Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (657)

Search Parameters:
Keywords = mountainous topography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1870 KiB  
Article
Study on the Spatiotemporal Distribution Characteristics and Constitutive Relationship of Foggy Airspace in Mountainous Expressways
by Xiaolei Li, Yinxia Zhan, Tingsong Cheng and Qianghui Song
Appl. Sci. 2025, 15(15), 8615; https://doi.org/10.3390/app15158615 (registering DOI) - 4 Aug 2025
Viewed by 56
Abstract
To study the generation and dissipation process of agglomerate fog in mountainous expressways and deeply understand the hazard mechanisms of agglomerate fog sections in mountainous expressways, based on the analysis of the geographical location characteristics of mountainous expressways and the spatial and temporal [...] Read more.
To study the generation and dissipation process of agglomerate fog in mountainous expressways and deeply understand the hazard mechanisms of agglomerate fog sections in mountainous expressways, based on the analysis of the geographical location characteristics of mountainous expressways and the spatial and temporal distribution characteristics of agglomerate fog, the airspace constitutive model of agglomerate fog in mountainous expressways was constructed based on Newton constitutive theory. Firstly, the properties of the Newtonian fluid and cluster fog were compared and analyzed, and the influence mechanism of environmental factors such as the altitude difference, topography, water system, valley effect, and vegetation on the generation and dissipation of agglomerate fog in mountainous expressways was analyzed. Based on Newton’s constitutive theory, the constitutive model of temperature, humidity, wind speed, and agglomerate fog points in the foggy airspace of the mountainous expressway was established. Then, the time and spatial distribution of fog in Chongqing and Guizhou from 2021 to 2023 were analyzed. Finally, the model was verified by using the meteorological data and fog warning data of Liupanshui City, Guizhou Province in 2023. The results show that the foggy airspace of mountainous expressways can be defined as “the space occupied by the agglomerate fog that occurs above the mountain expressway”; The temporal and spatial distribution of foggy airspace on expressways in mountainous areas is closely related to the topography, water system, vegetation distribution, and local microclimate formed by thermal radiation. The horizontal and vertical movements of the atmosphere have little influence on the foggy airspace on expressways in mountainous areas. The specific manifestation of time distribution is that the occurrence of agglomerate fog is concentrated from November to April of the following year, and the daily occurrence time is mainly concentrated between 4:00–8:00 and 18:00–22:00. The calculation results of the foggy airspace constitutive model of the expressway in the mountainous area show that when there is low surface radiation or no surface radiation, the fogging value range is [90, 100], and the fogging value range is [50, 70] when there is high surface radiation (>200), and there is generally no fog in other intervals. The research results can provide a theoretical basis for traffic safety management and control of mountainous expressway fog sections. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

35 pages, 5094 KiB  
Article
Analysis of Influencing Factors on Spatial Distribution Characteristics of Traditional Villages in the Liaoxi Corridor
by Han Cao and Eunyoung Kim
Land 2025, 14(8), 1572; https://doi.org/10.3390/land14081572 - 31 Jul 2025
Viewed by 191
Abstract
As a cultural corridor connecting the Central Plains and Northeast China, the Liaoxi Corridor has a special position in the transmission of traditional Chinese culture. Traditional villages in the region have preserved rich intangible cultural heritage and traditional architectural features, which highlight the [...] Read more.
As a cultural corridor connecting the Central Plains and Northeast China, the Liaoxi Corridor has a special position in the transmission of traditional Chinese culture. Traditional villages in the region have preserved rich intangible cultural heritage and traditional architectural features, which highlight the historical heritage of multicultural intermingling. This study fills the gap in the spatial distribution of traditional villages in the Liaoxi Corridor and reveals their spatial distribution pattern, which is of great theoretical significance. Using Geographic Information System (GIS) spatial analysis and quantitative geography, this study analyzes the spatial pattern of traditional villages and the influencing factors. The results show that traditional villages in the Liaoxi Corridor are clustered, forming high-density settlement areas in Chaoyang County and Beizhen City. Most villages are located in hilly and mountainous areas and river valleys and are affected by the natural geographic environment (topography and water sources) and historical and human factors (immigration and settlement, border defense, ethnic integration, etc.). In conclusion, this study provides a scientific basis and practical reference for rural revitalization, cultural heritage protection, and regional coordinated development, aiming at revealing the geographical and cultural mechanisms behind the spatial distribution of traditional villages. Full article
Show Figures

Figure 1

21 pages, 2263 KiB  
Article
Elevational Patterns and Drivers of Soil Total, Microbial, and Enzymatic C:N:P Stoichiometry in Karst Peak-Cluster Depressions in Southwestern China
by Siyu Chen, Chaohao Xu, Cong Hu, Chaofang Zhong, Zhonghua Zhang and Gang Hu
Forests 2025, 16(8), 1216; https://doi.org/10.3390/f16081216 - 24 Jul 2025
Viewed by 288
Abstract
Elevational gradients in temperature, moisture, and vegetation strongly influence soil nutrient content and stoichiometry in mountainous regions. However, exactly how total, microbial, and enzymatic carbon (C), nitrogen (N), and phosphorus (P) stoichiometry vary with elevation in karst peak-cluster depressions remains poorly understood. To [...] Read more.
Elevational gradients in temperature, moisture, and vegetation strongly influence soil nutrient content and stoichiometry in mountainous regions. However, exactly how total, microbial, and enzymatic carbon (C), nitrogen (N), and phosphorus (P) stoichiometry vary with elevation in karst peak-cluster depressions remains poorly understood. To address this, we studied soil total, microbial, and enzymatic C:N:P stoichiometry in seasonal rainforests within karst peak-cluster depressions in southwestern China at different elevations (200, 300, 400, and 500 m asl) and depths (0–20 and 20–40 cm). We found that soil organic carbon (SOC), total nitrogen (TN), and the C:P and N:P ratios increased significantly with elevation, whereas total phosphorus (TP) decreased. Microbial phosphorus (MBP) also declined with elevation, while the microbial N:P ratio rose. Activities of nitrogen- (β-N-acetylglucosaminidase and L-leucine aminopeptidase combined) and phosphorus-related enzymes (alkaline phosphatase) increased markedly with elevation, suggesting potential phosphorus limitation for plant growth at higher elevations. Our results suggest that total, microbial, and enzymatic soil stoichiometry are collectively shaped by topography and soil physicochemical properties, with elevation, pH, and exchangeable calcium (ECa) acting as the key drivers. Microbial stoichiometry exhibited positive interactions with soil stoichiometry, while enzymatic stoichiometry did not fully conform to the expectations of resource allocation theory, likely due to the functional specificity of phosphatase. Overall, these findings enhance our understanding of C–N–P biogeochemical coupling in karst ecosystems, highlight potential nutrient limitations, and provide a scientific basis for sustainable forest management in tropical karst regions. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

22 pages, 24747 KiB  
Article
A Methodological Study on Improving the Accuracy of Soil Organic Matter Mapping in Mountainous Areas Based on Geo-Positional Transformer-CNN: A Case Study of Longshan County, Hunan Province, China
by Luming Shen, Yangfan Xie, Yangjun Deng, Yujie Feng, Qing Zhou and Hongxia Xie
Appl. Sci. 2025, 15(14), 8060; https://doi.org/10.3390/app15148060 - 20 Jul 2025
Viewed by 351
Abstract
The accurate prediction of soil organic matter (SOM) content is essential for promoting sustainable soil management and addressing global climate change. Due to multiple factors such as topography and climate, especially in mountainous areas, SOM spatial prediction faces significant challenges. The main novelty [...] Read more.
The accurate prediction of soil organic matter (SOM) content is essential for promoting sustainable soil management and addressing global climate change. Due to multiple factors such as topography and climate, especially in mountainous areas, SOM spatial prediction faces significant challenges. The main novelty of this study lies in proposing a geographic positional encoding mechanism that embeds geographic location information into the feature representation of a Transformer model. The encoder structure is further modified to enhance spatial awareness, resulting in the development of the Geo-Positional Transformer (GPTransformer). Furthermore, this model is integrated with a 1D-CNN to form a dual-branch neural network called the Geo-Positional Transformer-CNN (GPTransCNN). This study collected 1490 topsoil samples (0–20 cm) from cultivated land in Longshan County to develop a predictive model for mapping the spatial distribution of SOM across the entire cultivated area. Different models were comprehensively evaluated through ten-fold cross-validation, ablation experiments, and uncertainty analysis. The results show that GPTransCNN has the best performance, with an R2 improvement of approximately 43% over the Transformer, 19% over the GPTransformer, and 15% over the 1D-CNN. This study demonstrates that by incorporating geographic positional information, GPTransCNN effectively combines the global modeling capabilities of the GPTransformer with the local feature extraction strengths of the 1D-CNN, which can improve the accuracy of SOM mapping in mountainous areas. This approach provides data support for sustainable soil management and decision-making in response to global climate change. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

18 pages, 3600 KiB  
Article
Long-Term Snow Cover Change in the Qilian Mountains (1986–2024): A High-Resolution Landsat-Based Analysis
by Enwei Huang, Guofeng Zhu, Yuhao Wang, Rui Li, Yuxin Miao, Xiaoyu Qi, Qingyang Wang, Yinying Jiao, Qinqin Wang and Ling Zhao
Remote Sens. 2025, 17(14), 2497; https://doi.org/10.3390/rs17142497 - 18 Jul 2025
Viewed by 463
Abstract
Snow cover, as a critical component of the cryosphere, serves as a vital water resource for arid regions in Northwest China. The Qilian Mountains (QLM), situated on the northeastern margin of the Tibetan Plateau, function as an important ecological barrier and water conservation [...] Read more.
Snow cover, as a critical component of the cryosphere, serves as a vital water resource for arid regions in Northwest China. The Qilian Mountains (QLM), situated on the northeastern margin of the Tibetan Plateau, function as an important ecological barrier and water conservation area in western China. This study presents the first high-resolution historical snow cover product developed specifically for the QLM, utilizing a multi-level snow classification algorithm tailored to the complex topography of the region. By employing Landsat satellite data from 1986–2024, we constructed a comprehensive 39-year snow cover dataset at a resolution of 30 m. A dual adaptive cloud masking strategy and spatial interpolation techniques were employed to effectively address cloud contamination and data gaps prevalent in mountainous regions. The spatiotemporal characteristics and driving mechanisms of snow cover changes in the QLM were systematically analyzed using Sen–Theil trend analysis and Mann–Kendall tests. The results reveal the following: (1) The mean annual snow cover extent in the QLM was 15.73% during 1986–2024, exhibiting a slight declining trend (−0.046% yr−1), though statistically insignificant (p = 0.215); (2) The snowline showed significant upward migration, with mean elevation and minimum elevation rising at rates of 3.98 m yr−1 and 2.81 m yr−1, respectively; (3) Elevation-dependent variations were observed, with significant snow cover decline in high-altitude (>5000 m) and low-altitude (2000–3500 m) regions, while mid-altitude areas remained relatively stable; (4) Comparison with MODIS data demonstrated good correlation (r = 0.828) but revealed systematic differences (RMSE = 12.88%), with MODIS showing underestimation in mountainous environments (Bias: −8.06%). This study elucidates the complex response mechanisms of the QLM snow system under global warming, providing scientific evidence for regional water resource management and climate change adaptation strategies. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Snow and Ice Monitoring)
Show Figures

Graphical abstract

19 pages, 4141 KiB  
Article
Prediction of Potential Habitat for Korean Endemic Firefly, Luciola unmunsana Doi, 1931 (Coleoptera: Lampyridae), Using Species Distribution Models
by ByeongJun Jung, JuYeong Youn and SangWook Kim
Land 2025, 14(7), 1480; https://doi.org/10.3390/land14071480 - 17 Jul 2025
Viewed by 386
Abstract
This study aimed to predict the potential habitats of Luciola unmunsana using a species distribution model (SDM). Luciola unmunsana is an endemic species that lives only in South Korea, and because its females do not have genus wings and are less fluid, [...] Read more.
This study aimed to predict the potential habitats of Luciola unmunsana using a species distribution model (SDM). Luciola unmunsana is an endemic species that lives only in South Korea, and because its females do not have genus wings and are less fluid, it is difficult to collect, so research related to its distribution and restoration is relatively understudied. Therefore, this study predicted the potential habitats of Luciola unmunsana across South Korea using the single model Maximum Entropy (MaxEnt) and a multi-model ensemble model to prepare basic data necessary for a conservation and habitat restoration plan for the species. A total of 39 points of occurrence were built based on public data and prior research from the Jeonbuk Green Environment Support Center (JGESC), the Global Biodiversity Information Facility (GBIF), and the National Institute of Biological Resources (NIBR). Among the input variables, climate variables were based on the shared socioeconomic pathway (SSP) scenario-based ecological climate index, while nonclimate variables were based on topography, land cover maps, and the Enhanced Vegetation Index (EVI). The main findings of this study are summarized below. First, in predicting Luciola unmunsana potential habitats, the EVI, water network analysis, land cover, and annual precipitation (Bio12) were identified as good predictors in both models. Accordingly, areas with high vegetation activity in their forests, adjacent to water resources, and stable humidity were predicted as potential habitats. Second, by overlaying the predicted potential habitats and highly significant variables, we found that areas with high vegetation vigor within their forests, proximity to water systems, and relatively high annual precipitation, which can maintain stable humidity, are potential habitats for Luciola unmunsana. Third, literature surveys used to predict potential habitat sites, including Geumsan-gun, Chungcheongnam-do, Yeongam-gun, Jeollabuk-do, Mudeungsan Mountain, Gwangju-si, Korea, and Gijang-gun, Busan-si, Korea, confirmed the occurrence of Luciola unmunsana. This study is significant in that it is the first to develop a regional SDM for Luciola unmunsana, whose population is declining due to urbanization. In addition, by applying various environmental variables that reflect ecological characteristics, it contributes to more accurate predictions of the potential habitats of this species. The predicted results can be used as basic data for the future conservation of Luciola unmunsana and the establishment of habitat restoration strategies. Full article
Show Figures

Figure 1

27 pages, 3599 KiB  
Article
Progressive Shrinkage of the Alpine Periglacial Weathering Zone and Its Escalating Disaster Risks in the Gongga Mountains over the Past Four Decades
by Qiuyang Zhang, Qiang Zhou, Fenggui Liu, Weidong Ma, Qiong Chen, Bo Wei, Long Li and Zemin Zhi
Remote Sens. 2025, 17(14), 2462; https://doi.org/10.3390/rs17142462 - 16 Jul 2025
Viewed by 269
Abstract
The Alpine Periglacial Weathering Zone (APWZ) is a critical transitional belt between alpine vegetation and glaciers, and a highly sensitive region to climate change. Its dynamic variations profoundly reflect the surface environment’s response to climatic shifts. Taking Gongga Mountain as the study area, [...] Read more.
The Alpine Periglacial Weathering Zone (APWZ) is a critical transitional belt between alpine vegetation and glaciers, and a highly sensitive region to climate change. Its dynamic variations profoundly reflect the surface environment’s response to climatic shifts. Taking Gongga Mountain as the study area, this study utilizes summer Landsat imagery from 1986 to 2024 and constructs a remote sensing method based on NDVI and NDSI indices using the Otsu thresholding algorithm on the Google Earth Engine platform to automatically extract the positions of the upper limit of vegetation and the snowline. Results show that over the past four decades, the APWZ in Gongga Mountain has exhibited a continuous upward shift, with the mean elevation rising from 4101 m to 4575 m. The upper limit of vegetation advanced at an average rate of 17.43 m/a, significantly faster than the snowline shift (3.9 m/a). The APWZ also experienced substantial areal shrinkage, with an average annual reduction of approximately 13.84 km2, highlighting the differential responses of various surface cover types to warming. Spatially, the most pronounced changes occurred in high-elevation zones (4200–4700 m), moderate slopes (25–33°), and sun-facing aspects (east, southeast, and south slopes), reflecting a typical climate–topography coupled driving mechanism. In the upper APWZ, glacier retreat has intensified weathering and increased debris accumulation, while the newly formed vegetation zone in the lower APWZ remains structurally fragile and unstable. Under extreme climatic disturbances, this setting is prone to triggering chain-type hazards such as landslides and debris flows. These findings enhance our capacity to monitor alpine ecological boundary changes and identify associated disaster risks, providing scientific support for managing climate-sensitive mountainous regions. Full article
Show Figures

Figure 1

36 pages, 3457 KiB  
Article
Evaluating CHIRPS and ERA5 for Long-Term Runoff Modelling with SWAT in Alpine Headwaters
by Damir Bekić and Karlo Leskovar
Water 2025, 17(14), 2116; https://doi.org/10.3390/w17142116 - 16 Jul 2025
Viewed by 425
Abstract
Reliable gridded precipitation products (GPPs) are essential for effective hydrological simulations, particularly in mountainous regions with limited ground-based observations. This study evaluates the performance of two widely used GPPs, CHIRPS and ERA5, in estimating precipitation and supporting runoff generation using the Soil and [...] Read more.
Reliable gridded precipitation products (GPPs) are essential for effective hydrological simulations, particularly in mountainous regions with limited ground-based observations. This study evaluates the performance of two widely used GPPs, CHIRPS and ERA5, in estimating precipitation and supporting runoff generation using the Soil and Water Assessment Tool (SWAT) across three headwater catchments (Sill, Drava and Isel) in the Austrian Alps from 1991 to 2018. The region’s complex topography and climatic variability present a rigorous test for GPP application. The evaluation methods combined point-to-point comparisons with gauge observations and assessments of generated runoff and runoff trends at annual, seasonal and monthly scales. CHIRPS showed a lower precipitation error (RMAE = 25%) and generated more consistent runoff results (RMAE = 12%), particularly in smaller catchments, whereas ERA5 showed higher spatial consistency but higher overall precipitation bias (RMAE = 37%). Although both datasets successfully reproduced the seasonal runoff regime, CHIRPS outperformed ERA5 in trend detection and monthly runoff estimates. Both GPPs systematically overestimate annual and seasonal precipitation amounts, especially at lower elevations and during the cold season. The results highlight the critical influence of GPP spatial resolution and its alignment with catchment morphology on model performance. While both products are viable alternatives to observed precipitation, CHIRPS is recommended for hydrological modelling in smaller, topographically complex alpine catchments due to its higher spatial resolution. Despite its higher precipitation bias, ERA5’s superior correlation with observations suggests strong potential for improved model performance if bias correction techniques are applied. The findings emphasize the importance of selecting GPPs based on the scale and geomorphological and climatic conditions of the study area. Full article
(This article belongs to the Special Issue Use of Remote Sensing Technologies for Water Resources Management)
Show Figures

Figure 1

31 pages, 5867 KiB  
Article
Moisture Seasonality Dominates the Plant Community Differentiation in Monsoon Evergreen Broad-Leaved Forests of Yunnan, China
by Tao Yang, Xiaofeng Wang, Jiesheng Rao, Shuaifeng Li, Rong Li, Fan Du, Can Zhang, Xi Tian, Wencong Liu, Jianghua Duan, Hangchen Yu, Jianrong Su and Zehao Shen
Forests 2025, 16(7), 1167; https://doi.org/10.3390/f16071167 - 15 Jul 2025
Viewed by 261
Abstract
Monsoon evergreen broad-leaved forests (MEBFs) represent one of the most species-rich and structurally complex vegetation types, and one of the most widely distributed forests in Yunnan Province, Southwest China. However, they have yet to undergo a comprehensive analysis on their community diversity, spatial [...] Read more.
Monsoon evergreen broad-leaved forests (MEBFs) represent one of the most species-rich and structurally complex vegetation types, and one of the most widely distributed forests in Yunnan Province, Southwest China. However, they have yet to undergo a comprehensive analysis on their community diversity, spatial differentiation patterns, and underlying drivers across Yunnan. Based on extensive field surveys during 2021–2024 with 548 MEBF plots, this study employed the Unweighted Pair Group Method for forest community classification and Non-metric Multidimensional Scaling for ordination and interpretation of community–environment association. A total of 3517 vascular plant species were recorded in the plots, including 1137 tree species, 1161 shrubs, and 1219 herbs. Numerical classification divided the plots into 3 alliance groups and 24 alliances: (1) CastanopsisSchima (Lithocarpus) Forest Alliance Group (16 alliances), predominantly distributed west of 102°E in central-south and southwest Yunnan; (2) CastanopsisMachilus (Beilschmiedia) Forest Alliance Group (6 alliances), concentrated east of 101°E in southeast Yunnan with limited latitudinal range; (3) CastanopsisCamellia Forest Alliance Group (2 alliances), restricted to higher-elevation mountainous areas within 103–104° E and 22.5–23° N. Climatic variation accounted for 81.1% of the species compositional variation among alliance groups, with contributions of 83.5%, 57.6%, and 62.1% to alliance-level differentiation within alliance groups 1, 2, and 3, respectively. Precipitation days in the driest quarter (PDDQ) and precipitation seasonality (PS) emerged as the strongest predictors of community differentiation at both alliance group and alliance levels. Topography and soil features significantly influenced alliance differentiation in Groups 2 and 3. Collectively, the interaction between the monsoon climate and topography dominate the spatial differentiation of MEBF communities in Yunnan. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

25 pages, 12949 KiB  
Article
Enhanced Landslide Visualization and Trace Identification Using LiDAR-Derived DEM
by Jie Lv, Chengzhuo Lu, Minjun Ye, Yuting Long, Wenbing Li and Minglong Yang
Sensors 2025, 25(14), 4391; https://doi.org/10.3390/s25144391 - 14 Jul 2025
Viewed by 428
Abstract
In response to the inability of traditional remote sensing technology to accurately capture the micro-topographic features of landslide surfaces in vegetated areas under complex terrain conditions, this paper proposes a method for enhanced landslide terrain display and trace recognition based on airborne LiDAR [...] Read more.
In response to the inability of traditional remote sensing technology to accurately capture the micro-topographic features of landslide surfaces in vegetated areas under complex terrain conditions, this paper proposes a method for enhanced landslide terrain display and trace recognition based on airborne LiDAR technology. Firstly, a high-precision LiDAR-DEM is constructed using preprocessed LiDAR point cloud data, and visual images are generated using visualization methods, including hillshade, slope, openness, and Sky View Factor (SVF). Secondly, pixel-level image fusion methods are applied to the visual images to obtain enhanced display images of the landslide terrain. Finally, a threshold is determined through a fractal model, and the Mean-Shift algorithm is utilized for clustering and denoising to extract landslide traces. The results indicate that employing pixel-level image fusion technology, which combines the advantageous features of multiple terrain visualization images, effectively enhances the display of landslide micro-topography. Moreover, based on the enhanced display images, the fractal model and the Mean-Shift algorithm are applied for denoising to extract landslide traces. Compared to orthophotos, this method can effectively and accurately extract landslide traces. The findings of this study provide valuable references for the enhanced display and trace recognition of landslide terrain in densely vegetated areas within complex mountainous areas, thereby providing technical support for emergency investigations of landslide disasters. Full article
(This article belongs to the Special Issue Sensor Fusion in Positioning and Navigation)
Show Figures

Figure 1

23 pages, 4237 KiB  
Article
Debris-Flow Erosion Volume Estimation Using a Single High-Resolution Optical Satellite Image
by Peng Zhang, Shang Wang, Guangyao Zhou, Yueze Zheng, Kexin Li and Luyan Ji
Remote Sens. 2025, 17(14), 2413; https://doi.org/10.3390/rs17142413 - 12 Jul 2025
Viewed by 320
Abstract
Debris flows pose significant risks to mountainous regions, and quick, accurate volume estimation is crucial for hazard assessment and post-disaster response. Traditional volume estimation methods, such as ground surveys and aerial photogrammetry, are often limited by cost, accessibility, and timeliness. While remote sensing [...] Read more.
Debris flows pose significant risks to mountainous regions, and quick, accurate volume estimation is crucial for hazard assessment and post-disaster response. Traditional volume estimation methods, such as ground surveys and aerial photogrammetry, are often limited by cost, accessibility, and timeliness. While remote sensing offers wide coverage, existing optical and Synthetic Aperture Radar (SAR)-based techniques face challenges in direct volume estimation due to resolution constraints and rapid terrain changes. This study proposes a Super-Resolution Shape from Shading (SRSFS) approach enhanced by a Non-local Piecewise-smooth albedo Constraint (NPC), hereafter referred to as NPC SRSFS, to estimate debris-flow erosion volume using single high-resolution optical satellite imagery. By integrating publicly available global Digital Elevation Model (DEM) data as prior terrain reference, the method enables accurate post-disaster topography reconstruction from a single optical image, thereby reducing reliance on stereo imagery. The NPC constraint improves the robustness of albedo estimation under heterogeneous surface conditions, enhancing depth recovery accuracy. The methodology is evaluated using Gaofen-6 satellite imagery, with quantitative comparisons to aerial Light Detection and Ranging (LiDAR) data. Results show that the proposed method achieves reliable terrain reconstruction and erosion volume estimates, with accuracy comparable to airborne LiDAR. This study demonstrates the potential of NPC SRSFS as a rapid, cost-effective alternative for post-disaster debris-flow assessment. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

19 pages, 3537 KiB  
Article
Cultivated Land Suitability Prediction in Southern Xinjiang Typical Areas Based on Optimized MaxEnt Model
by Yilong Tian, Xiaohuang Liu, Hongyu Li, Run Liu, Ping Zhu, Chaozhu Li, Xinping Luo, Chao Wang and Honghui Zhao
Agriculture 2025, 15(14), 1498; https://doi.org/10.3390/agriculture15141498 - 12 Jul 2025
Viewed by 285
Abstract
To ensure food security in Xinjiang, scientifically conducting land suitability evaluation is of significant importance. This paper takes an arid and ecologically fragile region of southern Xinjiang—Qiemu County—as an example. Based on the optimized Maximum Entropy (MaxEnt) model, 14 multi-source environmental variables including [...] Read more.
To ensure food security in Xinjiang, scientifically conducting land suitability evaluation is of significant importance. This paper takes an arid and ecologically fragile region of southern Xinjiang—Qiemu County—as an example. Based on the optimized Maximum Entropy (MaxEnt) model, 14 multi-source environmental variables including climate, soil, hydrology, and topography are integrated. The ENMeval package is used to optimize the model parameters, and Spearman’s rank correlation analysis is employed to screen key variables. The spatial distribution of land suitability and the dominant factors are systematically assessed. The results show that the model AUC values for the mountainous and plain areas are 0.987 and 0.940, respectively, indicating high accuracy. In the plain area, land suitability is primarily influenced by the soil sand content, while in the mountainous region, the annual accumulated temperature plays a leading role. The highly suitable areas are mainly distributed in the northern plains and parts of the southern mountains. This study clarifies the suitable areas for land development and environmental thresholds, providing a scientific basis for the development of land resources in arid regions and the implementation of the “store grain in the land” strategy. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

26 pages, 10223 KiB  
Article
Evaluation of the Accuracy and Applicability of Reanalysis Precipitation Products in the Lower Yarlung Zangbo Basin
by Anqi Tan, Ming Li, Heng Liu, Liangang Chen, Tao Wang, Binghui Yang, Min Wan and Yong Shi
Remote Sens. 2025, 17(14), 2396; https://doi.org/10.3390/rs17142396 - 11 Jul 2025
Viewed by 491
Abstract
The lower Yarlung Zangbo River Basin’s Great Bend region, characterized by extreme topography and intense orographic precipitation processes, presents significant challenges for accurate precipitation estimation using reanalysis products. Therefore, this study evaluates four widely used products (ERA5-Land, MSWEP, CMA, and TPMFD) against station [...] Read more.
The lower Yarlung Zangbo River Basin’s Great Bend region, characterized by extreme topography and intense orographic precipitation processes, presents significant challenges for accurate precipitation estimation using reanalysis products. Therefore, this study evaluates four widely used products (ERA5-Land, MSWEP, CMA, and TPMFD) against station observations (2014–2022) in this critical area. Performance was rigorously assessed using correlation analysis, error metrics (RMSE, MAE, RBIAS), and spatial regression. The region exhibits strong seasonality, with 62.1% of annual rainfall occurring during the monsoon (June-October). Results indicate TPMFD performed best overall, capturing spatiotemporal patterns effectively (correlation coefficients 0.6–0.8, low RBIAS). Conversely, ERA5-Land significantly overestimated precipitation, particularly in rugged northeast areas, suggesting poor representation of orographic effects. MSWEP and CMA underestimated rainfall with variable temporal consistency. Topographic analysis confirmed slope, aspect, and longitude strongly control precipitation distribution, aligning with classical orographic mechanisms (e.g., windward enhancement, lee-side rain shadows) and monsoonal moisture transport. Spatial regression revealed terrain features explain 15.4% of flood-season variation. TPMFD most accurately captured these terrain-precipitation relationships. Consequently, findings underscore the necessity for terrain-sensitive calibration and data fusion strategies in mountainous regions to improve precipitation products and hydrological modeling under orographic influence. Full article
Show Figures

Figure 1

40 pages, 3472 KiB  
Review
The Current Development Status of Agricultural Machinery Chassis in Hilly and Mountainous Regions
by Renkai Ding, Xiangyuan Qi, Xuwen Chen, Yixin Mei and Anze Li
Appl. Sci. 2025, 15(13), 7505; https://doi.org/10.3390/app15137505 - 3 Jul 2025
Viewed by 397
Abstract
The scenario adaptability of agricultural machinery chassis in hilly and mountainous regions has become a key area of innovation in modern agricultural equipment development in China. Due to the fragmented nature of farmland, steep terrain (often exceeding 15°), complex topography, and limited suitability [...] Read more.
The scenario adaptability of agricultural machinery chassis in hilly and mountainous regions has become a key area of innovation in modern agricultural equipment development in China. Due to the fragmented nature of farmland, steep terrain (often exceeding 15°), complex topography, and limited suitability for mechanization, traditional agricultural machinery experiences significantly reduced operational efficiency—typically by 30% to 50%—along with poor mobility. These limitations impose serious constraints on grain yield stability and the advancement of agricultural modernization. Therefore, enhancing the scenario-adaptive performance of chassis systems (e.g., slope adaptability ≥ 25°, lateral tilt stability > 30°) is a major research priority for China’s agricultural equipment industry. This paper presents a systematic review of the global development status of agricultural machinery chassis tailored for hilly and mountainous environments. It focuses on three core subsystems—power systems, traveling systems, and leveling systems—and analyzes their technical characteristics, working principles, and scenario-specific adaptability. In alignment with China’s “Dual Carbon” strategy and the unique operational requirements of hilly–mountainous areas (such as high gradients, uneven terrain, and small field sizes), this study proposes three key technological directions for the development of intelligent agricultural machinery chassis: (1) Multi-mode traveling mechanism design: Aimed at improving terrain traversability (ground clearance ≥400 mm, obstacle-crossing height ≥ 250 mm) and traction stability (slip ratio < 15%) across diverse landscapes. (2) Coordinated control algorithm optimization: Designed to ensure stable torque output (fluctuation rate < ±10%) and maintain gradient operation efficiency (e.g., less than 15% efficiency loss on 25° slopes) through power–drive synergy while also optimizing energy management strategies. (3) Intelligent perception system integration: Facilitating high-precision adaptive leveling (accuracy ± 0.5°, response time < 3 s) and enabling terrain-adaptive mechanism optimization to enhance platform stability and operational safety. By establishing these performance benchmarks and focusing on critical technical priorities—including terrain-adaptive mechanism upgrades, energy-drive coordination, and precision leveling—this study provides a clear roadmap for the development of modular and intelligent chassis systems specifically designed for China’s hilly and mountainous regions, thereby addressing current bottlenecks in agricultural mechanization. Full article
Show Figures

Figure 1

18 pages, 13604 KiB  
Essay
Scenario Simulation of Glacier Collapse in the Amnye Machen Mountains, Qinghai–Tibetan Plateau
by Jia Li, Junhui Wu, Xuyan Ma, Dongwei Zhou, Long Li, Le Lv, Lei Guo, Lingshuai Kong and Jiahao Dian
Geosciences 2025, 15(7), 254; https://doi.org/10.3390/geosciences15070254 - 3 Jul 2025
Viewed by 360
Abstract
Simulating potential glacier collapses can provide crucial support for local disaster prevention and mitigation efforts. The Xiaomagou Glacier in the Amnye Machen Mountains, Qinghai–Tibetan Plateau, has experienced five collapses in the past two decades. Field investigation and remote sensing observations indicate that the [...] Read more.
Simulating potential glacier collapses can provide crucial support for local disaster prevention and mitigation efforts. The Xiaomagou Glacier in the Amnye Machen Mountains, Qinghai–Tibetan Plateau, has experienced five collapses in the past two decades. Field investigation and remote sensing observations indicate that the topography and bedrock characteristics of the Qushi’an No. 22 Glacier, which is 3.5 km south of the Xiaomagou Glacier, are similar to those of the Xiaomagou Glacier. More importantly, the mass movement of the Qushi’an No. 22 Glacier since 2018 closely resembles that of the Xiaomagou Glacier exhibited before its previous collapses. Therefore, in the context of rising temperatures, it is possible that the Qushi’an No. 22 Glacier will collapse in the near future. Based on remote sensing imagery and the glacier’s surface elevation changes, we reconstructed the 2004 collapse process of the Xiaomagou Glacier via numerical simulation. The key parameters of the mass flow model were optimized based on the actual deposition area of the 2004 collapse. The model with optimized parameters was then used to simulate the potential Qushi’an No. 22 Glacier collapse. Two collapse scenarios were set for the Qushi’an No. 22 Glacier. In Scenario 1, the lower half of the tongue detaches; in Scenario 2, the whole tongue detaches. Simulation results show that, in Scenario 1, the maximum mass flow depth is 72 m, the maximum mass flow speed is 51.6 m/s, and the deposition area is 5.40 × 106 km2; in Scenario 2, the maximum mass flow depth is 75 m, the maximum mass flow speed is 59.7 m/s, and the deposition area is 6.32 × 106 km2. In both scenarios, the deposition area is much larger than that of the Xiaomagou Glacier 2004 collapse, which had a deposition area of 2.21 × 106 km2. The simulation results suggest that the Qushi’an No. 22 Glacier collapse could devastate the pastures and township roads lying in front of the glacier, seriously affecting local transportation and livestock farming; furthermore, it may deposit in the Qinglong River, forming a large, dammed lake. At present, the Qushi’an No. 22 Glacier remains in an unstable state. It is crucial to strengthen monitoring of its surface morphology, flow speed, and elevation. Full article
(This article belongs to the Section Cryosphere)
Show Figures

Figure 1

Back to TopTop