Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (819)

Search Parameters:
Keywords = multi-domain attention

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 6149 KB  
Review
Energy Management in Microgrids: Commercial, Industrial, and Residential Perspectives
by Mohamed Atef, Sanath Alahakoon, Peter Wolfs, Umme Mumtahina, Tamer Khatib and Moslem Uddin
Energies 2026, 19(2), 419; https://doi.org/10.3390/en19020419 - 15 Jan 2026
Abstract
This study aims to review the energy management of microgrids with a structured focus on residential, commercial, and industrial applications. Building on early optimization and control strategies, this study synthesizes advances in forecasting, uncertainty management, computational intelligence, and digital twin integration. Particular attention [...] Read more.
This study aims to review the energy management of microgrids with a structured focus on residential, commercial, and industrial applications. Building on early optimization and control strategies, this study synthesizes advances in forecasting, uncertainty management, computational intelligence, and digital twin integration. Particular attention is given to multi-energy coupling through storage technologies, including hydrogen and thermal pathways, along with life cycle, trilemma, and sustainability considerations. Sector-specific energy management system (EMS) strategies are compared in terms of objectives, methods, and implementation challenges, highlighting both converging and unique requirements across application domains. Cross-sectoral challenges, such as interoperability, cyber-security, resilience valuation, and policy gaps, are analyzed, and emerging research directions, including artificial intelligence (AI)-driven optimization, hierarchical and multi-agent frameworks, and hydrogen-enabled autonomy, are outlined. This review aims to equip researchers, practitioners, and policymakers with a consolidated reference on microgrid EMS, bridging technical innovation with sustainable and resilient energy transitions. Full article
Show Figures

Figure 1

24 pages, 3277 KB  
Article
FT-iTransformer: A Stock Price Prediction Model Based on Time–Frequency Domain Collaborative Analysis
by Zheng Zou, Xi-Xi Zhou, Shi-Jian Liu and Chih-Yu Hsu
Technologies 2026, 14(1), 61; https://doi.org/10.3390/technologies14010061 - 14 Jan 2026
Abstract
The stock market serves as an important channel for investors to preserve and increase their assets and has attracted significant attention. However, stock price is affected by multiple factors and represents complex characteristics such as high volatility, nonlinearity, and non-stationarity, making accurate prediction [...] Read more.
The stock market serves as an important channel for investors to preserve and increase their assets and has attracted significant attention. However, stock price is affected by multiple factors and represents complex characteristics such as high volatility, nonlinearity, and non-stationarity, making accurate prediction highly challenging. To improve forecasting accuracy, this study proposes FT-iTransformer, a stock price prediction model based on time–frequency domain collaborative analysis. The model integrates a frequency domain feature extraction module and a multi-scale temporal convolution network module to comprehensively capture both time and frequency domain features, and then the extracted features are fused and input into iTransformer. It models the complex relationships among multiple variables through the self-attention mechanism, utilizes the feedforward network to capture temporal dependencies, and finally the prediction results are output through the projection layer. This study conducts both comparative and ablation experiments on six stock datasets to evaluate the proposed FT-iTransformer model. The results of comparative experiments show that, compared with seven mainstream baseline models, such as LSTM, Informer, and FEDformer, FT-iTransformer achieves superior performance on all evaluation metrics. Furthermore, the results of ablation experiments exhibit the contributions of each core module to the overall predictive performance, and confirming the validity of the model’s design. In summary, FT-iTransformer provides an effective framework for predicting stock price accurately. Full article
(This article belongs to the Topic Emerging AI+X Technologies and Applications)
Show Figures

Figure 1

32 pages, 51773 KB  
Article
SAR Radio Frequency Interference Suppression Based on Kurtosis-Guided Attention Network
by Jiajun Wu, Jiayuan Shen, Bing Han, Di Yin and Jiaxin Wan
Remote Sens. 2026, 18(2), 255; https://doi.org/10.3390/rs18020255 - 13 Jan 2026
Abstract
Radio-frequency interference (RFI) severely degrades the imaging quality of synthetic aperture radar (SAR), especially when the interference energy is strongly coupled with ground backscatter in both the time and frequency domains. Existing algorithms typically rely on energy contrast or component decomposition in transform [...] Read more.
Radio-frequency interference (RFI) severely degrades the imaging quality of synthetic aperture radar (SAR), especially when the interference energy is strongly coupled with ground backscatter in both the time and frequency domains. Existing algorithms typically rely on energy contrast or component decomposition in transform domains, which limits their ability to cleanly separate complex RFI from high-power echoes. Exploiting the fact that kurtosis is insensitive to ground clutter and background noise, this paper proposes an interference suppression network based on the temporal kurtosis guidance mechanism. Specifically, a statistical prior vector capturing the non-Gaussian characteristics of RFI is constructed using kurtosis in the time–frequency domain and is integrated into a multi-scale attention mechanism, allowing the network to more effectively concentrate on interfered regions. Meanwhile, a systematic framework is established for the quantitative assessment of phase fidelity in the reconstruction of complex-valued SAR echoes. On this basis, by exploiting the strong generalization capability and high processing efficiency of data-driven models, the proposed network achieves improved RFI separation and enhanced reconstruction accuracy of underlying scene features. Ablation experiments validated that the design of a kurtosis-guided module can reduce the mean square error (MSE) loss by 14.87% compared to the basic model. Furthermore, regarding the phase fidelity, the correlation coefficient between the suppressed signal and the original true signal reached 0.99. Finally, GF-3 satellite data are used to further demonstrate the effectiveness and practicality of the proposed method. Full article
Show Figures

Graphical abstract

29 pages, 833 KB  
Review
An Integrative Review of the Cardiovascular Disease Spectrum: Integrating Multi-Omics and Artificial Intelligence for Precision Cardiology
by Gabriela-Florentina Țapoș, Ioan-Alexandru Cîmpeanu, Iasmina-Alexandra Predescu, Sergio Liga, Andra Tiberia Păcurar, Daliborca Vlad, Casiana Boru, Silvia Luca, Simina Crișan, Cristina Văcărescu and Constantin Tudor Luca
Diseases 2026, 14(1), 31; https://doi.org/10.3390/diseases14010031 (registering DOI) - 13 Jan 2026
Viewed by 8
Abstract
Background/Objectives: Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide and increasingly are recognized as a continuum of interconnected conditions rather than isolated entities. Methods: A structured narrative literature search was performed in PubMed, Scopus, and Google Scholar for publications [...] Read more.
Background/Objectives: Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide and increasingly are recognized as a continuum of interconnected conditions rather than isolated entities. Methods: A structured narrative literature search was performed in PubMed, Scopus, and Google Scholar for publications from 2015 to 2025 using combinations of different keywords: “cardiovascular disease spectrum”, “multi-omics”, “precision cardiology”, “machine learning”, and “artificial intelligence in cardiology”. Results: Evidence was synthesized across seven major clusters of cardiovascular conditions, and across these domains, common biological pathways were mapped onto heterogeneous clinical phenotypes, and we summarize how multi-omics integration, AI-enabled imaging and digital tools contribute to improved risk prediction and more informed clinical decision-making within this spectrum. Conclusions: Interpreting cardiovascular conditions as components of a shared disease spectrum clarifies cross-disease interactions and supports a shift from organ- and syndrome-based classifications toward mechanism- and data-driven precision cardiology. The convergence of multi-omics, and AI offers substantial opportunities for earlier detection, individualized prevention, and tailored therapy, but requires careful attention to data quality, equity, interpretability, and practical implementation in routine care. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

31 pages, 4179 KB  
Article
Ontology-Enhanced Deep Learning for Early Detection of Date Palm Diseases in Smart Farming Systems
by Naglaa E. Ghannam, H. Mancy, Asmaa Mohamed Fathy and Esraa A. Mahareek
AgriEngineering 2026, 8(1), 29; https://doi.org/10.3390/agriengineering8010029 - 13 Jan 2026
Viewed by 18
Abstract
Early and accurate date palm disease detection is the key to successful smart farming ecosystem sustainability. In this paper, we introduce DoST-DPD, a new Dual-Stream Transformer architecture for multimodal disease diagnosis utilizing RGB, thermal and NIR imaging. In contrast with standard deep learning [...] Read more.
Early and accurate date palm disease detection is the key to successful smart farming ecosystem sustainability. In this paper, we introduce DoST-DPD, a new Dual-Stream Transformer architecture for multimodal disease diagnosis utilizing RGB, thermal and NIR imaging. In contrast with standard deep learning approaches, our model receives ontology-based semantic supervision (via per-dataset OWL ontologies), enabling knowledge injection via SPARQL-driven reasoning during training. This structured knowledge layer not only improves multimodal feature correspondence but also restricts label consistency for improving generalization performance, particularly in early disease diagnosis. We tested our proposed method on a comprehensive set of five benchmarks (PlantVillage, PlantDoc, Figshare, Mendeley, and Kaggle Date Palm) together with domain-specific ontologies. An ablation study validates the effectiveness of incorporating ontology supervision, consistently improving the performance across Accuracy, Precision, Recall, F1-Score and AUC. We achieve state-of-the-art performance over five widely recognized baselines (PlantXViT, Multi-ViT, ERCP-Net, andResNet), with our model DoST-DPD achieving the highest Accuracy of 99.3% and AUC of 98.2% on the PlantVillage dataset. In addition, ontology-driven attention maps and semantic consistency contributed to high interpretability and robustness in multiple crop and imaging modalities. Results: This work presents a scalable roadmap for ontology-integrated AI systems in agriculture and illustrates how structured semantic reasoning can directly benefit multimodal plant disease detection systems. The proposed model demonstrates competitive performance across multiple datasets and highlights the unique advantage of integrating ontology-guided supervision in multimodal crop disease detection. Full article
Show Figures

Figure 1

21 pages, 23946 KB  
Article
Infrared Image Denoising Algorithm Based on Wavelet Transform and Self-Attention Mechanism
by Hongmei Li, Yang Zhang, Luxia Yang and Hongrui Zhang
Sensors 2026, 26(2), 523; https://doi.org/10.3390/s26020523 - 13 Jan 2026
Viewed by 35
Abstract
Infrared images are often degraded by complex noise due to hardware and environmental factors, posing challenges for subsequent processing and target detection. To overcome the shortcomings of existing denoising methods in balancing noise removal and detail preservation, this paper proposes a Wavelet Transform [...] Read more.
Infrared images are often degraded by complex noise due to hardware and environmental factors, posing challenges for subsequent processing and target detection. To overcome the shortcomings of existing denoising methods in balancing noise removal and detail preservation, this paper proposes a Wavelet Transform Enhanced Infrared Denoising Model (WTEIDM). Firstly, a Wavelet Transform Self-Attention (WTSA) is designed, which combines the frequency-domain decomposition ability of the discrete wavelet transform (DWT) with the dynamic weighting mechanism of self-attention to achieve effective separation of noise and detail. Secondly, a Multi-Scale Gated Linear Unit (MSGLU) is devised to improve the ability to capture detail information and dynamically control features through dual-branch multi-scale depth-wise convolution and gating strategy. Finally, a Parallel Hybrid Attention Module (PHAM) is proposed to enhance cross-dimensional feature fusion effect through the parallel cross-interaction of spatial and channel attention. Extensive experiments are conducted on five infrared datasets under different noise levels (σ = 15, 25, and 50). The results demonstrate that the proposed WTEIDM outperforms several state-of-the-art denoising algorithms on both PSNR and SSIM metrics, confirming its superior generalization capability and robustness. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

21 pages, 15751 KB  
Article
Fault Diagnosis of Gearbox Bearings Based on Multi-Feature Fusion Dual-Channel CNN-Transformer-CAM
by Lihai Chen, Yonghui He, Ao Tan, Xiaolong Bai, Zhenshui Li and Xiaoqiang Wang
Machines 2026, 14(1), 92; https://doi.org/10.3390/machines14010092 - 13 Jan 2026
Viewed by 38
Abstract
As a core component of the gearbox, bearings are crucial to the stability and reliability of the transmission system. However, dynamic variations in operating conditions and complex noise interference present limitations for existing fault diagnosis methods in processing non-stationary signals and capturing complex [...] Read more.
As a core component of the gearbox, bearings are crucial to the stability and reliability of the transmission system. However, dynamic variations in operating conditions and complex noise interference present limitations for existing fault diagnosis methods in processing non-stationary signals and capturing complex features. To address the aforementioned challenges, this paper proposes a bearing fault diagnosis method based on a multi-feature fusion dual-channel CNN-Transformer-CAM framework. The model cross-fuses the two-dimensional feature images from Gramian Angular Difference Field (GADF) and Generalized S Transform (GST), preserving complete time–frequency domain information. First, a dual-channel parallel convolutional structure is employed to separately sample the generalized S-transform (GST) maps and the Gramian Angular Difference Field (GADF) maps, enriching fault information from different dimensions and effectively enhancing the model’s feature extraction capability. Subsequently, a Transformer structure is introduced at the backend of the convolutional neural network to strengthen the representation and analysis of complex time–frequency features. Finally, a cross-attention mechanism is applied to dynamically adjust features from the two channels, achieving adaptive weighted fusion. Test results demonstrate that under conditions of noise interference, limited samples, and multiple operating states, the proposed method can effectively achieve the accurate assessment of bearing fault conditions. Full article
Show Figures

Figure 1

22 pages, 3427 KB  
Article
FCS-Net: A Frequency-Spatial Coordinate and Strip-Augmented Network for SAR Oil Spill Segmentation
by Shentao Wang, Byung-Won Min, Depeng Gao and Yue Hong
J. Mar. Sci. Eng. 2026, 14(2), 168; https://doi.org/10.3390/jmse14020168 - 13 Jan 2026
Viewed by 35
Abstract
Accurate segmentation of marine oil spills in synthetic aperture radar (SAR) images is crucial for emergency response and environmental remediation. However, current deep learning methods are still limited by two long-standing bottlenecks: first, multiplicative speckle noise and complex background clutter make it difficult [...] Read more.
Accurate segmentation of marine oil spills in synthetic aperture radar (SAR) images is crucial for emergency response and environmental remediation. However, current deep learning methods are still limited by two long-standing bottlenecks: first, multiplicative speckle noise and complex background clutter make it difficult to accurately delineate actual oil spills; and second, limited receptive fields often lead to the geometric fragmentation of elongated, irregular oil films. To surmount these challenges, this paper proposes a novel framework termed the Frequency-Spatial Coordinate and Strip-Augmented Network (FCS-Net). First, we leverage the ConvNeXt-Small backbone to extract robust hierarchical features, utilizing its large kernel design to capture broad contextual information. Second, a Frequency-Spatial Coordinate Attention (FS-CA) module is proposed to integrate spatial coordinate encoding with global frequency-domain information. Third, to maintain the morphological integrity of elongated targets, we introduce a Strip-Augmented Pyramid Pooling (SAPP) module which employs anisotropic strip pooling to model long-range dependencies. Extensive experiments on the multi-source SOS dataset demonstrate the effectiveness of FCS-Net. The proposed method achieves state-of-the-art performance, reaching an mIoU of 87.78% in the Gulf of Mexico and 89.62% in the challenging Persian Gulf, outperforming strong baselines and demonstrating superior robustness in complex ocean scenarios. Full article
Show Figures

Figure 1

17 pages, 710 KB  
Article
KD-SecBERT: A Knowledge-Distilled Bidirectional Encoder Optimized for Open-Source Software Supply Chain Security in Smart Grid Applications
by Qinman Li, Xixiang Zhang, Weiming Liao, Tao Dai, Hongliang Zheng, Beiya Yang and Pengfei Wang
Electronics 2026, 15(2), 345; https://doi.org/10.3390/electronics15020345 - 13 Jan 2026
Viewed by 51
Abstract
With the acceleration of digital transformation, open-source software has become a fundamental component of modern smart grids and other critical infrastructures. However, the complex dependency structures of open-source ecosystems and the continuous emergence of vulnerabilities pose substantial challenges to software supply chain security. [...] Read more.
With the acceleration of digital transformation, open-source software has become a fundamental component of modern smart grids and other critical infrastructures. However, the complex dependency structures of open-source ecosystems and the continuous emergence of vulnerabilities pose substantial challenges to software supply chain security. In power information networks and cyber–physical control systems, vulnerabilities in open-source components integrated into Supervisory Control and Data Acquisition (SCADA), Energy Management System (EMS), and Distribution Management System (DMS) platforms and distributed energy controllers may propagate along the supply chain, threatening system security and operational stability. In such application scenarios, large language models (LLMs) often suffer from limited semantic accuracy when handling domain-specific security terminology, as well as deployment inefficiencies that hinder their practical adoption in critical infrastructure environments. To address these issues, this paper proposes KD-SecBERT, a domain-specific semantic bidirectional encoder optimized through multi-level knowledge distillation for open-source software supply chain security in smart grid applications. The proposed framework constructs a hierarchical multi-teacher ensemble that integrates general language understanding, cybersecurity-domain knowledge, and code semantic analysis, together with a lightweight student architecture based on depthwise separable convolutions and multi-head self-attention. In addition, a dynamic, multi-dimensional distillation strategy is introduced to jointly perform layer-wise representation alignment, ensemble knowledge fusion, and task-oriented optimization under a progressive curriculum learning scheme. Extensive experiments conducted on a multi-source dataset comprising National Vulnerability Database (NVD) and Common Vulnerabilities and Exposures (CVE) entries, security-related GitHub code, and Open Web Application Security Project (OWASP) test cases show that KD-SecBERT achieves an accuracy of 91.3%, a recall of 90.6%, and an F1-score of 89.2% on vulnerability classification tasks, indicating strong robustness in recognizing both common and low-frequency security semantics. These results demonstrate that KD-SecBERT provides an effective and practical solution for semantic analysis and software supply chain risk assessment in smart grids and other critical-infrastructure environments. Full article
Show Figures

Figure 1

21 pages, 2506 KB  
Article
Collaborative Dispatch of Power–Transportation Coupled Networks Based on Physics-Informed Priors
by Zhizeng Kou, Yingli Wei, Shiyan Luan, Yungang Wu, Hancong Guo, Bochao Yang and Su Su
Electronics 2026, 15(2), 343; https://doi.org/10.3390/electronics15020343 - 13 Jan 2026
Viewed by 50
Abstract
Under China’s “dual-carbon” strategic goals and the advancement of smart city development, the rapid adoption of electric vehicles (EVs) has deepened the spatiotemporal coupling between transportation networks and distribution grids, posing new challenges for integrated energy systems. To address this, we propose a [...] Read more.
Under China’s “dual-carbon” strategic goals and the advancement of smart city development, the rapid adoption of electric vehicles (EVs) has deepened the spatiotemporal coupling between transportation networks and distribution grids, posing new challenges for integrated energy systems. To address this, we propose a collaborative optimization framework for power–transportation coupled networks that integrates multi-modal data with physical priors. The framework constructs a joint feature space from traffic flow, pedestrian density, charging behavior, and grid operating states, and employs hypergraph modeling—guided by power flow balance and traffic flow conservation principles—to capture high-order cross-domain coupling. For prediction, spatiotemporal graph convolution combined with physics-informed attention significantly improves the accuracy of EV charging load forecasting. For optimization, a hierarchical multi-agent strategy integrating federated learning and the Alternating Direction Method of Multipliers (ADMM) enables privacy-preserving, distributed charging load scheduling. Case studies conducted on a 69-node distribution network using real traffic and charging data demonstrate that the proposed method reduces the grid’s peak–valley difference by 20.16%, reduces system operating costs by approximately 25%, and outperforms mainstream baseline models in prediction accuracy, algorithm convergence speed, and long-term operational stability. This work provides a practical and scalable technical pathway for the deep integration of energy and transportation systems in future smart cities. Full article
Show Figures

Figure 1

23 pages, 91075 KB  
Article
Improved Lightweight Marine Oil Spill Detection Using the YOLOv8 Algorithm
by Jianting Shi, Tianyu Jiao, Daniel P. Ames, Yinan Chen and Zhonghua Xie
Appl. Sci. 2026, 16(2), 780; https://doi.org/10.3390/app16020780 - 12 Jan 2026
Viewed by 99
Abstract
Marine oil spill detection using Synthetic Aperture Radar (SAR) is crucial but challenged by dynamic marine conditions, diverse spill scales, and limitations in existing algorithms regarding model size and real-time performance. To address these challenges, we propose LSFE-YOLO, a YOLOv8s-optimized (You Only Look [...] Read more.
Marine oil spill detection using Synthetic Aperture Radar (SAR) is crucial but challenged by dynamic marine conditions, diverse spill scales, and limitations in existing algorithms regarding model size and real-time performance. To address these challenges, we propose LSFE-YOLO, a YOLOv8s-optimized (You Only Look Once version 8) lightweight model with an original, domain-tailored synergistic integration of FasterNet, GN-LSC Head (GroupNorm Lightweight Shared Convolution Head), and C2f_MBE (C2f Mobile Bottleneck Enhanced). FasterNet serves as the backbone (25% neck width reduction), leveraging partial convolution (PConv) to minimize memory access and redundant computations—overcoming traditional lightweight backbones’ high memory overhead—laying the foundation for real-time deployment while preserving feature extraction. The proposed GN-LSC Head replaces YOLOv8’s decoupled head: its shared convolutions reduce parameter redundancy by approximately 40%, and GroupNorm (Group Normalization) ensures stable accuracy under edge computing’s small-batch constraints, outperforming BatchNorm (Batch Normalization) in resource-limited scenarios. The C2f_MBE module integrates EffectiveSE (Effective Squeeze and Excitation)-optimized MBConv (Mobile Inverted Bottleneck Convolution) into C2f: MBConv’s inverted-residual design enhances multi-scale feature capture, while lightweight EffectiveSE strengthens discriminative oil spill features without extra computation, addressing the original C2f’s scale variability insufficiency. Additionally, an SE (Squeeze and Excitation) attention mechanism embedded upstream of SPPF (Spatial Pyramid Pooling Fast) suppresses background interference (e.g., waves, biological oil films), synergizing with FasterNet and C2f_MBE to form a cascaded feature optimization pipeline that refines representations throughout the model. Experimental results show that LSFE-YOLO improves mAP (mean Average Precision) by 1.3% and F1 score by 1.7% over YOLOv8s, while achieving substantial reductions in model size (81.9%), parameter count (82.9%), and computational cost (84.2%), alongside a 20 FPS (Frames Per Second) increase in detection speed. LSFE-YOLO offers an efficient and effective solution for real-time marine oil spill detection. Full article
Show Figures

Figure 1

31 pages, 3343 KB  
Article
GridFM: A Physics-Informed Foundation Model for Multi-Task Energy Forecasting Using Real-Time NYISO Data
by Ali Sayghe, Mohammed Ahmed Mousa, Salem Batiyah, Abdulrahman Husawi and Mansour Almuwallad
Energies 2026, 19(2), 357; https://doi.org/10.3390/en19020357 - 11 Jan 2026
Viewed by 108
Abstract
The rapid integration of renewable energy sources and increasing complexity of modern power grids demand advanced forecasting tools capable of simultaneously predicting multiple interconnected variables. While time series foundation models (TSFMs) have demonstrated remarkable zero-shot forecasting capabilities across diverse domains, their application in [...] Read more.
The rapid integration of renewable energy sources and increasing complexity of modern power grids demand advanced forecasting tools capable of simultaneously predicting multiple interconnected variables. While time series foundation models (TSFMs) have demonstrated remarkable zero-shot forecasting capabilities across diverse domains, their application in power grid operations remains limited due to complex coupling relationships between load, price, emissions, and renewable generation. This paper proposes GridFM, a novel physics-informed foundation model specifically designed for multi-task energy forecasting in power systems. GridFM introduces four key innovations: (1) a FreqMixer adaptation layer that transforms pre-trained foundation model representations to power-grid-specific patterns through frequency domain mixing without modifying base weights; (2) a physics-informed constraint module embedding power balance equations and zonal grid topology using graph neural networks; (3) a multi-task learning framework enabling joint forecasting of load demand, locational-based marginal prices (LBMP), carbon emissions, and renewable generation with uncertainty-weighted loss functions; and (4) an explainability module utilizing SHAP values and attention visualization for interpretable predictions. We validate GridFM using over 10 years of real-time data from the New York Independent System Operator (NYISO) at 5 min resolution, comprising more than 10 million data points across 11 load zones. Comprehensive experiments demonstrate that GridFM achieves state-of-the-art performance with an 18.5% improvement in load forecasting MAPE (achieving 2.14%), a 23.2% improvement in price forecasting (achieving 7.8% MAPE), and a 21.7% improvement in emission prediction compared to existing TSFMs including Chronos, TimesFM, and Moirai-MoE. Ablation studies confirm the contribution of each proposed component. The physics-informed constraints reduce physically inconsistent predictions by 67%, while the multi-task framework improves individual task performance by exploiting inter-variable correlations. The proposed model provides interpretable predictions supporting the Climate Leadership and Community Protection Act (CLCPA) 2030/2040 compliance objectives, enabling grid operators to make informed decisions for sustainable energy transition and carbon reduction strategies. Full article
Show Figures

Figure 1

20 pages, 10682 KB  
Article
FESW-UNet: A Dual-Domain Attention Network for Sorghum Aphid Segmentation
by Caijian Hua and Fangjun Ren
Sensors 2026, 26(2), 458; https://doi.org/10.3390/s26020458 - 9 Jan 2026
Viewed by 195
Abstract
Current management strategies for sorghum aphids heavily rely on indiscriminate chemical application, leading to severe environmental consequences and impacting food safety. While precision spraying offers a viable remediation for pesticide overuse, its effectiveness depends on accurately locating and classifying pests. To address the [...] Read more.
Current management strategies for sorghum aphids heavily rely on indiscriminate chemical application, leading to severe environmental consequences and impacting food safety. While precision spraying offers a viable remediation for pesticide overuse, its effectiveness depends on accurately locating and classifying pests. To address the critical challenge of segmenting small, swarming aphids in complex field environments, we propose FESW-UNet, a dual-domain attention network that integrates Fourier-enhanced attention, spatial attention, and wavelet-based downsampling into a UNet backbone. We introduce an efficient multi-scale attention (EMA) module between the encoder and decoder to enhance global context perception, enabling the model to capture more accurate relationships between global and local features in the field. In the feature extraction stage, we embed a simple attention module (SimAM) to target key infestation regions while suppressing background noise, thereby enhancing pixel-level discrimination. Furthermore, we replace conventional downsampling with Haar wavelet downsampling (HWD) to reduce resolution while preserving structural edge details. Finally, a Fourier-enhanced attention module (FEAM) is added to the skip-connection layers. By using complex-valued weights to regulate frequency-domain features, FEAM effectively fuses global low-frequency structures with local high-frequency details, thereby enhancing feature representation diversity. Experiments on the Aphid Cluster Segmentation dataset demonstrate that FESW-UNet outperforms other models, achieving an mIoU of 68.76%, mPA of 78.19%, and mF1 of 79.01%. The model also demonstrated strong adaptability on the AphidSeg-Sorghum dataset, achieving an mIoU of 81.22%, mPA of 87.97%, and mF1 of 88.60%. The proposed method offers an efficient and feasible technical solution for monitoring and controlling sorghum aphids through image segmentation, demonstrating broad application potential. Full article
(This article belongs to the Special Issue AI, IoT and Smart Sensors for Precision Agriculture: 2nd Edition)
Show Figures

Figure 1

22 pages, 3276 KB  
Article
AFR-CR: An Adaptive Frequency Domain Feature Reconstruction-Based Method for Cloud Removal via SAR-Assisted Remote Sensing Image Fusion
by Xiufang Zhou, Qirui Fang, Xunqiang Gong, Shuting Yang, Tieding Lu, Yuting Wan, Ailong Ma and Yanfei Zhong
Remote Sens. 2026, 18(2), 201; https://doi.org/10.3390/rs18020201 - 8 Jan 2026
Viewed by 237
Abstract
Optical imagery is often contaminated by clouds to varying degrees, which greatly affects the interpretation and analysis of images. Synthetic Aperture Radar (SAR) possesses the characteristic of penetrating clouds and mist, and a common strategy in SAR-assisted cloud removal involves fusing SAR and [...] Read more.
Optical imagery is often contaminated by clouds to varying degrees, which greatly affects the interpretation and analysis of images. Synthetic Aperture Radar (SAR) possesses the characteristic of penetrating clouds and mist, and a common strategy in SAR-assisted cloud removal involves fusing SAR and optical data and leveraging deep learning networks to reconstruct cloud-free optical imagery. However, these methods do not fully consider the characteristics of the frequency domain when processing feature integration, resulting in blurred edges of the generated cloudless optical images. Therefore, an adaptive frequency domain feature reconstruction-based cloud removal method is proposed to solve the problem. The proposed method comprises four key sequential stages. First, shallow features are extracted by fusing optical and SAR images. Second, a Transformer-based encoder captures multi-scale semantic features. Subsequently, the Frequency Domain Decoupling Module (FDDM) is employed. Utilizing a Dynamic Mask Generation mechanism, it explicitly decomposes features into low-frequency structures and high-frequency details, effectively suppressing cloud interference while preserving surface textures. Finally, robust information interaction is facilitated by the Cross-Frequency Reconstruction Module (CFRM) via transposed cross-attention, ensuring precise fusion and reconstruction. Experimental evaluation on the M3R-CR dataset confirms that the proposed approach achieves the best results on all four evaluated metrics, surpassing the performance of the eight other State-of-the-Art methods. It has demonstrated its effectiveness and advanced capabilities in the task of SAR-optical fusion for cloud removal. Full article
Show Figures

Figure 1

27 pages, 712 KB  
Review
Segmentation and Classification of Lung Cancer Images Using Deep Learning
by Xiaoli Yang, Angchao Duan, Ziyan Jiang, Xiao Li, Chenchen Wang, Jiawen Wang and Jiayi Zhou
Appl. Sci. 2026, 16(2), 628; https://doi.org/10.3390/app16020628 - 7 Jan 2026
Viewed by 248
Abstract
Lung cancer ranks among the world’s most prevalent and deadly diseases. Early detection is crucial for improving patient survival rates. Computed tomography (CT) is a common method for lung cancer screening and diagnosis. With the advancement of computer-aided diagnosis (CAD) systems, deep learning [...] Read more.
Lung cancer ranks among the world’s most prevalent and deadly diseases. Early detection is crucial for improving patient survival rates. Computed tomography (CT) is a common method for lung cancer screening and diagnosis. With the advancement of computer-aided diagnosis (CAD) systems, deep learning (DL) technologies have been extensively explored to aid in interpreting CT images for lung cancer identification. Therefore, this review aims to comprehensively examine DL techniques developed for lung cancer screening and diagnosis. It explores various datasets that play a crucial role in lung cancer CT image segmentation and classification tasks, analyzing their differences in aspects such as scale. Next, various evaluation metrics for measuring model performance are discussed. The segmentation section details convolutional neural network-based (CNN-based) segmentation methods, segmentation approaches using U-shaped network (U-Net) architectures, and the application and improvements of Transformer models in this domain. The classification section covers CNN-based classification methods, classification methods incorporating attention mechanisms, Transformer-based classification methods, and ensemble learning approaches. Finally, the paper summarizes the development of segmentation and classification techniques for lung cancer CT images, identifies current challenges, and outlines future research directions in areas such as dataset annotation, multimodal dataset construction, multi-model fusion, and model interpretability. Full article
Show Figures

Figure 1

Back to TopTop