; Del Soldato, M.; Solari, L.; Nolesini, T.; Pratesi, F.; Moretti, S. Badland Susceptibility Assessment in Volterra Municipality (Tuscany, Italy) by Means of GIS and Statistical Analysis. Environ. Earth Sci 2016, 75, 889. [Google Scholar] [CrossRef]
- Farabollini, P.; Gentili, B.; Pambianchi, G. Contributo Allo Studio Dei Calanchi: Due Aree Campione Nelle Marche. Studi Geol. Camerti. Nuova Ser. 1992, 12, 105–115. [Google Scholar]
- Buccolini, M.; Coco, L. MSI (Morphometric Slope Index) for Analyzing Activation and Evolution of Calanchi in Italy. Geomorphology 2013, 191, 142–149. [Google Scholar] [CrossRef]
- Cocco, S.; Brecciaroli, G.; Agnelli, A.; Weindorf, D.; Corti, G. Soil Genesis and Evolution on Calanchi (Badland-like Landform) of Central Italy. Geomorphology 2015, 248, 33–46. [Google Scholar] [CrossRef]
- Bufalini, M.; Omran, A.; Bosino, A. Assessment of Badlands Erosion Dynamics in the Adriatic Side of Central Italy. Geosciences 2022, 12, 208. [Google Scholar] [CrossRef]
- Passerini, G. Influenze Della Immersione Degli Strati Ed Influenze Dell’orientamento Dei Versanti Sulla Degradazione Delle Argille Plioceniche; Tipografica Sabbadini: Udine, Italy, 1937; Volume 56. [Google Scholar]
- Sdao, G.; Simone, A.; Vittorini, S. Osservazioni Geomorfologiche Su Calanchi e Biancane in Calabria: Geomorphological Observations on Calanchi and Biancane in the Calabria Region. Geogr. Fis. Din. Quat. 1984, 7, 10–16. [Google Scholar]
- Moretti, S.; Rodolfi, G. A Typical “Calanchi” Landscape on the Eastern Apennine Margin (Atri, Central Italy): Geomorphological Features and Evolution. Catena 2000, 40, 217–228. [Google Scholar] [CrossRef]
- Piccarreta, M.; Capolongo, D.; Bentivenga, M.; Pennetta, L. Influenza Delle Precipitazioni e Dei Cicli Umido-Secco Sulla Morfogenesi Calanchiva in Un’area Semi-Arida Della Basilicata (Italia Meridionale). Suppl. Geogr. Fis. Din. Quat. 2005, 7, 281–289. [Google Scholar]
- De Santis, F.; Giannossi, M.L.; Medici, L.; Summa, V.; Tateo, F. Impact of Physico-Chemical Soil Properties on Erosion Features in the Aliano Area (Southern Italy). Catena 2010, 81, 172–181. [Google Scholar] [CrossRef]
- Vergari, F.; Della Seta, M.; Del Monte, M.; Barbieri, M. Badlands Denudation “Hot Spots”: The Role of Parent Material Properties on Geomorphic Processes in 20-Years Monitored Sites of Southern Tuscany (Italy). Catena 2013, 106, 31–41. [Google Scholar] [CrossRef]
- Pulice, I.; Di Leo, P.; Robustelli, G.; Scarciglia, F.; Cavalcante, F.; Belviso, C. Control of Climate and Local Topography on Dynamic Evolution of Badland from Southern Italy (Calabria). Catena 2013, 109, 83–95. [Google Scholar] [CrossRef]
- Torri, D.; Rossi, M.; Brogi, F.; Marignani, M.; Bacaro, G.; Santi, E.; Tordoni, E.; Amici, V.; Maccherini, S. Badlands and the Dynamics of Human History, Land Use, and Vegetation Through Centuries. In Badlands Dynamics in a Context of Global Change; Elsevier: Amsterdam, The Netherlands, 2018; pp. 111–153. ISBN 978-0-12-813054-4. [Google Scholar]
- Rossi, M.; Torri, D.; De Geeter, S.; Cremer, C.; Poesen, J. Topographic Thresholds for Gully Head Formation in Badlands. Earth Surf. Process. Landf. 2022, 47, 3558–3587. [Google Scholar] [CrossRef]
- Anseimi, B.; Crovato, C.; D’Angelo, L.; Grauso, S. The Badlands of Atri (Abruzzo, Central Italy): Mineralogical, Geotechnical and Geomorphological Characters. Alp. Mediterr. Quat. 1994, 7, 145–158. [Google Scholar]
- Liberti, M.; Simoniello, T.; Carone, M.T.; Coppola, R.; D’Emilio, M.; Macchiato, M. Mapping Badland Areas Using LANDSAT TM/ETM Satellite Imagery and Morphological Data. Geomorphology 2009, 106, 333–343. [Google Scholar] [CrossRef]
- Battaglia, S.; Leoni, L.; Rapetti, F.; Spagnolo, M. Dynamic Evolution of Badlands in the Roglio Basin (Tuscany, Italy). Catena 2011, 86, 14–23. [Google Scholar] [CrossRef]
- Bosino, A.; Omran, A.; Maerker, M. Identification, Characterisation and Analysis of the Oltrepo Pavese Calanchi in the Northern Apennines (Italy). Geomorphology 2019, 340, 53–66. [Google Scholar] [CrossRef]
- Coratza, P.; Parenti, C. Controlling Factors of Badland Morphological Changes in the Emilia Apennines (Northern Italy). Water 2021, 13, 539. [Google Scholar] [CrossRef]
- Farabegoli, E.; Agostini, C. Identification Ofcalanco, a Badland Landform in the Northern Apennines, Italy. Earth Surf. Process. Landf. 2000, 25, 307–318. [Google Scholar] [CrossRef]
- Buccolini, M.; Coco, L. The Role of the Hillside in Determining the Morphometric Characteristics of “Calanchi”: The Example of Adriatic Central Italy. Geomorphology 2010, 123, 200–210. [Google Scholar] [CrossRef]
- Buccolini, M.; Coco, L.; Cappadonia, C.; Rotigliano, E. Relationships between a New Slope Morphometric Index and Calanchi Erosion in Northern Sicily, Italy. Geomorphology 2012, 149–150, 41–48. [Google Scholar] [CrossRef]
- Caraballo-Arias, N.A.; Ferro, V. Assessing, Measuring and Modelling Erosion in Calanchi Areas: A Review. J. Agric. Eng. 2016, 47, 181. [Google Scholar] [CrossRef]
- Cappadonia, C.; Coco, L.; Buccolini, M.; Rotigliano, E. From Slope Morphometry to Morphogenetic Processes: An Integrated Approach of Field Survey, Geographic Information System Morphometric Analysis and Statistics in Italian Badlands. Land Degrad. Dev. 2016, 27, 851–862. [Google Scholar] [CrossRef]
- Caraballo-Arias, N.A.; Di Stefano, C.; Ferro, V. Morphological Characterization of Calanchi (Badland) Hillslope Connectivity. Land Degrad. Dev. 2018, 29, 1190–1197. [Google Scholar] [CrossRef]
- Bosino, A.; Szatten, D.A.; Omran, A.; Crema, S.; Crozi, M.; Becker, R.; Bettoni, M.; Schillaci, C.; Maerker, M. Assessment of Suspended Sediment Dynamics in a Small Ungauged Badland Catchment in the Northern Apennines (Italy) Using an in-Situ Laser Diffraction Method. Catena 2022, 209, 105796. [Google Scholar] [CrossRef]
- Clarke, M.L.; Rendell, H.M. Process–Form Relationships in Southern Italian Badlands: Erosion Rates and Implications for Landform Evolution. Earth Surf. Process. Landf. 2006, 31, 15–29. [Google Scholar] [CrossRef]
- Ciccacci, S.; Galiano, M.; Roma, M.A.; Salvatore, M.C. Morphological Analysis and Erosion Rate Evaluation in Badlands of Radicofani Area (Southern Tuscany—Italy). Catena 2008, 74, 87–97. [Google Scholar] [CrossRef]
- Ciccacci, S.; Galiano, M.; Roma, M.A.; Salvatore, M.C. Morphodynamics and Morphological Changes of the Last 50 Years in a Badland Sample Area of Southern Tuscany (Italy). Z. Fur Geomorphol. 2009, 53, 273–297. [Google Scholar] [CrossRef]
- Della Seta, M.; Del Monte, M.; Fredi, P.; Lupia Palmieri, E. Space–Time Variability of Denudation Rates at the Catchment and Hillslope Scales on the Tyrrhenian Side of Central Italy. Geomorphology 2009, 107, 161–177. [Google Scholar] [CrossRef]
- Capolongo, D.; Pennetta, L.; Piccarreta, M.; Fallacara, G.; Boenzi, F. Spatial and Temporal Variations in Soil Erosion and Deposition Due to Land-levelling in a Semi-arid Area of Basilicata (Southern Italy). Earth Surf. Process. Landf. 2008, 33, 364–379. [Google Scholar] [CrossRef]
- Castaldi, F.; Chiocchini, U. Effects of Land Use Changes on Badland Erosion in Clayey Drainage Basins, Radicofani, Central Italy. Geomorphology 2012, 169–170, 98–108. [Google Scholar] [CrossRef]
- Bollati, I.; Vergari, F.; Del Monte, M.; Pelfini, M. Multitemporal Dendrogeomorphological Analysis of Slope Instability in Upper Orcia Valley (Southern Tuscany, Italy). Geogr. Fis. Din. Quat. 2016, 39, 105–120. [Google Scholar]
- TINITALY, A Digital Elevation Model of Italy with a 10 Meters Cell Size—ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA. Available online: https://data.ingv.it/dataset/185#additional-metadata (accessed on 23 October 2024).
- Cornamusini, G.; Conti, P.; Bonciani, F.; Callegari, I.; Carmignani, L.; Martelli, L.; Quagliere, S. Note Illustrative Della Carta Geologica d’Italia Alla Scala 1: 50.000 “Foglio 267-San Marino”; Servizio Geologico d’Italia: Rome, Italy, 2009. [Google Scholar]
- Regione Marche Geomorphological Map of the Marche Region-Sheet 267 San Marino (Sections CTD 267100, CTD 267110, CTD 267140, CTD 267150, CTD 267160) 2001. Available online: https://www.regione.marche.it/Regione-Utile/Paesaggio-Territorio-Urbanistica/Cartografia/Repertorio/Cartageomorfologicaregionale10000 (accessed on 1 February 2025).
- Rodolfi, G.; Frascati, F. Cartografia Di Base per La Programmazione Degli Interventi in Aree Marginali Area Rappresentativa Dell’alta Valdera: Memorie Illustrative Della Carta Geomorfologica Con Una Nota Sulla Costituzione Geolitologica Dell’area; Tipografia R. Coppini: Firenze, Italy, 1979. [Google Scholar]
- Köppen, W. Das Geographische System der Klimate; Gebrüdcr Borntraeger: Berlin, Germany, 1936. [Google Scholar]
- Wolman, M.G.; Miller, J.P. Magnitude and Frequency of Forces in Geomorphic Processes. J. Geol. 1960, 68, 54–74. [Google Scholar] [CrossRef]
- Wilson, J.P.; Gallant, J.C. (Eds.) Terrain Analysis: Principles and Applications; Wiley: New York, NY, USA, 2000; ISBN 978-0-471-32188-0. [Google Scholar]
- Morelli, S.; Bonì, R.; De Donatis, M.; Marino, L.; Pappafico, G.F.; Francioni, M. A Low-Cost and Fast Operational Procedure to Identify Potential Slope Instabilities in Cultural Heritage Sites. Remote Sens. 2023, 15, 5574. [Google Scholar] [CrossRef]
- Moore, I.D.; Burch, G.J. Physical Basis of the Length-Slope Factor in the Universal Soil Loss Equation. Soil Sci. Soc. Am. J. 1986, 50, 1294–1298. [Google Scholar] [CrossRef]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital Terrain Modelling: A Review of Hydrological, Geomorphological, and Biological Applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Chowdhury, M.S. Modelling Hydrological Factors from DEM Using GIS. MethodsX 2023, 10, 102062. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making with the Analytic Hierarchy Process. IJSSCI 2008, 1, 83. [Google Scholar] [CrossRef]
- Saaty, R.W. The Analytic Hierarchy Process—What It Is and How It Is Used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Mulligan, M. Modelling the Geomorphological Impact of Climatic Variability and Extreme Events in a Semi-Arid Environment. Geomorphology 1998, 24, 59–78. [Google Scholar] [CrossRef]
- Conforti, M.; Aucelli, P.P.; Robustelli, G.; Scarciglia, F. Geomorphology and GIS Analysis for Mapping Gully Erosion Susceptibility in the Turbolo Stream Catchment (Northern Calabria, Italy). Nat. Hazards 2011, 56, 881–898. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; García-Ruiz, J.M. Rethinking Spatial and Temporal Variability of Erosion in Badlands. In Badlands Dynamics in a Context of Global Change; Elsevier: Amsterdam, The Netherlands, 2018; pp. 217–253. [Google Scholar]
- Yair, A.; Bryan, R.B.; Lavee, H.; Schwanghart, W.; Kuhn, N.J. The Resilience of a Badland Area to Climate Change in an Arid Environment. Catena 2013, 106, 12–21. [Google Scholar] [CrossRef]
Lithological Classes | Geological Formations/Deposits |
---|---|
Sandstones | Acquaviva Formation |
Marnoso Arenacea Formation | |
Clays | Argille Varicolori |
Argille Azzurre Formation | |
Argille di Casa i Gessi Formation | |
Clays and sands | Colombacci Formation |
San Donato Formation | |
Limestones | Monte Morello Formation |
Sillano Formation | |
Conglomerates, breccias | Casa Monte Sabatino Formation |
Marls | Schlier |
Evaporites | Gessoso–Solfifera Group |
Alluvial deposits | Current alluvial deposits (Musone Synthem), terraced alluvial deposits (Musone Synthem, Matelica Synthem and Colle Ulivo-Colonia Montani Supersynthem) |
Eluvial, colluvial deposits | Eluvial, colluvial deposits (Musone Synthem e Matelica Synthem) |
Type | Year | Resolution (cm/Pixel) |
---|---|---|
Satellite images of Google Satellite | 2010, 2015, 2016, 2017, 2018, 2019, 2021 | 30 cm |
Ortophoto | 2006 | 50 cm |
Ortophoto of AGEA 1 | 2012 | 50 cm |
Simplified Land Use Classes | Land Cover Classes LEVEL_2 |
---|---|
Water bodies | Inland waters |
Agricultural and/or natural areas | Permanent crops |
Pastures | |
Arable land | |
Heterogeneous agricultural areas | |
Urban areas | Mine, dump and construction sites |
Industrial, commercial, and transport units | |
Artificial, non-agricultural vegetated areas | |
Urban fabric | |
Wooded areas | Forest |
Shrub and/or herbaceous vegetation | Shrub and/or herbaceous vegetation |
Bare soils or abandoned lands | Open spaces with little or no vegetation |
Score | Definition | Explanation |
---|---|---|
1 | Equal importance | Two factors are equally important or have the same effect |
3 | Moderate importance of one over another | One factor is more important than the other factor |
5 | Essential or strong importance | One factor is more important than the other factor |
7 | Very strong importance | One factor has a strong dominance over the other factor |
9 | Extreme importance | One factor has the highest order of dominance over another |
2, 4, 6, 8 | Intermediate importance between two scores | When compromise is needed |
PREDISPOSING FACTORS | NUMBER OF BADLANDS | AREA (km2) | ASSIGNED WEIGHT | NORMALIZED CLASS WEIGHTS |
---|---|---|---|---|
LITHOLOGY | ||||
Sandstones | 13 | 0.53 | 2 | 0.13 |
Clays | 134 | 2.442 | 4 | 0.27 |
Clays and sands | 95 | 2.98 | 5 | 0.33 |
Limestones | 20 | 0.663 | 3 | 0.2 |
Conglomerates and breccias | 5 | 0.189 | 1 | 0.07 |
Alluvial deposits | 4 | 0.04 | 1 | 0.07 |
Eluvial, colluvial deposits | 1 | 0.12 | 1 | 0.07 |
Evaporites | 4 | 0.13 | 1 | 0.07 |
Marls | 3 | 0.06 | 1 | 0.07 |
DISTANCE FROM FAULTS (m) | ||||
0–20 | 34 | 1.22 | 1 | 0.07 |
20–50 | 42 | 1.39 | 1 | 0.07 |
50–100 | 58 | 1.63 | 2 | 0.13 |
100–200 | 75 | 1.95 | 3 | 0.2 |
200–500 | 91 | 2.19 | 4 | 0.27 |
>500 | 117 | 2.63 | 5 | 0.33 |
LAND USE | ||||
Water bodies | 0 | 0.00 | 0 | 0 |
Agricultural and/or natural areas | 145 | 3.92 | 4 | 0.27 |
Urban areas | 0 | 0.00 | 0 | 0 |
Wooded areas | 133 | 3.67 | 3 | 0.2 |
Shrub and/or herbaceous vegetation | 170 | 4.26 | 5 | 0.33 |
Bare soils or abandoned lands | 131 | 3.20 | 2 | 0.13 |
SLOPE (°) | ||||
0–5 | 54 | 2.10 | 2 | 0.13 |
5–10 | 163 | 4.30 | 3 | 0.2 |
10–15 | 210 | 4.66 | 5 | 0.33 |
15–20 | 220 | 4.69 | 5 | 0.33 |
20–30 | 221 | 4.69 | 5 | 0.33 |
30–50 | 206 | 4.65 | 4 | 0.27 |
>50 | 20 | 0.76 | 1 | 0.07 |
ASPECT | ||||
N | 122 | 3.03 | 4 | 0.27 |
NE | 96 | 2.74 | 2 | 0.13 |
E | 125 | 3.10 | 4 | 0.27 |
SE | 136 | 3.34 | 5 | 0.33 |
S | 138 | 3.64 | 5 | 0.33 |
SO | 123 | 3.21 | 4 | 0.27 |
O | 106 | 2.77 | 3 | 0.2 |
NO | 76 | 2.01 | 1 | 0.07 |
LS | ||||
0–2 | 221 | 4.69 | 5 | 0.33 |
2–10 | 221 | 4.69 | 5 | 0.33 |
10–40 | 220 | 4.69 | 5 | 0.33 |
40–100 | 116 | 6.57 | 3 | 0.2 |
100–200 | 11 | 0.26 | 2 | 0.13 |
>200 | 1 | 0.06 | 1 | 0.07 |
SPI | ||||
−4–0 | 48 | 1.72 | 1 | 0.07 |
0–2 | 221 | 4.69 | 5 | 0.33 |
2–4 | 221 | 4.69 | 5 | 0.33 |
4–6 | 215 | 4.67 | 4 | 0.27 |
6–8 | 154 | 4.20 | 3 | 0.2 |
8–14 | 60 | 2.27 | 2 | 0.13 |
TWI | ||||
0–4 | 221 | 4.69 | 5 | 0.33 |
4–6 | 221 | 4.69 | 5 | 0.33 |
6–8 | 214 | 4.67 | 4 | 0.27 |
8–12 | 163 | 4.33 | 2 | 0.13 |
12–23 | 27 | 1.56 | 1 | 0.07 |
DISTANCE FROM RIVERS (m) | ||||
0–5 | 134 | 3.67 | 2 | 0.13 |
5–10 | 170 | 4.16 | 3 | 0.2 |
10–20 | 184 | 4.36 | 4 | 0.27 |
20–50 | 194 | 4.43 | 5 | 0.33 |
50–100 | 177 | 4.38 | 3 | 0.2 |
>100 | 111 | 3.16 | 1 | 0.07 |
Factors | Lithology | Distance from Faults | Land Use | Slope | Aspect | Distance from Rivers | LS | SPI | TWI |
---|---|---|---|---|---|---|---|---|---|
Lithology | 1 | 5 | 5 | 2 | 2 | 2 | 2 | 3 | 3 |
Distance from faults | 1 | 0.5 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | |
Land use | 1 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | ||
Slope | 1 | 2 | 2 | 2 | 2 | 3 | |||
Aspect | 1 | 2 | 2 | 2 | 3 | ||||
Distance from rivers | 1 | 2 | 2 | 3 | |||||
LS | 1 | 2 | 3 | ||||||
SPI | 1 | 2 | |||||||
TWI | 1 |
Lithology | 22.19 |
Slope | 17.35 |
Aspect | 14.89 |
Distance from rivers | 12.79 |
LS | 10.98 |
SPI | 8.48 |
TWI | 6.40 |
Land use | 5.05 |
Distance from faults | 1.83 |
Susceptibility Classes | Class Values | Number of Badlands |
---|---|---|
Very low | 1.6–2.9 | 0 |
Low | 2.9–3.4 | 0 |
Moderate | 3.4–3.9 | 1 |
High | 3.9–4.3 | 12 |
Very high | 4.3–5 | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchini, M.; Morelli, S.; Francioni, M.; Bonì, R. Prediction Capability of Analytical Hierarchy Process (AHP) in Badland Susceptibility Mapping: The Foglia River Basin (Italy) Case of Study. Land 2025, 14, 651. https://doi.org/10.3390/land14030651
Bianchini M, Morelli S, Francioni M, Bonì R. Prediction Capability of Analytical Hierarchy Process (AHP) in Badland Susceptibility Mapping: The Foglia River Basin (Italy) Case of Study. Land. 2025; 14(3):651. https://doi.org/10.3390/land14030651
Chicago/Turabian StyleBianchini, Margherita, Stefano Morelli, Mirko Francioni, and Roberta Bonì. 2025. "Prediction Capability of Analytical Hierarchy Process (AHP) in Badland Susceptibility Mapping: The Foglia River Basin (Italy) Case of Study" Land 14, no. 3: 651. https://doi.org/10.3390/land14030651
APA StyleBianchini, M., Morelli, S., Francioni, M., & Bonì, R. (2025). Prediction Capability of Analytical Hierarchy Process (AHP) in Badland Susceptibility Mapping: The Foglia River Basin (Italy) Case of Study. Land, 14(3), 651. https://doi.org/10.3390/land14030651