Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,085)

Search Parameters:
Keywords = multi-resolution images

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5363 KiB  
Article
Accurate Extraction of Rural Residential Buildings in Alpine Mountainous Areas by Combining Shadow Processing with FF-SwinT
by Guize Luan, Jinxuan Luo, Zuyu Gao and Fei Zhao
Remote Sens. 2025, 17(14), 2463; https://doi.org/10.3390/rs17142463 - 16 Jul 2025
Abstract
Precise extraction of rural settlements in alpine regions is critical for geographic data production, rural development, and spatial optimization. However, existing deep learning models are hindered by insufficient datasets and suboptimal algorithm structures, resulting in blurred boundaries and inadequate extraction accuracy. Therefore, this [...] Read more.
Precise extraction of rural settlements in alpine regions is critical for geographic data production, rural development, and spatial optimization. However, existing deep learning models are hindered by insufficient datasets and suboptimal algorithm structures, resulting in blurred boundaries and inadequate extraction accuracy. Therefore, this study uses high-resolution unmanned aerial vehicle (UAV) remote sensing images to construct a specialized dataset for the extraction of rural settlements in alpine mountainous areas, while introducing an innovative shadow mitigation technique that integrates multiple spectral characteristics. This methodology effectively addresses the challenges posed by intense shadows in settlements and environmental occlusions common in mountainous terrain analysis. Based on the comparative experiments with existing deep learning models, the Swin Transformer was selected as the baseline model. Building upon this, the Feature Fusion Swin Transformer (FF-SwinT) model was constructed by optimizing the data processing, loss function, and multi-view feature fusion. Finally, we rigorously evaluated it through ablation studies, generalization tests and large-scale image application experiments. The results show that the FF-SwinT has improved in many indicators compared with the traditional Swin Transformer, and the recognition results have clear edges and strong integrity. These results suggest that the FF-SwinT establishes a novel framework for rural settlement extraction in alpine mountain regions, which is of great significance for regional spatial optimization and development policy formulation. Full article
Show Figures

Figure 1

26 pages, 2297 KiB  
Article
BGIR: A Low-Illumination Remote Sensing Image Restoration Algorithm with ZYNQ-Based Implementation
by Zhihao Guo, Liangliang Zheng and Wei Xu
Sensors 2025, 25(14), 4433; https://doi.org/10.3390/s25144433 - 16 Jul 2025
Abstract
When a CMOS (Complementary Metal–Oxide–Semiconductor) imaging system operates at a high frame rate or a high line rate, the exposure time of the imaging system is limited, and the acquired image data will be dark, with a low signal-to-noise ratio and unsatisfactory sharpness. [...] Read more.
When a CMOS (Complementary Metal–Oxide–Semiconductor) imaging system operates at a high frame rate or a high line rate, the exposure time of the imaging system is limited, and the acquired image data will be dark, with a low signal-to-noise ratio and unsatisfactory sharpness. Therefore, in order to improve the visibility and signal-to-noise ratio of remote sensing images based on CMOS imaging systems, this paper proposes a low-light remote sensing image enhancement method and a corresponding ZYNQ (Zynq-7000 All Programmable SoC) design scheme called the BGIR (Bilateral-Guided Image Restoration) algorithm, which uses an improved multi-scale Retinex algorithm in the HSV (hue–saturation–value) color space. First, the RGB image is used to separate the original image’s H, S, and V components. Then, the V component is processed using the improved algorithm based on bilateral filtering. The image is then adjusted using the gamma correction algorithm to make preliminary adjustments to the brightness and contrast of the whole image, and the S component is processed using segmented linear enhancement to obtain the base layer. The algorithm is also deployed to ZYNQ using ARM + FPGA software synergy, reasonably allocating each algorithm module and accelerating the algorithm by using a lookup table and constructing a pipeline. The experimental results show that the proposed method improves processing speed by nearly 30 times while maintaining the recovery effect, which has the advantages of fast processing speed, miniaturization, embeddability, and portability. Following the end-to-end deployment, the processing speeds for resolutions of 640 × 480 and 1280 × 720 are shown to reach 80 fps and 30 fps, respectively, thereby satisfying the performance requirements of the imaging system. Full article
(This article belongs to the Section Remote Sensors)
31 pages, 7444 KiB  
Article
Meteorological Drivers and Agricultural Drought Diagnosis Based on Surface Information and Precipitation from Satellite Observations in Nusa Tenggara Islands, Indonesia
by Gede Dedy Krisnawan, Yi-Ling Chang, Fuan Tsai, Kuo-Hsin Tseng and Tang-Huang Lin
Remote Sens. 2025, 17(14), 2460; https://doi.org/10.3390/rs17142460 - 16 Jul 2025
Abstract
Agriculture accounts for 29% of the Gross Domestic Product of the Nusa Tenggara Islands (NTIs). However, recurring agricultural droughts pose a major threat to the sustainability of agriculture in this region. The interplay between precipitation, solar radiation, and surface temperature as meteorological factors [...] Read more.
Agriculture accounts for 29% of the Gross Domestic Product of the Nusa Tenggara Islands (NTIs). However, recurring agricultural droughts pose a major threat to the sustainability of agriculture in this region. The interplay between precipitation, solar radiation, and surface temperature as meteorological factors plays a key role in affecting vegetation (Soil-Adjusted Vegetation Index) and agricultural drought (Temperature Vegetation Dryness Index) in the NTIs. Based on the analyses of interplay with temporal lag, this study investigates the effect of each factor on agricultural drought and attempts to provide early warnings regarding drought in the NTIs. We collected surface information data from Moderate-Resolution Imaging Spectroradiometer (MODIS). Meanwhile, rainfall was estimated from Himawari-8 based on the INSAT Multi-Spectral Rainfall Algorithm (IMSRA). The results showed reliable performance for 8-day and monthly scales against gauges. The drought analysis results reveal that the NTIs suffer from mild-to-moderate droughts, where cropland is the most vulnerable, causing shifts in the rice cropping season. The driving factors could also explain >60% of the vegetation and surface-dryness conditions. Furthermore, our monthly and 8-day TVDI estimation models could capture spatial drought patterns consistent with MODIS, with coefficient of determination (R2) values of more than 0.64. The low error rates and the ability to capture the spatial distribution of droughts, especially in open-land vegetation, highlight the potential of these models to provide an estimation of agricultural drought. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

19 pages, 38984 KiB  
Article
AFNE-Net: Semantic Segmentation of Remote Sensing Images via Attention-Based Feature Fusion and Neighborhood Feature Enhancement
by Ke Li, Hao Ji, Zhijiang Li, Zeyu Cui and Chengkai Liu
Remote Sens. 2025, 17(14), 2443; https://doi.org/10.3390/rs17142443 - 14 Jul 2025
Viewed by 108
Abstract
Understanding remote sensing imagery is vital for object observation and planning. However, the acquisition of optical images is inevitably affected by shadows and occlusions, resulting in local discrepancies in object representation. To address these challenges, this paper proposes AFNE-Net, a general network architecture [...] Read more.
Understanding remote sensing imagery is vital for object observation and planning. However, the acquisition of optical images is inevitably affected by shadows and occlusions, resulting in local discrepancies in object representation. To address these challenges, this paper proposes AFNE-Net, a general network architecture for remote sensing image segmentation. First, the model introduces an attention-based feature fusion module. Through the use of weighted fusion of multi-resolution features, this effectively expands the receptive field and enhances semantic associations between categories. Subsequently, a feature enhancement module based on the consistency of neighborhood semantic representation is introduced. This aims to improve the feature representation and reduce segmentation errors caused by local perturbations. Finally, evaluations are conducted on the ISPRS Potsdam, UAVid, and LoveDA datasets to verify the effectiveness of the proposed model. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

15 pages, 1042 KiB  
Article
Land Use Land Cover (LULC) Mapping for Assessment of Urbanization Impacts on Cropping Patterns and Water Availability in Multan, Pakistan
by Khawaja Muhammad Zakariya, Tahir Sarwar, Hafiz Umar Farid, Raffaele Albano, Muhammad Azhar Inam, Muhammad Shoaib, Abrar Ahmad and Matlob Ahmad
Earth 2025, 6(3), 79; https://doi.org/10.3390/earth6030079 - 14 Jul 2025
Viewed by 268
Abstract
Urbanization is causing a decrease in agricultural land. This leads to changes in cropping patterns, irrigation water availability, and water allowance. Therefore, change in cropping pattern, irrigation water availability, and water allowance were investigated in the Multan region of Pakistan using remote sensing [...] Read more.
Urbanization is causing a decrease in agricultural land. This leads to changes in cropping patterns, irrigation water availability, and water allowance. Therefore, change in cropping pattern, irrigation water availability, and water allowance were investigated in the Multan region of Pakistan using remote sensing and GIS techniques. The multi-temporal Landsat images with 30 m resolution were acquired for both Rabi (winter) and Kharif (summer) seasons for the years of 1988, 1999 and 2020. The image processing tasks including layer stacking, sub-setting, land use/land cover (LULC) classification, and accuracy assessment were performed using ERDAS Imagine (2015) software. The LULC maps showed a considerable shift of orchard area to urban settlements and other crops. About 82% of orchard areas have shifted to urban settlements and other crops from 1988 to 2020. The LULC maps for Kharif season indicated that cropped areas for cotton have decreased by 42.5% and the cropped areas for rice have increased by 718% in the last 32 years (1988–2020). During the rabi season, the cropped areas for wheat (Triticum aestivum L.) have increased by 27% from 1988 to 2020. The irrigation water availability and water allowance have increased up to 125 and 110% due to decrease in agricultural land, respectively. The overall average accuracies were found as 87 and 89% for Rabi and Kharif crops, respectively. The LULC mapping technique may be used to develop a decision support system for evaluating the changes in cropping pattern and their impacts on net water availability and water allowances. Full article
Show Figures

Figure 1

15 pages, 6090 KiB  
Article
Automated Detection of Tailing Impoundments in Multi-Sensor High-Resolution Satellite Images Through Advanced Deep Learning Architectures
by Lin Qin and Wenyue Song
Sensors 2025, 25(14), 4387; https://doi.org/10.3390/s25144387 - 14 Jul 2025
Viewed by 137
Abstract
Accurate spatial mapping of Tailing Impoundments (TIs) is vital for environmental sustainability in mining ecosystems. While remote sensing enables large-scale monitoring, conventional methods relying on single-sensor data and traditional machine learning-based algorithm suffer from reduced accuracy in cluttered environments. This research proposes a [...] Read more.
Accurate spatial mapping of Tailing Impoundments (TIs) is vital for environmental sustainability in mining ecosystems. While remote sensing enables large-scale monitoring, conventional methods relying on single-sensor data and traditional machine learning-based algorithm suffer from reduced accuracy in cluttered environments. This research proposes a deep learning framework leveraging multi-source high-resolution imagery to address these limitations. An upgraded You Only Look Once (YOLO) model is introduced, integrating three key innovations: a multi-scale feature aggregation layer, a lightweight hierarchical fusion mechanism, and a modified loss metric. These components enhance the model’s ability to capture spatial dependencies, optimize inference speed, and ensure stable training dynamics. A comprehensive dataset of TIs across varied terrains was constructed, expanded through affine transformations, spectral perturbations, and adversarial sample synthesis. Evaluations confirm the framework’s superior performance in complex scenarios, achieving higher precision and computational efficiency than state-of-the-art detectors. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

30 pages, 8543 KiB  
Article
Multi-Channel Coupled Variational Bayesian Framework with Structured Sparse Priors for High-Resolution Imaging of Complex Maneuvering Targets
by Xin Wang, Jing Yang and Yong Luo
Remote Sens. 2025, 17(14), 2430; https://doi.org/10.3390/rs17142430 - 13 Jul 2025
Viewed by 113
Abstract
High-resolution ISAR (Inverse Synthetic Aperture Radar) imaging plays a crucial role in dynamic target monitoring for aerospace, maritime, and ground surveillance. Among various remote sensing techniques, ISAR is distinguished by its ability to produce high-resolution images of non-cooperative maneuvering targets. To meet the [...] Read more.
High-resolution ISAR (Inverse Synthetic Aperture Radar) imaging plays a crucial role in dynamic target monitoring for aerospace, maritime, and ground surveillance. Among various remote sensing techniques, ISAR is distinguished by its ability to produce high-resolution images of non-cooperative maneuvering targets. To meet the increasing demands for resolution and robustness, modern ISAR systems are evolving toward wideband and multi-channel architectures. In particular, multi-channel configurations based on large-scale receiving arrays have gained significant attention. In such systems, each receiving element functions as an independent spatial channel, acquiring observations from distinct perspectives. These multi-angle measurements enrich the available echo information and enhance the robustness of target imaging. However, this setup also brings significant challenges, including inter-channel coupling, high-dimensional joint signal modeling, and non-Gaussian, mixed-mode interference, which often degrade image quality and hinder reconstruction performance. To address these issues, this paper proposes a Hybrid Variational Bayesian Multi-Interference (HVB-MI) imaging algorithm based on a hierarchical Bayesian framework. The method jointly models temporal correlations and inter-channel structure, introducing a coupled processing strategy to reduce dimensionality and computational complexity. To handle complex noise environments, a Gaussian mixture model (GMM) is used to represent nonstationary mixed noise. A variational Bayesian inference (VBI) approach is developed for efficient parameter estimation and robust image recovery. Experimental results on both simulated and real-measured data demonstrate that the proposed method achieves significantly improved image resolution and noise robustness compared with existing approaches, particularly under conditions of sparse sampling or strong interference. Quantitative evaluation further shows that under the continuous sparse mode with a 75% sampling rate, the proposed method achieves a significantly higher Laplacian Variance (LV), outperforming PCSBL and CPESBL by 61.7% and 28.9%, respectively and thereby demonstrating its superior ability to preserve fine image details. Full article
Show Figures

Figure 1

25 pages, 4948 KiB  
Review
A Review of Visual Grounding on Remote Sensing Images
by Ziyan Wang, Lei Liu, Gang Wan, Wei Zhang, Binjian Zhong, Haiyang Chang, Xinyi Li, Xiaoxuan Liu and Guangde Sun
Electronics 2025, 14(14), 2815; https://doi.org/10.3390/electronics14142815 - 13 Jul 2025
Viewed by 180
Abstract
Remote sensing visual grounding, a pivotal technology bridging natural language and high-resolution remote sensing images, holds significant application value in disaster monitoring, urban planning, and related fields. However, it faces critical challenges due to the inherent scale heterogeneity, semantic complexity, and annotation scarcity [...] Read more.
Remote sensing visual grounding, a pivotal technology bridging natural language and high-resolution remote sensing images, holds significant application value in disaster monitoring, urban planning, and related fields. However, it faces critical challenges due to the inherent scale heterogeneity, semantic complexity, and annotation scarcity of remote sensing data. This paper first reviews the development history of remote sensing visual grounding, providing an overview of the basic background knowledge, including fundamental concepts, datasets, and evaluation metrics. Then, it categorizes methods by whether they employ large language models as a pedestal, and provides in-depth analyses of the innovations and limitations of Transformer-based and multimodal large language model-based methods. Furthermore, focusing on remote sensing image characteristics, it discusses cutting-edge techniques such as cross-modal feature fusion, language-guided visual optimization, multi-scale, and hierarchical feature processing, open-set expansion and efficient fine-tuning. Finally, it outlines current bottlenecks and proposes valuable directions for future research. As the first comprehensive review dedicated to remote sensing visual grounding, this work is a reference resource for researchers to grasp domain-specific concepts and track the latest developments. Full article
Show Figures

Figure 1

24 pages, 19550 KiB  
Article
TMTS: A Physics-Based Turbulence Mitigation Network Guided by Turbulence Signatures for Satellite Video
by Jie Yin, Tao Sun, Xiao Zhang, Guorong Zhang, Xue Wan and Jianjun He
Remote Sens. 2025, 17(14), 2422; https://doi.org/10.3390/rs17142422 - 12 Jul 2025
Viewed by 148
Abstract
Atmospheric turbulence severely degrades high-resolution satellite videos through spatiotemporally coupled distortions, including temporal jitter, spatial-variant blur, deformation, and scintillation, thereby constraining downstream analytical capabilities. Restoring turbulence-corrupted videos poses a challenging ill-posed inverse problem due to the inherent randomness of turbulent fluctuations. While existing [...] Read more.
Atmospheric turbulence severely degrades high-resolution satellite videos through spatiotemporally coupled distortions, including temporal jitter, spatial-variant blur, deformation, and scintillation, thereby constraining downstream analytical capabilities. Restoring turbulence-corrupted videos poses a challenging ill-posed inverse problem due to the inherent randomness of turbulent fluctuations. While existing turbulence mitigation methods for long-range imaging demonstrate partial success, they exhibit limited generalizability and interpretability in large-scale satellite scenarios. Inspired by refractive-index structure constant (Cn2) estimation from degraded sequences, we propose a physics-informed turbulence signature (TS) prior that explicitly captures spatiotemporal distortion patterns to enhance model transparency. Integrating this prior into a lucky imaging framework, we develop a Physics-Based Turbulence Mitigation Network guided by Turbulence Signature (TMTS) to disentangle atmospheric disturbances from satellite videos. The framework employs deformable attention modules guided by turbulence signatures to correct geometric distortions, iterative gated mechanisms for temporal alignment stability, and adaptive multi-frame aggregation to address spatially varying blur. Comprehensive experiments on synthetic and real-world turbulence-degraded satellite videos demonstrate TMTS’s superiority, achieving 0.27 dB PSNR and 0.0015 SSIM improvements over the DATUM baseline while maintaining practical computational efficiency. By bridging turbulence physics with deep learning, our approach provides both performance enhancements and interpretable restoration mechanisms, offering a viable solution for operational satellite video processing under atmospheric disturbances. Full article
Show Figures

Figure 1

25 pages, 85368 KiB  
Article
SMA-YOLO: An Improved YOLOv8 Algorithm Based on Parameter-Free Attention Mechanism and Multi-Scale Feature Fusion for Small Object Detection in UAV Images
by Shenming Qu, Chaoxu Dang, Wangyou Chen and Yanhong Liu
Remote Sens. 2025, 17(14), 2421; https://doi.org/10.3390/rs17142421 - 12 Jul 2025
Viewed by 238
Abstract
With special consideration for complex scenes and densely distributed small objects, this frequently leads to serious false and missed detections for unmanned aerial vehicle (UAV) images in small object detection scenarios. Consequently, we propose a UAV image small object detection algorithm, termed SMA-YOLO. [...] Read more.
With special consideration for complex scenes and densely distributed small objects, this frequently leads to serious false and missed detections for unmanned aerial vehicle (UAV) images in small object detection scenarios. Consequently, we propose a UAV image small object detection algorithm, termed SMA-YOLO. Firstly, a parameter-free simple slicing convolution (SSC) module is integrated in the backbone network to slice the feature maps and enhance the features so as to effectively retain the features of small objects. Subsequently, to enhance the information exchange between upper and lower layers, we design a special multi-cross-scale feature pyramid network (M-FPN). The C2f-Hierarchical-Phantom Convolution (C2f-HPC) module in the network effectively reduces information loss by fine-grained multi-scale feature fusion. Ultimately, adaptive spatial feature fusion detection Head (ASFFDHead) introduces an additional P2 detection head to enhance the resolution of feature maps to better locate small objects. Moreover, the ASFF mechanism is employed to optimize the detection process by filtering out information conflicts during multi-scale feature fusion, thereby significantly optimizing small object detection capability. Using YOLOv8n as the baseline, SMA-YOLO is evaluated on the VisDrone2019 dataset, achieving a 7.4% improvement in mAP@0.5 and a 13.3% reduction in model parameters, and we also verified its generalization ability on VAUDT and RSOD datasets, which demonstrates the effectiveness of our approach. Full article
Show Figures

Figure 1

36 pages, 25361 KiB  
Article
Remote Sensing Image Compression via Wavelet-Guided Local Structure Decoupling and Channel–Spatial State Modeling
by Jiahui Liu, Lili Zhang and Xianjun Wang
Remote Sens. 2025, 17(14), 2419; https://doi.org/10.3390/rs17142419 - 12 Jul 2025
Viewed by 241
Abstract
As the resolution and data volume of remote sensing imagery continue to grow, achieving efficient compression without sacrificing reconstruction quality remains a major challenge, given that traditional handcrafted codecs often fail to balance rate-distortion performance and computational complexity, while deep learning-based approaches offer [...] Read more.
As the resolution and data volume of remote sensing imagery continue to grow, achieving efficient compression without sacrificing reconstruction quality remains a major challenge, given that traditional handcrafted codecs often fail to balance rate-distortion performance and computational complexity, while deep learning-based approaches offer superior representational capacity. However, challenges remain in achieving a balance between fine-detail adaptation and computational efficiency. Mamba, a state–space model (SSM)-based architecture, offers linear-time complexity and excels at capturing long-range dependencies in sequences. It has been adopted in remote sensing compression tasks to model long-distance dependencies between pixels. However, despite its effectiveness in global context aggregation, Mamba’s uniform bidirectional scanning is insufficient for capturing high-frequency structures such as edges and textures. Moreover, existing visual state–space (VSS) models built upon Mamba typically treat all channels equally and lack mechanisms to dynamically focus on semantically salient spatial regions. To address these issues, we present an innovative architecture for distant sensing image compression, called the Multi-scale Channel Global Mamba Network (MGMNet). MGMNet integrates a spatial–channel dynamic weighting mechanism into the Mamba architecture, enhancing global semantic modeling while selectively emphasizing informative features. It comprises two key modules. The Wavelet Transform-guided Local Structure Decoupling (WTLS) module applies multi-scale wavelet decomposition to disentangle and separately encode low- and high-frequency components, enabling efficient parallel modeling of global contours and local textures. The Channel–Global Information Modeling (CGIM) module enhances conventional VSS by introducing a dual-path attention strategy that reweights spatial and channel information, improving the modeling of long-range dependencies and edge structures. We conducted extensive evaluations on three distinct remote sensing datasets to assess the MGMNet. The results of the investigations revealed that MGMNet outperforms the current SOTA models across various performance metrics. Full article
Show Figures

Figure 1

18 pages, 1995 KiB  
Article
A U-Shaped Architecture Based on Hybrid CNN and Mamba for Medical Image Segmentation
by Xiaoxuan Ma, Yingao Du and Dong Sui
Appl. Sci. 2025, 15(14), 7821; https://doi.org/10.3390/app15147821 - 11 Jul 2025
Viewed by 151
Abstract
Accurate medical image segmentation plays a critical role in clinical diagnosis, treatment planning, and a wide range of healthcare applications. Although U-shaped CNNs and Transformer-based architectures have shown promise, CNNs struggle to capture long-range dependencies, whereas Transformers suffer from quadratic growth in computational [...] Read more.
Accurate medical image segmentation plays a critical role in clinical diagnosis, treatment planning, and a wide range of healthcare applications. Although U-shaped CNNs and Transformer-based architectures have shown promise, CNNs struggle to capture long-range dependencies, whereas Transformers suffer from quadratic growth in computational cost as image resolution increases. To address these issues, we propose HCMUNet, a novel medical image segmentation model that innovatively combines the local feature extraction capabilities of CNNs with the efficient long-range dependency modeling of Mamba, enhancing feature representation while reducing computational cost. In addition, HCMUNet features a redesigned skip connection and a novel attention module that integrates multi-scale features to recover spatial details lost during down-sampling and to promote richer cross-dimensional interactions. HCMUNet achieves Dice Similarity Coefficients (DSC) of 90.32%, 81.52%, and 92.11% on the ISIC 2018, Synapse multi-organ, and ACDC datasets, respectively, outperforming baseline methods by 0.65%, 1.05%, and 1.39%. Furthermore, HCMUNet consistently outperforms U-Net and Swin-UNet, achieving average Dice score improvements of approximately 5% and 2% across the evaluated datasets. These results collectively affirm the effectiveness and reliability of the proposed model across different segmentation tasks. Full article
Show Figures

Figure 1

18 pages, 4631 KiB  
Article
Semantic Segmentation of Rice Fields in Sub-Meter Satellite Imagery Using an HRNet-CA-Enhanced DeepLabV3+ Framework
by Yifan Shao, Pan Pan, Hongxin Zhao, Jiale Li, Guoping Yu, Guomin Zhou and Jianhua Zhang
Remote Sens. 2025, 17(14), 2404; https://doi.org/10.3390/rs17142404 - 11 Jul 2025
Viewed by 263
Abstract
Accurate monitoring of rice-planting areas underpins food security and evidence-based farm management. Recent work has advanced along three complementary lines—multi-source data fusion (to mitigate cloud and spectral confusion), temporal feature extraction (to exploit phenology), and deep-network architecture optimization. However, even the best fusion- [...] Read more.
Accurate monitoring of rice-planting areas underpins food security and evidence-based farm management. Recent work has advanced along three complementary lines—multi-source data fusion (to mitigate cloud and spectral confusion), temporal feature extraction (to exploit phenology), and deep-network architecture optimization. However, even the best fusion- and time-series-based approaches still struggle to preserve fine spatial details in sub-meter scenes. Targeting this gap, we propose an HRNet-CA-enhanced DeepLabV3+ that retains the original model’s strengths while resolving its two key weaknesses: (i) detail loss caused by repeated down-sampling and feature-pyramid compression and (ii) boundary blurring due to insufficient multi-scale information fusion. The Xception backbone is replaced with a High-Resolution Network (HRNet) to maintain full-resolution feature streams through multi-resolution parallel convolutions and cross-scale interactions. A coordinate attention (CA) block is embedded in the decoder to strengthen spatially explicit context and sharpen class boundaries. The rice dataset consisted of 23,295 images (11,295 rice + 12,000 non-rice) via preprocessing and manual labeling and benchmarked the proposed model against classical segmentation networks. Our approach boosts boundary segmentation accuracy to 92.28% MIOU and raises texture-level discrimination to 95.93% F1, without extra inference latency. Although this study focuses on architecture optimization, the HRNet-CA backbone is readily compatible with future multi-source fusion and time-series modules, offering a unified path toward operational paddy mapping in fragmented sub-meter landscapes. Full article
Show Figures

Figure 1

20 pages, 6074 KiB  
Article
Remote Sensing Archaeology of the Xixia Imperial Tombs: Analyzing Burial Landscapes and Geomantic Layouts
by Wei Ji, Li Li, Jia Yang, Yuqi Hao and Lei Luo
Remote Sens. 2025, 17(14), 2395; https://doi.org/10.3390/rs17142395 - 11 Jul 2025
Viewed by 219
Abstract
The Xixia Imperial Tombs (XITs) represent a crucial, yet still largely mysterious, component of the Tangut civilization’s legacy. Located in northwestern China, this extensive necropolis offers invaluable insights into the Tangut state, culture, and burial practices. This study employs an integrated approach utilizing [...] Read more.
The Xixia Imperial Tombs (XITs) represent a crucial, yet still largely mysterious, component of the Tangut civilization’s legacy. Located in northwestern China, this extensive necropolis offers invaluable insights into the Tangut state, culture, and burial practices. This study employs an integrated approach utilizing multi-resolution and multi-temporal satellite remote sensing data, including Gaofen-2 (GF-2), Landsat-8 OLI, declassified GAMBIT imagery, and Google Earth, combined with deep learning techniques, to conduct a comprehensive archaeological investigation of the XITs’ burial landscape. We performed geomorphological analysis of the surrounding environment and automated identification and mapping of burial mounds and mausoleum features using YOLOv5, complemented by manual interpretation of very-high-resolution (VHR) satellite imagery. Spectral indices and image fusion techniques were applied to enhance the detection of archaeological features. Our findings demonstrated the efficacy of this combined methodology for archaeology prospect, providing valuable insights into the spatial layout, geomantic considerations, and preservation status of the XITs. Notably, the analysis of declassified GAMBIT imagery facilitated the identification of a suspected true location for the ninth imperial tomb (M9), a significant contribution to understanding Xixia history through remote sensing archaeology. This research provides a replicable framework for the detection and preservation of archaeological sites using readily available satellite data, underscoring the power of advanced remote sensing and machine learning in heritage studies. Full article
Show Figures

Figure 1

22 pages, 6194 KiB  
Article
KidneyNeXt: A Lightweight Convolutional Neural Network for Multi-Class Renal Tumor Classification in Computed Tomography Imaging
by Gulay Maçin, Fatih Genç, Burak Taşcı, Sengul Dogan and Turker Tuncer
J. Clin. Med. 2025, 14(14), 4929; https://doi.org/10.3390/jcm14144929 - 11 Jul 2025
Viewed by 148
Abstract
Background: Renal tumors, encompassing benign, malignant, and normal variants, represent a significant diagnostic challenge in radiology due to their overlapping visual characteristics on computed tomography (CT) scans. Manual interpretation is time consuming and susceptible to inter-observer variability, emphasizing the need for automated, [...] Read more.
Background: Renal tumors, encompassing benign, malignant, and normal variants, represent a significant diagnostic challenge in radiology due to their overlapping visual characteristics on computed tomography (CT) scans. Manual interpretation is time consuming and susceptible to inter-observer variability, emphasizing the need for automated, reliable classification systems to support early and accurate diagnosis. Method and Materials: We propose KidneyNeXt, a custom convolutional neural network (CNN) architecture designed for the multi-class classification of renal tumors using CT imaging. The model integrates multi-branch convolutional pathways, grouped convolutions, and hierarchical feature extraction blocks to enhance representational capacity. Transfer learning with ImageNet 1K pretraining and fine tuning was employed to improve generalization across diverse datasets. Performance was evaluated on three CT datasets: a clinically curated retrospective dataset (3199 images), the Kaggle CT KIDNEY dataset (12,446 images), and the KAUH: Jordan dataset (7770 images). All images were preprocessed to 224 × 224 resolution without data augmentation and split into training, validation, and test subsets. Results: Across all datasets, KidneyNeXt demonstrated outstanding classification performance. On the clinical dataset, the model achieved 99.76% accuracy and a macro-averaged F1 score of 99.71%. On the Kaggle CT KIDNEY dataset, it reached 99.96% accuracy and a 99.94% F1 score. Finally, evaluation on the KAUH dataset yielded 99.74% accuracy and a 99.72% F1 score. The model showed strong robustness against class imbalance and inter-class similarity, with minimal misclassification rates and stable learning dynamics throughout training. Conclusions: The KidneyNeXt architecture offers a lightweight yet highly effective solution for the classification of renal tumors from CT images. Its consistently high performance across multiple datasets highlights its potential for real-world clinical deployment as a reliable decision support tool. Future work may explore the integration of clinical metadata and multimodal imaging to further enhance diagnostic precision and interpretability. Additionally, interpretability was addressed using Grad-CAM visualizations, which provided class-specific attention maps to highlight the regions contributing to the model’s predictions. Full article
(This article belongs to the Special Issue Artificial Intelligence and Deep Learning in Medical Imaging)
Show Figures

Figure 1

Back to TopTop