Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,549)

Search Parameters:
Keywords = moving force

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 5463 KiB  
Article
Configuration Synthesis and Performance Analysis of 1T2R Decoupled Wheel-Legged Reconfigurable Mechanism
by Jingjing Shi, Ruiqin Li and Wenxiao Guo
Micromachines 2025, 16(8), 903; https://doi.org/10.3390/mi16080903 (registering DOI) - 31 Jul 2025
Abstract
A method for configuration synthesis of a reconfigurable decoupled parallel mechanical leg is proposed. In addition, a configuration evaluation index is proposed to evaluate the synthesized configurations and select the optimal one. Kinematic analysis and performance optimization of the selected mechanism’s configuration are [...] Read more.
A method for configuration synthesis of a reconfigurable decoupled parallel mechanical leg is proposed. In addition, a configuration evaluation index is proposed to evaluate the synthesized configurations and select the optimal one. Kinematic analysis and performance optimization of the selected mechanism’s configuration are carried out, and the motion mode of the robot’s reconfigurable mechanical leg is selected according to the task requirements. Then, the robot’s gait in walking mode is planned. Firstly, based on bionic principles, the motion characteristics of a mechanical leg based on a mammalian model and an insect model were analyzed. The input and output characteristics of the mechanism were analyzed to obtain the reconfiguration principle of the mechanism. Using type synthesis theory for the decoupled parallel mechanism, the configuration synthesis of the chain was carried out, and the constraint mode of the mechanical leg was determined according to the constraint property of the chain and the motion characteristics of the moving platform. Secondly, an evaluation index for the complexity of the reconfigurable mechanical leg structure was developed, and the synthesized mechanism was further analyzed and evaluated to select the mechanical leg’s configuration. Thirdly, the inverse position equations were established for the mechanical leg in the two motion modes, and its Jacobian matrix was derived. The degrees of freedom of the mechanism are completely decoupled in the two motion modes. Then, the workspace and motion/force transmission performance of the mechanical leg in the two motion modes were analyzed. Based on the weighted standard deviation of the motion/force transmission performance, the global performance fluctuation index of the mechanical leg motion/force transmission is defined, and the structural size parameters of the mechanical leg are optimized with the performance index as the optimization objective function. Finally, with the reconfigurable mechanical leg in the insect mode, the robot’s gait in the walking operation mode is planned according to the static stability criterion. Full article
(This article belongs to the Special Issue Soft Actuators: Design, Fabrication and Applications, 2nd Edition)
Show Figures

Figure 1

14 pages, 2295 KiB  
Article
Design of Novel Hydraulic Drive Cleaning Equipment for Well Maintenance
by Zhongrui Ji, Qi Feng, Shupei Li, Zhaoxuan Li and Yi Pan
Processes 2025, 13(8), 2424; https://doi.org/10.3390/pr13082424 - 31 Jul 2025
Viewed by 61
Abstract
Deep drilling and horizontal wells, as important means of unconventional oil and gas development, face problems with the high energy consumption but low removal efficiency of traditional well washing equipment, the uneven cleaning of horizontal well intervals, and an insufficient degree of automation. [...] Read more.
Deep drilling and horizontal wells, as important means of unconventional oil and gas development, face problems with the high energy consumption but low removal efficiency of traditional well washing equipment, the uneven cleaning of horizontal well intervals, and an insufficient degree of automation. This paper proposes a novel hydraulic drive well washing device which consists of two main units. The wellbore cleaning unit comprises a hydraulic drive cutting–flushing module, a well cleaning mode-switching module, and a filter storage module. The unit uses hydraulic and mechanical forces to perform combined cleaning to prevent mud and sand from settling. By controlling the flow direction of the well washing fluid, it can directly switch between normal and reverse washing modes in the downhole area, and at the same time, it can control the working state of corresponding modules. The assembly control unit includes the chain lifting module and the arm assembly module, which can lift and move the device through the chain structure, allow for the rapid assembly of equipment through the use of a mechanical arm, and protect the reliability of equipment through the use of a centering structure. The device converts some of the hydraulic power into mechanical force, effectively improving cleaning and plugging removal efficiency, prolonging the downhole continuous working time of equipment, reducing manual operation requirements, and comprehensively improving cleaning efficiency and energy utilization efficiency. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

18 pages, 2599 KiB  
Article
Construction of Motion/Force Transmission Performance Index of a Single-Drive Serial Loop Mechanism and Application to the Vehicle Door Latch Mechanism
by Ziyang Zhang, Lubin Hang and Xiaobo Huang
Appl. Sci. 2025, 15(15), 8475; https://doi.org/10.3390/app15158475 - 30 Jul 2025
Viewed by 86
Abstract
Aiming at the multifunctional requirements of the limited space in high-end vehicle side-door latches, a double single-loop RRUPRR mechanism driven by a single motor for both electric releasing and cinching is proposed based on the POC set. The kinematical equations of the RRURR [...] Read more.
Aiming at the multifunctional requirements of the limited space in high-end vehicle side-door latches, a double single-loop RRUPRR mechanism driven by a single motor for both electric releasing and cinching is proposed based on the POC set. The kinematical equations of the RRURR mechanism possess 2 × 2 analytical solutions. In order to apply the current motion/force transmission performance index of the parallel mechanisms to the transmission performance analysis of the serial mechanisms, matching methods for chain-driving transference and the moving/fixed platform inversion are proposed. The solution of the performance index of a single-degree-of-freedom single-loop mechanism is equivalent to the solution of the input motion/force transmission performance index of a parallel mechanism. The overall motion/force transmission performance index of a single-loop mechanism is constructed, and the corresponding calculation procedure is defined. Chain-driving transference can be obtained through forward and inverse solutions of the RRURR mechanism. In response to the extremely high requirements for motion/force transmission performance of electric release mechanisms, the proposed overall motion/force transmission performance index is used to calculate for the input motion screw and corresponding transmission-force screw of the single-loop RRURR mechanism and obtain the overall motion/force transmission performance of the mechanism. The performance atlas of the mechanism shows that it has excellent motion/force transmission characteristics within the workspace. Using ADAMS simulation software, the driving torque required for electric releasing and cinching of a vehicle side-door latch mechanism with a single motor is analyzed. The overall motion/force transmission performance index of a single-loop mechanism can be applied to single-loop overconstrained mechanisms and non-overconstrained mechanisms. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

19 pages, 320 KiB  
Article
Absent Presence: Religious Materiality, the Order of St John, and the Counter-Reformation
by Matthias Ebejer
Religions 2025, 16(8), 988; https://doi.org/10.3390/rel16080988 - 29 Jul 2025
Viewed by 287
Abstract
Within the Catholic liturgy and devotion, there exists a seemingly paradoxical notion of spirituality through materiality, religious practices that are equally tangible and intangible, concurrently present and absent. This paper explores the concept of ‘absent-presence’ in early modern Catholic devotional practices, with a [...] Read more.
Within the Catholic liturgy and devotion, there exists a seemingly paradoxical notion of spirituality through materiality, religious practices that are equally tangible and intangible, concurrently present and absent. This paper explores the concept of ‘absent-presence’ in early modern Catholic devotional practices, with a focus on the Order of St John during the Counter-Reformation. Drawing on case studies from Malta and across the Hospitaller world, it investigates how religious materiality (sacred objects, spaces, and rituals) expresses divine agency. Anchored in the kinetic approach to religious history, the study examines how the movement of relics, the staging of processions, and the construction of sacred spaces fostered emotional and spiritual transformation among devotees. While belief may be elusive for historians, the devotional actions of the Hospitallers demonstrate a faith deeply intertwined with motion, matter, and memory as external forces that sought to move the soul through tangible forms. Full article
(This article belongs to the Special Issue Casta Meretrix: The Paradox of the Christian Church Through History)
18 pages, 4826 KiB  
Article
Study on Optimal Adaptive Meta-Model and Performance Optimization of Built-In Permanent Magnet Synchronous Motor
by Chuanfu Jin, Wei Zhou, Wei Yang, Yao Wu, Jinlong Li, Yongtong Wang and Kang Li
Actuators 2025, 14(8), 373; https://doi.org/10.3390/act14080373 - 25 Jul 2025
Viewed by 113
Abstract
To overcome the limitations of single-objective optimization in permanent magnet synchronous motor (PMSM) performance enhancement, this study proposes an adaptive moving least squares (AMLS) for a 12-pole/36-slot built-in PMSM. Through comprehensive exploration of the design space, a systematic approach is established for holistic [...] Read more.
To overcome the limitations of single-objective optimization in permanent magnet synchronous motor (PMSM) performance enhancement, this study proposes an adaptive moving least squares (AMLS) for a 12-pole/36-slot built-in PMSM. Through comprehensive exploration of the design space, a systematic approach is established for holistic motor performance improvement. The Gaussian weight function is modified to improve the model’s fitting accuracy, and the decay rate of the control weight is optimized. The optimal adaptive meta-model for the built-in PMSM is selected based on the coefficient of determination. Subsequently, sensitivity analysis is conducted to identify the parameters that most significantly influence key performance indicators, including torque ripple, stator core loss, electromagnetic force amplitude, and average output torque. These parameters are then chosen as the optimal design variables. A multi-objective optimization framework, built upon the optimal adaptive meta-model, is developed to address the multi-objective optimization problem. The results demonstrate increased output torque, along with reductions in stator core loss, torque ripple, and radial electromagnetic force, thereby significantly improving the overall performance of the motor. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

17 pages, 16582 KiB  
Article
Unsteady Hydrodynamic Calculation and Characteristic Analysis of Voith–Schneider Propeller with High Eccentricity
by Zhihua Liu, Weixin Xue, Wentao Liu and Qian Chen
J. Mar. Sci. Eng. 2025, 13(8), 1407; https://doi.org/10.3390/jmse13081407 - 24 Jul 2025
Viewed by 210
Abstract
To analyze the hydrodynamic performance of the Voith–Schneider Propeller (VSP) under high eccentricity (e = 0.9), open-water performance numerical calculations were conducted for the VSP at different eccentricities. The results were compared with experimental data, revealing significant discrepancies at high eccentricity. Analysis [...] Read more.
To analyze the hydrodynamic performance of the Voith–Schneider Propeller (VSP) under high eccentricity (e = 0.9), open-water performance numerical calculations were conducted for the VSP at different eccentricities. The results were compared with experimental data, revealing significant discrepancies at high eccentricity. Analysis identified that during the experiment, the VSP blades did not strictly move according to the prescribed “normal intersection principle” when passing near the eccentric point, which was the primary cause of the errors between the calculation and experiment. Further research demonstrated that when the blades pass near the eccentric point, both the individual blade and the overall propeller exhibit strong unsteady pulsation phenomena. The characteristics of these unsteady forces become more pronounced with increasing eccentricity. For the VSP under high eccentricity (e = 0.9), different Blade Steering Curves near the eccentric point were designed using a parametric method. The hydrodynamic performance of the VSP under these different curves was compared. The study demonstrates that rationally optimizing the motion of blades is a key approach to improving their hydrodynamic performance. At J = 2.4, the adoption of Opt-5 enables a 4.67% increase in thrust, a 25.19% reduction in thrust pulsation, a 12.74% reduction in torque, an 81.94% reduction in torque pulsation, and a 19.95% improvement in efficiency for the VSP. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 14486 KiB  
Article
Dynamic Optimization of Buckling Problems for Panel Structures with Stiffening Characteristics
by Yuguang Bai, Xiangmian He, Qi Deng and Dan Zhao
Appl. Sci. 2025, 15(15), 8227; https://doi.org/10.3390/app15158227 - 24 Jul 2025
Viewed by 186
Abstract
Many kinds of panel structures are proposed in aircraft design. This study presents a topology optimization method to improve the buckling resistance of panel structures. It should be noted that a popular configuration of the present panel structure is that with ribs and [...] Read more.
Many kinds of panel structures are proposed in aircraft design. This study presents a topology optimization method to improve the buckling resistance of panel structures. It should be noted that a popular configuration of the present panel structure is that with ribs and frames. Stiffening characteristics (i.e., effects of increasing structural stiffness of a panel structure with ribs and frames) are thus included during analysis of panel structures. After studying the coupling relationship between the dynamic characteristics and buckling behavior of the panel, a developed MMC (moving morphable component) method is proposed for topology optimization to improve the buckling resistance of the panel. It is seen that the coupling relationship between the dynamic characteristics and buckling behavior of the panel is mainly reflected when the compression force acts on the panel, corresponding that dynamic characteristics will vary with the load. If the load acts on the structure, the first-order natural frequency of the panel with ribs and frames in this study decreases with the increase in the load, with the optimization objective of maximizing the first-order natural frequency. Based on the coupling relationship between dynamic characteristics and buckling behavior, the critical buckling load of the panel increases as the first-order natural frequency increases. The present optimization method can reduce computational complexity without changing the accuracy of the calculation. At the same time, the coupling relationship between dynamic characteristics and buckling behavior is applied in topology optimization, which is of great significance to improve the comprehensive performance of panel structures in the engineering design process. This paper improves the dynamic characteristics and buckling resistance of panels with ribs and frames based on the improved MMC method. The proposed method effectively meets the design requirements of flight vehicle design in complex environments. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

17 pages, 8082 KiB  
Article
NPS6D100—A 6D Nanopositioning System with Sub-10 nm Performance in a Ø100 mm × 10 mm Workspace
by Steffen Hesse, Alex Huaman, Michael Katzschmann and Ludwig Herzog
Actuators 2025, 14(8), 361; https://doi.org/10.3390/act14080361 - 22 Jul 2025
Viewed by 144
Abstract
This paper presents the development of a compact nanopositioning stage with long-range capabilities and six-degree-of-freedom (DOF) closed-loop control. The system, referred to as NPS6D100, provides Ø100 mm planar and 10 mm vertical travel range while maintaining direct force transfer to the moving platform [...] Read more.
This paper presents the development of a compact nanopositioning stage with long-range capabilities and six-degree-of-freedom (DOF) closed-loop control. The system, referred to as NPS6D100, provides Ø100 mm planar and 10 mm vertical travel range while maintaining direct force transfer to the moving platform (or slider) in all DOFs. Based on an integrated planar direct drive concept, the system is enhanced by precise vertical actuation and full 6D output feedback control. The mechanical structure, drive architecture, guiding, and measurement subsystems are described in detail, along with experimental results that confirm sub-10 nm servo errors under constant setpoint operation and in synchronized multi-axis motion scenarios. With its scalable and low-disturbance design, the NPS6D100 is well suited as a nanopositioning platform for sub-10 nm applications in nanoscience and precision metrology. Full article
(This article belongs to the Special Issue Recent Developments in Precision Actuation Technologies)
Show Figures

Figure 1

16 pages, 3620 KiB  
Article
Wind Tunnel Experimental Study on Dynamic Coupling Characteristics of Flexible Refueling Hose–Drogue System
by Yinzhu Wang, Jiangtao Huang, Qisheng Chen, Enguang Shan and Yufeng Guo
Aerospace 2025, 12(7), 646; https://doi.org/10.3390/aerospace12070646 - 21 Jul 2025
Viewed by 151
Abstract
During the process of flexible aerial refueling, the flexible structure of the hose drogue assembly is affected by internal and external interference, such as docking maneuvering, deformation of the hose, attitude changes, and body vibrations, causing the hose to swing and the whipping [...] Read more.
During the process of flexible aerial refueling, the flexible structure of the hose drogue assembly is affected by internal and external interference, such as docking maneuvering, deformation of the hose, attitude changes, and body vibrations, causing the hose to swing and the whipping phenomenon, which greatly limits the success rate and safety of aerial refueling operations. Based on a 2.4 m transonic wind tunnel, high-speed wind tunnel test technology of a flexible aerial refueling hose–drogue system was established to carry out experimental research on the coupling characteristics of aerodynamics and multi-body dynamics. Based on the aid of Videogrammetry Model Deformation (VMD), high-speed photography, dynamic balance, and other wind tunnel test technologies, the dynamic characteristics of the hose–drogue system in a high-speed airflow and during the approach of the receiver are obtained. Adopting flexible multi-body dynamics, a dynamic system of the tanker, hose, drogue, and receiver is modeled. The cable/beam model is based on an arbitrary Lagrange–Euler method, and the absolute node coordinate method is used to describe the deformation, movement, and length variation in the hose during both winding and unwinding. The aerodynamic forces of the tanker, receiver, hose, and drogue are modeled, reflecting the coupling influence of movement of the tanker and receiver, the deformation of the hose and drogue, and the aerodynamic forces on each other. The tests show that during the approach of the receiver (distance from 1000 mm to 20 mm), the sinking amount of the drogue increases by 31 mm; due to the offset of the receiver probe, the drogue moves sideways from the symmetric plane of the receiver. Meanwhile, the oscillation magnitude of the drogue increases (from 33 to 48 and from 48 to 80 in spanwise and longitudinal directions, respectively). The simulation results show that the shear force induced by the oscillation of the hose and the propagation velocity of both the longitudinal and shear waves are affected by the hose stiffness and Mach number. The results presented in this work can be of great reference to further increase the safety of aerial refueling. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 1816 KiB  
Review
Lignin Waste Valorization in the Bioeconomy Era: Toward Sustainable Innovation and Climate Resilience
by Alfonso Trezza, Linta Mahboob, Anna Visibelli, Michela Geminiani and Annalisa Santucci
Appl. Sci. 2025, 15(14), 8038; https://doi.org/10.3390/app15148038 - 18 Jul 2025
Viewed by 420
Abstract
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived [...] Read more.
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived carbon materials are offering scalable, low-cost alternatives to critical raw materials in batteries and supercapacitors. In agriculture, lignin-based biostimulants and controlled-release fertilizers support resilient, low-impact food systems. Cosmetic and pharmaceutical industries are leveraging lignin’s antioxidant, UV-protective, and antimicrobial properties to create bio-based, clean-label products. In water purification, lignin-based adsorbents are enabling efficient and biodegradable solutions for persistent pollutants. These technological leaps are not merely incremental, they represent a paradigm shift toward a materials economy powered by renewable carbon. Backed by global sustainability roadmaps like the European Green Deal and China’s 14th Five-Year Plan, lignin is moving from industrial residue to strategic asset, driven by unprecedented investment and cross-sector collaboration. Breakthroughs in lignin upgrading, smart formulation, and application-driven design are dismantling long-standing barriers to scale, performance, and standardization. As showcased in this review, lignin is no longer just a promising biopolymer, it is a catalytic force accelerating the global transition toward circularity, climate resilience, and green industrial transformation. The future of sustainable innovation is lignin-enabled. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
Show Figures

Figure 1

23 pages, 9408 KiB  
Article
Pullout Behaviour of Snakeskin-Inspired Sustainable Geosynthetic Reinforcements in Sand: An Experimental Study
by Xin Huang, Fengyuan Yan and Jia He
Sustainability 2025, 17(14), 6502; https://doi.org/10.3390/su17146502 - 16 Jul 2025
Viewed by 270
Abstract
In recent years, there has been a growing interest in the frictional anisotropy of snake scale-inspired surfaces, especially its potential applications in enhancing the bearing capacity of foundations (piles, anchor elements, and suction caissons) and reducing materials consumption and installation energy. This study [...] Read more.
In recent years, there has been a growing interest in the frictional anisotropy of snake scale-inspired surfaces, especially its potential applications in enhancing the bearing capacity of foundations (piles, anchor elements, and suction caissons) and reducing materials consumption and installation energy. This study first investigated the frictional properties and surface morphologies of the ventral scales of Cantor’s rat snakes (Ptyas dhumnades). Based on the findings on the snake scales, a novel snakeskin-inspired geosynthetic reinforcement (SIGR) is developed using 3D-printed polylactic acid (PLA). A series of pullout tests under different normal loads (25 kPa, 50 kPa, and 75 kPa) were performed to analyze the pullout behavior of SIGR in sandy soil. Soil deformation and shear band thickness were measured using Particle Image Velocimetry (PIV). The results revealed that the ventral scales of Ptyas dhumnades have distinct thorn-like micro-protrusions pointing towards the tail, which exhibit frictional anisotropy. A SIGR with a unilateral (one-sided) layout scales (each scale 1 mm in height and 12 mm in length) could increase the peak pullout force relative to a smooth-surface reinforcement by 29% to 67%. Moreover, the peak pullout force in the cranial direction (soil moving against the scales) was found to be 13% to 20% greater than that in the caudal direction (soil moving along the scales). The pullout resistance, cohesion, and friction angle of SIGR all showed significant anisotropy. The soil deformation around the SIGR during pullout was more pronounced than that observed with smooth-surface reinforcement, which suggests that SIGR can mobilize a larger volume of soil to resist external loads. This study demonstrates that SIGR is able to enhance the pullout resistance of reinforcements, thereby improving the stability of reinforced soil structures, reducing materials and energy consumption, and is important for the sustainability of geotechnical engineering. Full article
Show Figures

Figure 1

28 pages, 1081 KiB  
Review
The Role of Cytokines in Orthodontic Tooth Movement
by Hideki Kitaura, Fumitoshi Ohori, Aseel Marahleh, Jinghan Ma, Angyi Lin, Ziqiu Fan, Kohei Narita, Kou Murakami and Hiroyasu Kanetaka
Int. J. Mol. Sci. 2025, 26(14), 6688; https://doi.org/10.3390/ijms26146688 - 11 Jul 2025
Cited by 1 | Viewed by 405
Abstract
A challenge in orthodontic treatment is the long time taken to move teeth, which extends the long treatment period. Accordingly, various treatment protocols and orthodontic materials have been developed to shorten the orthodontic treatment period. However, controlling biological reactions is considered necessary to [...] Read more.
A challenge in orthodontic treatment is the long time taken to move teeth, which extends the long treatment period. Accordingly, various treatment protocols and orthodontic materials have been developed to shorten the orthodontic treatment period. However, controlling biological reactions is considered necessary to further shorten this treatment period. Orthodontic force results in compression of the periodontal ligament in the direction of tooth movement, resulting in various reactions in the periodontal ligament that induce osteoclast development, alveolar bone absorption, and teeth movement. The aforementioned reactions include immune reactions. Cytokines are substances responsible for intercellular communication and are involved in various physiological actions, including immune and inflammatory reactions. They cause various cellular responses, including cell proliferation, differentiation, cell death, and functional expression. Various cytokines are involved in biological reactions during orthodontic tooth movement (OTM). It is important to understand the role of cytokines during OTM in order to elucidate their biological response. This review discusses the role of cytokines during OTM. Full article
(This article belongs to the Special Issue Regulatory Network of Bone Metabolism)
Show Figures

Figure 1

19 pages, 5562 KiB  
Article
Research on the Milling Characteristics of SBS Modified Asphalt Pavement with Different Service Years Using the Discrete Element Method
by Xiujun Li, Zhipeng Zhang, Hao Liu, Hao Feng, Heng Zhang, Fangzhi Shi and Zhi Gou
Materials 2025, 18(14), 3226; https://doi.org/10.3390/ma18143226 - 8 Jul 2025
Viewed by 327
Abstract
The service years of the milled pavement are varied in numerous SBS modified asphalt pavement milling assignments. To investigate the milling characteristics of SBS (styrene–butadiene–styrene) modified asphalt pavements with different service years, the values of the bonding parameters were calibrated and verified and [...] Read more.
The service years of the milled pavement are varied in numerous SBS modified asphalt pavement milling assignments. To investigate the milling characteristics of SBS (styrene–butadiene–styrene) modified asphalt pavements with different service years, the values of the bonding parameters were calibrated and verified and then used to build three simulation models for the milling of old asphalt pavements with service years of 2~3 years, 7~8 years, and 11~12 years, respectively. The milling characteristics of SBS modified asphalt pavements with different service years were investigated using the moving speed v and rotating speed ω of the milling rotor as test factors, and the particle bonding ratio (Rb) and rotor average force (Fa) as test indexes. The results demonstrate that the following: The regularity of the effects of milling rotor moving speed and rotating speed on the particle bonding ratio and milling rotor average forces remained consistent overall as the pavement age increased. For the same milling parameters, the particle bonding ratio and the rotor average force are reduced. From 2~3 years old pavements to 7~8 years old pavements, the overall reduction in the particle bonding ratio indicator is about 12%, and the average force on the milling rotor is about 24%. From 7~8 years old pavements to 11~12 years old pavements, the overall reduction in the particle bonding ratio indicator is about 3%, and the average force on the milling rotor is about 15%. Full article
(This article belongs to the Special Issue Materials Informatics and Machine Learning in Pavement Engineering)
Show Figures

Figure 1

26 pages, 1929 KiB  
Review
Calcium Route in the Plant and Blossom-End Rot Incidence
by Md. Yamin Kabir and Juan Carlos Díaz-Pérez
Horticulturae 2025, 11(7), 807; https://doi.org/10.3390/horticulturae11070807 - 8 Jul 2025
Viewed by 551
Abstract
Calcium (Ca2+) is a macronutrient essential for the growth, development, yield, and quality of vegetables and fruits. It performs structural, enzymatic, and signaling functions in plants. This review examines Ca2+ translocation from soil to the fruit via the plant xylem [...] Read more.
Calcium (Ca2+) is a macronutrient essential for the growth, development, yield, and quality of vegetables and fruits. It performs structural, enzymatic, and signaling functions in plants. This review examines Ca2+ translocation from soil to the fruit via the plant xylem network, emphasizing the importance of Ca2+ compartmentalization within fruit cell organelles in the development of calcium deficiency disorders such as blossom-end rot (BER). The underlying causes of BER and potential control measures are also discussed. Soil-available Ca2+, transported by water flow, enters the root apoplast through membrane channels and moves toward the xylem via apoplastic or symplastic routes. The transpiration force and the growth of organs determine the movement of Ca2+-containing xylem sap to aerial plant parts, including fruits. At the fruit level, the final step of Ca2+ regulation is intracellular partitioning among organelles and cellular compartments. This distribution ultimately determines the fruit’s susceptibility to Ca2+-deficiency disorders such as BER. Excessive sequestration of Ca2+ into organelles such as vacuoles may deplete cytosolic and apoplastic Ca2+ pools, compromising membrane integrity and leading to BER, even when overall Ca2+ levels are adequate at the blossom end. Effective BER management requires cultural and physiological practices that promote Ca2+ uptake, translocation to the fruit, and appropriate intracellular distribution. Additionally, the use of BER-resistant and Ca2+-efficient cultivars can help mitigate this disorder. Therefore, a comprehensive understanding of Ca2+ dynamics in plants is critical for managing BER, minimizing production loss and environmental impacts, and maximizing overall crop productivity. Full article
(This article belongs to the Special Issue New Insights into Stress Tolerance of Horticultural Crops)
Show Figures

Figure 1

18 pages, 1513 KiB  
Article
Perceptual Decision Efficiency Is Modifiable and Associated with Decreased Musculoskeletal Injury Risk Among Female College Soccer Players
by Gary B. Wilkerson, Alejandra J. Gullion, Katarina L. McMahan, Lauren T. Brooks, Marisa A. Colston, Lynette M. Carlson, Jennifer A. Hogg and Shellie N. Acocello
Brain Sci. 2025, 15(7), 721; https://doi.org/10.3390/brainsci15070721 - 4 Jul 2025
Viewed by 313
Abstract
Background: Prevention and clinical management of musculoskeletal injuries have historically focused on the assessment and training of modifiable physical factors, but perceptual decision-making has only recently been recognized as a potentially important capability. Immersive virtual reality (VR) systems can measure the speed, accuracy, [...] Read more.
Background: Prevention and clinical management of musculoskeletal injuries have historically focused on the assessment and training of modifiable physical factors, but perceptual decision-making has only recently been recognized as a potentially important capability. Immersive virtual reality (VR) systems can measure the speed, accuracy, and consistency of body movements corresponding to stimulus–response instructions for the completion of a forced-choice task. Methods: A cohort of 26 female college soccer players (age 19.5 ± 1.3 years) included 10 players who participated in a baseline assessment, 10 perceptual-response training (PRT) sessions, a post-training assessment that preceded the first soccer practice, and a post-season assessment. The remaining 16 players completed an assessment prior to the team’s first pre-season practice session, and a post-season assessment. The assessments and training sessions involved left- or right-directed neck rotation, arm reach, and step-lunge reactions to 40 presentations of different types of horizontally moving visual stimuli. The PRT program included 4 levels of difficulty created by changes in initial stimulus location, addition of distractor stimuli, and increased movement speed, with ≥90% response accuracy used as the criterion for training progression. Perceptual latency (PL) was defined as the time elapsed from stimulus appearance to initiation of neck rotation toward a peripheral virtual target. The speed–accuracy tradeoff was represented by Rate Correct per Second (RCS) of PL, and inconsistency across trials derived from their standard deviation for PL was represented by intra-individual variability (IIV). Perceptual Decision Efficiency (PDE) represented the ratio of RCS to IIV, which provided a single value representing speed, accuracy, and consistency. Statistical procedures included the bivariate correlation between RCS and IIV, dependent t-test comparisons of pre- and post-training metrics, repeated measures analysis of variance for group X session pre- to post-season comparisons, receiver operating characteristic analysis, and Kaplan–Meier time to injury event analysis. Results: Statistically significant (p < 0.05) results were found for pre- to post-training change, and pre-season to post-season group differences, for RCS, IIV, and PDE. An inverse logarithmic relationship was found between RCS and IIV (Spearman’s Rho = −0.795). The best discriminator between injured and non-injured statuses was PDE ≤ 21.6 (93% Sensitivity; 42% Specificity; OR = 9.29). Conclusions: The 10-session PRT program produced significant improvement in perceptual decision-making that appears to provide a transfer benefit, as the PDE metric provided good prospective prediction of musculoskeletal injury. Full article
Show Figures

Figure 1

Back to TopTop