Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (331)

Search Parameters:
Keywords = mountain resilience

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 311 KiB  
Article
Sustainable Tourism in Protected Areas: Comparative Governance and Lessons from Tara and Triglav National Parks
by Stefana Matović, Suzana Lović Obradović and Tamara Gajić
Sustainability 2025, 17(15), 7048; https://doi.org/10.3390/su17157048 - 3 Aug 2025
Viewed by 390
Abstract
This paper investigates how governance frameworks shape sustainable tourism outcomes in protected areas by comparing Tara National Park (Serbia) and Triglav National Park (Slovenia). Both parks, established in 1981 and classified under IUCN Category II, exhibit rich biodiversity and mountainous terrain but differ [...] Read more.
This paper investigates how governance frameworks shape sustainable tourism outcomes in protected areas by comparing Tara National Park (Serbia) and Triglav National Park (Slovenia). Both parks, established in 1981 and classified under IUCN Category II, exhibit rich biodiversity and mountainous terrain but differ markedly in governance structures, institutional integration, and local community engagement. Using a qualitative, indicator-based methodology, this research evaluates ecological, economic, and social dimensions of sustainability. The findings reveal that Triglav NP demonstrates higher levels of participatory governance, tourism integration, and educational outreach, while Tara NP maintains stricter ecological protection with less inclusive management. Triglav’s zoning model, community council, and economic alignment with regional development policies contribute to stronger sustainability outcomes. Conversely, Tara NP’s centralized governance and infrastructural gaps constrain its potential despite its significant conservation value. This study highlights the importance of adaptive, inclusive governance in achieving the Sustainable Development Goals (SDGs) within protected areas. It concludes that hybrid approaches, combining legal rigor with participatory flexibility, can foster resilience and sustainability in ecologically sensitive regions. Full article
12 pages, 1641 KiB  
Article
Intraspecific Variations in Ecomorphological Functional Traits of Montane Stream-Dwelling Frogs Were Driven by Their Microhabitat Conditions
by Xiwen Peng, Da Kang, Guangfeng Chen, Suwen Hu, Zijian Sun and Tian Zhao
Animals 2025, 15(15), 2243; https://doi.org/10.3390/ani15152243 - 30 Jul 2025
Viewed by 244
Abstract
Understanding how habitat conditions drive morphological adaptations in animals is critical in ecology, yet amphibian studies remain limited. This study investigated intraspecific variation in ecomorphological traits of three montane stream-dwelling frogs (Quasipaa boulengeri, Amolops sinensis, and Odorrana margaratae) across [...] Read more.
Understanding how habitat conditions drive morphological adaptations in animals is critical in ecology, yet amphibian studies remain limited. This study investigated intraspecific variation in ecomorphological traits of three montane stream-dwelling frogs (Quasipaa boulengeri, Amolops sinensis, and Odorrana margaratae) across elevation gradients in Tianping Mountain, China. Using morphological measurements and environmental variables collected from ten transects, we analyzed functional traits related to feeding and locomotion and assessed their associations with microhabitat variables. Significant trait differences between low- and high-elevation groups were detected only in Q. boulengeri, with high-elevation individuals exhibiting greater body mass and shorter hindlimbs. Redundancy analysis demonstrated that microhabitat variables, particularly air humidity, flow rate, and rock coverage, were linked to trait variations. For example, air humidity and flow rate significantly influenced Q. boulengeri’s body and limb proportions, while flow rate affected A. sinensis’s snout and limb morphology. In addition, sex and seasonal effects were also associated with trait variations. These results underscore amphibians’ phenotypic plasticity in response to the environment and highlight the role of microhabitat complexity in shaping traits. By linking habitat heterogeneity to eco-morphology, this study advocates for conservation strategies that preserve varied stream environments to support amphibian resilience amid environmental changes. Full article
Show Figures

Figure 1

32 pages, 17155 KiB  
Article
Machine Learning Ensemble Methods for Co-Seismic Landslide Susceptibility: Insights from the 2015 Nepal Earthquake
by Tulasi Ram Bhattarai and Netra Prakash Bhandary
Appl. Sci. 2025, 15(15), 8477; https://doi.org/10.3390/app15158477 - 30 Jul 2025
Viewed by 224
Abstract
The Mw 7.8 Gorkha Earthquake of 25 April 2015 triggered over 25,000 landslides across central Nepal, with 4775 events concentrated in Gorkha District alone. Despite substantial advances in landslide susceptibility mapping, existing studies often overlook the compound role of post-seismic rainfall and lack [...] Read more.
The Mw 7.8 Gorkha Earthquake of 25 April 2015 triggered over 25,000 landslides across central Nepal, with 4775 events concentrated in Gorkha District alone. Despite substantial advances in landslide susceptibility mapping, existing studies often overlook the compound role of post-seismic rainfall and lack robust spatial validation. To address this gap, we validated an ensemble machine learning framework for co-seismic landslide susceptibility modeling by integrating seismic, geomorphological, hydrological, and anthropogenic variables, including cumulative post-seismic rainfall. Using a balanced dataset of 4775 landslide and non-landslide instances, we evaluated the performance of Logistic Regression (LR), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) models through spatial cross-validation, SHapley Additive exPlanations (SHAP) explainability, and ablation analysis. The RF model outperformed all others, achieving an accuracy of 87.9% and a Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) value of 0.94, while XGBoost closely followed (AUC = 0.93). Ensemble models collectively classified over 95% of observed landslides into High and Very High susceptibility zones, demonstrating strong spatial reliability. SHAP analysis identified elevation, proximity to fault, peak ground acceleration (PGA), slope, and rainfall as dominant predictors. Notably, the inclusion of post-seismic rainfall substantially improved recall and F1 scores in ablation experiments. Spatial cross-validation revealed the superior generalizability of ensemble models under heterogeneous terrain conditions. The findings underscore the value of integrating post-seismic hydrometeorological factors and spatial validation into susceptibility assessments. We recommend adopting ensemble models, particularly RF, for operational hazard mapping in earthquake-prone mountainous regions. Future research should explore the integration of dynamic rainfall thresholds and physics-informed frameworks to enhance early warning systems and climate resilience. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

23 pages, 694 KiB  
Article
Resilience for Just Transitions of Agroecosystems Under Climate Change: Northern Midlands and Mountains, Vietnam
by Tung Song Nguyen, Leslie Mabon, Huong Thu Thi Doan, Ha Van Le, Thu Huyen Thi Nguyen, Duan Van Vu and Dap Dinh Nguyen
World 2025, 6(3), 102; https://doi.org/10.3390/world6030102 - 30 Jul 2025
Viewed by 579
Abstract
The aim of this research is to identify policy and practice interventions that support a just transition towards resilient practices for resource-dependent communities. We focus on Thai Nguyen and Phu Tho, two provinces in the Northern Midlands and Mountains of Vietnam. The region [...] Read more.
The aim of this research is to identify policy and practice interventions that support a just transition towards resilient practices for resource-dependent communities. We focus on Thai Nguyen and Phu Tho, two provinces in the Northern Midlands and Mountains of Vietnam. The region is reliant on agriculture but is assessed as highly vulnerable to climate change. We surveyed 105 farming households. A Likert-type questionnaire asked respondents to self-assess their experiences of weather extremes and of changes they had made to their farming practices. Our results show that for both Thai Nguyen and Phu Tho, farmers see the effects of climate change on their crops. Respondents in Thai Nguyen were more likely to report technically driven adaptation and engagement with extension services. Respondents in Pho Tho were more likely to continue traditional practices. For both, use of traditional knowledge and practices was related to taking measures to adapt to climate change. Our main conclusion is that at least three actions could support a just transition to resilient livelihoods. First is incorporating natural science and traditional knowledge into decision-making for just transitions. Second is considering long-term implications of interventions that appear to support livelihoods in the short term. Third is tailoring messaging and engagement strategies to the requirements of the most vulnerable people. The main message of this study is that a just transition for resource-dependent communities will inevitably be context-specific. Even in centralized and authoritarian contexts, flexibility to adapt top-down policies to locals’ own experiences of changing climates is needed. Full article
Show Figures

Figure 1

13 pages, 704 KiB  
Article
Population Substructures of Castanopsis tribuloides in Northern Thailand Revealed Using Autosomal STR Variations
by Patcharawadee Thongkumkoon, Jatupol Kampuansai, Maneesawan Dansawan, Pimonrat Tiansawat, Nuttapol Noirungsee, Kittiyut Punchay, Nuttaluck Khamyong and Prasit Wangpakapattanawong
Plants 2025, 14(15), 2306; https://doi.org/10.3390/plants14152306 - 26 Jul 2025
Viewed by 251
Abstract
This study investigates the genetic diversity and population structure of Castanopsis tribuloides, a vital tree species in Asian forest ecosystems. Understanding the genetic patterns of keystone forest species provides critical insights into forest resilience and ecosystem function and informs conservation strategies. We [...] Read more.
This study investigates the genetic diversity and population structure of Castanopsis tribuloides, a vital tree species in Asian forest ecosystems. Understanding the genetic patterns of keystone forest species provides critical insights into forest resilience and ecosystem function and informs conservation strategies. We analyzed population samples collected from three distinct locations within Doi Suthep Mountain in northern Thailand using Short Tandem Repeat (STR) markers to assess both intra- and inter-population genetic relationships. DNA was extracted from leaf samples and analyzed using a panel of polymorphic microsatellite loci specifically optimized for Castanopsis species. Statistical analyses included the assessment of forensic parameters (number of alleles, observed and expected heterozygosity, gene diversity, polymorphic information content), population differentiation metrics (GST), inbreeding coefficients (FIS), and gene flow estimates (Nm). We further examined population history through bottleneck analysis using three models (IAM, SMM, and TPM) and visualized genetic relationships through principal coordinate analysis and cluster analysis. Our results revealed significant patterns of genetic structuring across the sampled populations, with genetic distance metrics showing statistically significant differentiation between certain population pairs. The PCA and cluster analyses confirmed distinct population groupings that correspond to geographic distribution patterns. These findings provide the first comprehensive assessment of C. tribuloides population genetics in this region, establishing baseline data for monitoring genetic diversity and informing conservation strategies. This research contributes to our understanding of how landscape features and ecological factors shape genetic diversity patterns in essential forest tree species, with implications for managing forest genetic resources in the face of environmental change. Full article
(This article belongs to the Section Plant Genetic Resources)
Show Figures

Figure 1

14 pages, 38692 KiB  
Article
Development of a Microscale Urban Airflow Modeling System Incorporating Buildings and Terrain
by Hyo-Been An and Seung-Bu Park
Atmosphere 2025, 16(8), 905; https://doi.org/10.3390/atmos16080905 - 25 Jul 2025
Viewed by 165
Abstract
We developed a microscale airflow modeling system with detailed building and terrain data to better understand the urban microclimate. Building shapes and heights, and terrain elevation data were integrated to construct a high-resolution urban surface geometry. The system, based on computational fluid dynamics [...] Read more.
We developed a microscale airflow modeling system with detailed building and terrain data to better understand the urban microclimate. Building shapes and heights, and terrain elevation data were integrated to construct a high-resolution urban surface geometry. The system, based on computational fluid dynamics using OpenFOAM, can resolve complex flow structures around built environments. Inflow boundary conditions were generated using logarithmic wind profiles derived from Automatic Weather System (AWS) observations under neutral stability. After validation with wind-tunnel data for a single block, the system was applied to airflow modeling around a university campus in Seoul using AWS data from four nearby stations. The results demonstrated that the system captured key flow characteristics such as channeling, wake, and recirculation induced by complex terrain and building configurations. In particular, easterly inflow cases with high-rise buildings on the leeward side of a mountain exhibited intensified wakes and internal recirculations, with elevated centers influenced by tall structures. This modeling framework, with further development, could support diverse urban applications for microclimate and air quality, facilitating urban resilience. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

17 pages, 546 KiB  
Article
The Relationship Between Well-Being and MountainTherapy in Practitioners of Mental Health Departments
by Fiorella Lanfranchi, Elisa Zambetti, Alessandra Bigoni, Francesca Brivio, Chiara Di Natale, Valeria Martini and Andrea Greco
Int. J. Environ. Res. Public Health 2025, 22(8), 1181; https://doi.org/10.3390/ijerph22081181 - 25 Jul 2025
Viewed by 858
Abstract
Background. Healthcare workers’ health can be influenced by physical, psychological, social, emotional, and work-related stress. MountainTherapy Activities (MTAs) are an integrated therapeutic approach that uses nature to enhance their well-being through group activities like hiking. This cross-sectional study examines well-being levels among [...] Read more.
Background. Healthcare workers’ health can be influenced by physical, psychological, social, emotional, and work-related stress. MountainTherapy Activities (MTAs) are an integrated therapeutic approach that uses nature to enhance their well-being through group activities like hiking. This cross-sectional study examines well-being levels among Italian Departments of Mental Health workers who do or do not participate in MTAs. It hypothesizes that MTAs may reduce burnout, boost psychological resilience, and increase job satisfaction. Methods. The study involved 167 healthcare workers from 11 Italian Local Health Authorities, divided into MTA (who take part in MTA; n = 83) and non-MTA (who have never participated in MTA; n = 84) groups. They completed five validated questionnaires on psychological distress, burnout, resilience, job engagement, and psychological safety. Data were compared between groups, considering MTA frequency and well-being differences during MTAs versus workplace activities. Results. MTA participants scored higher in psychological well-being (t(117.282) = −1.721, p = 0.044) and general dysphoria (t(116.955) = −1.721, p = 0.042). Additionally, during MTAs, they showed greater job engagement (vigor: t(66) = −8.322, p < 0.001; devotion: t(66) = −4.500, p < 0.001; emotional involvement: t(66) = −8.322, p = 0.002) and psychological safety (general: t(66) = −5.819, p < 0.001; self-expression: t(66) = −5.609, p < 0.001) compared to other activities. Conclusions. MTAs can be considered a valid intervention for the promotion of the mental health of healthcare workers. Full article
(This article belongs to the Special Issue Promoting Health and Safety in the Workplace)
Show Figures

Figure 1

17 pages, 1976 KiB  
Article
Soil Hydrological Properties and Organic Matter Content in Douglas-Fir and Spruce Stands: Implications for Forest Resilience to Climate Change
by Anna Klamerus-Iwan, Piotr Behan, Ewa Słowik-Opoka, María Isabel Delgado-Moreira and Lizardo Reyna-Bowen
Forests 2025, 16(8), 1217; https://doi.org/10.3390/f16081217 - 24 Jul 2025
Viewed by 311
Abstract
Climate change has intensified over recent decades, prompting shifts in forest management strategies, particularly in the Sudetes region of Poland, where native species like Norway spruce (Picea abies), European beech (Fagus sylvatica), and silver fir (Abies alba) [...] Read more.
Climate change has intensified over recent decades, prompting shifts in forest management strategies, particularly in the Sudetes region of Poland, where native species like Norway spruce (Picea abies), European beech (Fagus sylvatica), and silver fir (Abies alba) have historically dominated. To address these changes, non-native species such as Douglas fir (Pseudotsuga menziesii) have been introduced as potential alternatives. This study, conducted in the Jugów and Świerki forest districts, compared the soil properties and water retention capacities of Douglas fir (Dg) and Norway spruce (Sw) stands (age classes from 8–127 years) in the Fresh Mountain Mixed Forest Site habitat. Field measurements included temperature, humidity, organic matter content, water capacity, and granulometric composition. Results indicate that, in comparison to Sw stands, Dg stands were consistently linked to soils that were naturally finer textured. The observed hydrological changes were mostly supported by these textural differences: In all investigated circumstances, Dg soils demonstrated greater water retention, displaying a water capacity that was around 5% higher. In addition to texture, Dg stands showed reduced soil water repellency and a substantially greater organic matter content (59.74% compared to 27.91% in Sw), which further enhanced soil structure and moisture retention. Conversely, with increasing climatic stress, Sw soils, with coarser textures and less organic matter, showed decreased water retention. The study highlights the importance of species selection in sustainable forest management, especially under climate change. Future research should explore long-term ecological impacts, including effects on microbial communities, nutrient cycling, and biodiversity, to optimize forest resilience and sustainability. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

34 pages, 26037 KiB  
Article
Remote Sensing-Based Analysis of the Coupled Impacts of Climate and Land Use Changes on Future Ecosystem Resilience: A Case Study of the Beijing–Tianjin–Hebei Region
by Jingyuan Ni and Fang Xu
Remote Sens. 2025, 17(15), 2546; https://doi.org/10.3390/rs17152546 - 22 Jul 2025
Viewed by 492
Abstract
Urban and regional ecosystems are increasingly challenged by the compounded effects of climate change and intensive land use. In this study, a predictive assessment framework for ecosystem resilience in the Beijing–Tianjin–Hebei region was developed by integrating multi-source remote sensing data, with the aim [...] Read more.
Urban and regional ecosystems are increasingly challenged by the compounded effects of climate change and intensive land use. In this study, a predictive assessment framework for ecosystem resilience in the Beijing–Tianjin–Hebei region was developed by integrating multi-source remote sensing data, with the aim of quantitatively evaluating the coupled effects of climate change and land use change on future ecosystem resilience. In the first stage of the study, the SD-PLUS coupled modeling framework was employed to simulate land use patterns for the years 2030 and 2060 under three representative combinations of Shared Socioeconomic Pathways and Representative Concentration Pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5). Building upon these simulations, ecosystem resilience was comprehensively evaluated and predicted on the basis of three key attributes: resistance, adaptability, and recovery. This enabled a quantitative investigation of the spatio-temporal dynamics of ecosystem resilience under each scenario. The results reveal the following: (1) Temporally, ecosystem resilience exhibited a staged pattern of change. From 2020 to 2030, an increasing trend was observed only under the SSP1-2.6 scenario, whereas, from 2030 to 2060, resilience generally increased in all scenarios. (2) In terms of scenario comparison, ecosystem resilience typically followed a gradient pattern of SSP1-2.6 > SSP2-4.5 > SSP5-8.5. However, in 2060, a notable reversal occurred, with the highest resilience recorded under the SSP5-8.5 scenario. (3) Spatially, areas with high ecosystem resilience were primarily distributed in mountainous regions, while the southeastern plains and coastal zones consistently exhibited lower resilience levels. The results indicate that climate and land use changes jointly influence ecosystem resilience. Rainfall and temperature, as key climate drivers, not only affect land use dynamics but also play a crucial role in regulating ecosystem services and ecological processes. Under extreme scenarios such as SSP5-8.5, these factors may trigger nonlinear responses in ecosystem resilience. Meanwhile, land use restructuring further shapes resilience patterns by altering landscape configurations and recovery mechanisms. Our findings highlight the role of climate and land use in reshaping ecological structure, function, and services. This study offers scientific support for assessing and managing regional ecosystem resilience and informs adaptive urban governance in the face of future climate and land use uncertainty, promotes the sustainable development of ecosystems, and expands the applicability of remote sensing in dynamic ecological monitoring and predictive analysis. Full article
Show Figures

Graphical abstract

34 pages, 31153 KiB  
Article
Study on Urban System Relationships and Resilience Promotion Strategies in Underdeveloped Mountainous Areas Based on Social Network Analysis: A Case Study of Qiandongnan Miao and Dong Autonomous Prefecture
by Huayan Yuan, Jinyu Fan, Jie Luo, Rui Ren and Hai Li
Land 2025, 14(7), 1500; https://doi.org/10.3390/land14071500 - 19 Jul 2025
Viewed by 348
Abstract
Urban systems are the spatial carriers of social and economic relations at the regional level, and their relational and structural resilience are key to regional coordination and sustainable development, attracting widespread attention from scholars. In order to analyze the internal relationships of urban [...] Read more.
Urban systems are the spatial carriers of social and economic relations at the regional level, and their relational and structural resilience are key to regional coordination and sustainable development, attracting widespread attention from scholars. In order to analyze the internal relationships of urban agglomerations in underdeveloped mountainous regions and optimize their spatial resource allocation and resilience, this study takes the urban agglomeration of Qiandongnan in China as an example and researches their internal relationships, development potential, and influencing factors based on quantitative methods such as social network analysis. The results show that the urban cluster in Qiandongnan presents “large dispersion and small aggregation” distribution characteristics, with the karst landscape as the main influencing factor; the spatial network exhibits a scale-free morphology with an obvious core–periphery structure, demonstrating moderate stability but poor completeness, weak equilibrium, and low overall resilience; only 15.61% of nodes demonstrate high competitiveness; urban units with functional roles serve as critical network nodes; urban units’ development potential is divided into three tiers (with 47.31% being medium-high), although overall levels remain low; and the development potential, overall network, individual network, and network resilience of urban units are all positively correlated, with economic and transportation development conditions being the main influencing factors. Based on the abovementioned findings, this study proposes a “multi-level resilience promotion path for network structure optimization”, which provides a theoretical basis and optimization control methods for the reconstruction and synergistic development of urban agglomerations. It also serves as a reference for the development planning of urban systems in other underdeveloped mountainous regions. Full article
Show Figures

Figure 1

25 pages, 9183 KiB  
Article
Development and Evaluation of the Forest Drought Response Index (ForDRI): An Integrated Tool for Monitoring Drought Stress Across Forest Ecosystems in the Contiguous United States
by Tsegaye Tadesse, Stephanie Connolly, Brian Wardlow, Mark Svoboda, Beichen Zhang, Brian A. Fuchs, Hasnat Aslam, Christopher Asaro, Frank H. Koch, Tonya Bernadt, Calvin Poulsen, Jeff Wisner, Jeffrey Nothwehr, Ian Ratcliffe, Kelsey Varisco, Lindsay Johnson and Curtis Riganti
Forests 2025, 16(7), 1187; https://doi.org/10.3390/f16071187 - 18 Jul 2025
Viewed by 369
Abstract
Forest drought monitoring tools are crucial for managing tree water stress and enhancing ecosystem resilience. The Forest Drought Response Index (ForDRI) was developed to monitor drought conditions in forested areas across the contiguous United States (CONUS), integrating vegetation health, climate data, groundwater, and [...] Read more.
Forest drought monitoring tools are crucial for managing tree water stress and enhancing ecosystem resilience. The Forest Drought Response Index (ForDRI) was developed to monitor drought conditions in forested areas across the contiguous United States (CONUS), integrating vegetation health, climate data, groundwater, and soil moisture content. This study evaluated ForDRI using Pearson correlations with the Bowen Ratio (BR) at 24 AmeriFlux sites and Spearman correlations with the Tree-Ring Growth Index (TRSGI) at 135 sites, along with feedback from 58 stakeholders. CONUS was divided into four forest subgroups: (1) the West/Pacific Northwest, (2) Rocky Mountains/Southwest, (3) East/Northeast, and (4) South/Central/Southeast Forest regions. Strong positive ForDRI-TRSGI correlations (ρ > 0.7, p < 0.05) were observed in the western regions, where drought significantly impacts growth, while moderate alignment with BR (R = 0.35–0.65, p < 0.05) was noted. In contrast, correlations in Eastern and Southern forests were weak to moderate (ρ = 0.4–0.6 for TRSGI and R = 0.1–0.3 for BR). Stakeholders’ feedback indicated that ForDRI realistically maps historical drought years and recent trends, though suggestions for improvements, including trend maps and enhanced visualizations, were made. ForDRI is a valuable complementary tool for monitoring forest droughts and informing management decisions. Full article
(This article belongs to the Special Issue Impacts of Climate Extremes on Forests)
Show Figures

Figure 1

28 pages, 6582 KiB  
Article
Experimental Study on Dynamic Response Characteristics of Rural Residential Buildings Subjected to Blast-Induced Vibrations
by Jingmin Pan, Dongli Zhang, Zhenghua Zhou, Jiacong He, Long Zhang, Yi Han, Cheng Peng and Sishun Wang
Buildings 2025, 15(14), 2511; https://doi.org/10.3390/buildings15142511 - 17 Jul 2025
Viewed by 226
Abstract
Numerous rural residential buildings exhibit inadequate seismic performance when subjected to blast-induced vibrations, which poses potential threats to their overall stability and structural integrity when in proximity to blasting project sites. The investigation conducted in conjunction with the Qianshi Mountain blasting operations along [...] Read more.
Numerous rural residential buildings exhibit inadequate seismic performance when subjected to blast-induced vibrations, which poses potential threats to their overall stability and structural integrity when in proximity to blasting project sites. The investigation conducted in conjunction with the Qianshi Mountain blasting operations along the Wenzhou segment of the Hangzhou–Wenzhou High-Speed Railway integrates household field surveys and empirical measurements to perform modal analysis of rural residential buildings through finite element simulation. Adhering to the principle of stratified arrangement and composite measurement point configuration, an effective and reasonable experimental observation framework was established. In this investigation, the seven-story rural residential building in adjacent villages was selected as the research object. Strong-motion seismographs were strategically positioned adjacent to frame columns on critical stories (ground, fourth, seventh, and top floors) within the observational system to acquire test data. Methodical signal processing techniques, including effective signal extraction, baseline correction, and schedule conversion, were employed to derive temporal dynamic characteristics for each story. Combined with the Fourier transform, the frequency–domain distribution patterns of different floors are subsequently obtained. Leveraging the structural dynamic theory, time–domain records were mathematically converted to establish the structure’s maximum response spectra under blast-induced loading conditions. Through the analysis of characteristic curves, including floor acceleration response spectra, dynamic amplification coefficients, and spectral ratios, the dynamic response patterns of rural residential buildings subjected to blast-induced vibrations have been elucidated. Following the normalization of peak acceleration and velocity parameters, the mechanisms underlying differential floor-specific dynamic responses were examined, and the layout principles of measurement points were subsequently formulated and summarized. These findings offer valuable insights for enhancing the seismic resilience and structural safety of rural residential buildings exposed to blast-induced vibrations, with implications for both theoretical advancements and practical engineering applications. Full article
(This article belongs to the Special Issue Seismic Analysis and Design of Building Structures)
Show Figures

Figure 1

24 pages, 5886 KiB  
Article
GIS-Driven Multi-Criteria Assessment of Rural Settlement Patterns and Attributes in Rwanda’s Western Highlands (Central Africa)
by Athanase Niyogakiza and Qibo Liu
Sustainability 2025, 17(14), 6406; https://doi.org/10.3390/su17146406 - 13 Jul 2025
Viewed by 480
Abstract
This study investigates rural settlement patterns and land suitability in Rwanda’s Western Highlands, a mountainous region highly vulnerable to geohazards like landslides and flooding. Its primary aim is to inform sustainable, climate-resilient development planning in this fragile landscape. We employed high-resolution satellite imagery, [...] Read more.
This study investigates rural settlement patterns and land suitability in Rwanda’s Western Highlands, a mountainous region highly vulnerable to geohazards like landslides and flooding. Its primary aim is to inform sustainable, climate-resilient development planning in this fragile landscape. We employed high-resolution satellite imagery, a Digital Elevation Model (DEM), and comprehensive geospatial datasets to analyze settlement distribution, using Thiessen polygons for influence zones and Kernel Density Estimation (KDE) for spatial clustering. The Analytic Hierarchy Process (AHP) was integrated with the GeoDetector model to objectively weight criteria and analyze settlement pattern drivers, using population density as a proxy for human pressure. The analysis revealed significant spatial heterogeneity in settlement distribution, with both clustered and dispersed forms exhibiting distinct exposure levels to environmental hazards. Natural factors, particularly slope gradient and proximity to rivers, emerged as dominant determinants. Furthermore, significant synergistic interactions were observed between environmental attributes and infrastructure accessibility (roads and urban centers), collectively shaping settlement resilience. This integrative geospatial approach enhances understanding of complex rural settlement dynamics in ecologically sensitive mountainous regions. The empirically grounded insights offer a robust decision-support framework for climate adaptation and disaster risk reduction, contributing to more resilient rural planning strategies in Rwanda and similar Central African highland regions. Full article
Show Figures

Figure 1

13 pages, 2240 KiB  
Article
Multi-Annual Dendroclimatic Patterns for the Desert National Wildlife Refuge, Southern Nevada, USA
by Franco Biondi and James Roberts
Forests 2025, 16(7), 1142; https://doi.org/10.3390/f16071142 - 10 Jul 2025
Viewed by 321
Abstract
Ponderosa pine (Pinus ponderosa Lawson & C. Lawson) forests in the western United States have experienced reduced fire frequency since Euro-American settlement, usually because of successful fire suppression policies and even without such human impacts at remote sites in the Great Basin [...] Read more.
Ponderosa pine (Pinus ponderosa Lawson & C. Lawson) forests in the western United States have experienced reduced fire frequency since Euro-American settlement, usually because of successful fire suppression policies and even without such human impacts at remote sites in the Great Basin and Mojave Deserts. In an effort to improve our understanding of long-term environmental dynamics in sky-island ecosystems, we developed tree-ring chronologies from ponderosa pines located in the Sheep Mountain Range of southern Nevada, inside the Desert National Wildlife Refuge (DNWR). After comparing those dendrochronological records with other ones available for the south-central Great Basin, we analyzed their climatic response using station-recorded monthly precipitation and air temperature data from 1950 to 2024. The main climatic signal was December through May total precipitation, which was then reconstructed at annual resolution over the past five centuries, from 1490 to 2011 CE. The mean episode duration was 2.6 years, and the maximum drought duration was 11 years (1924–1934; the “Dust Bowl” period), while the longest episode, 19 years (1905–1923), is known throughout North America as the “early 1900s pluvial”. By quantifying multi-annual dry and wet episodes, the period since DNWR establishment was placed in a long-term dendroclimatic framework, allowing us to estimate the potential drought resilience of its unique, tree-dominated environments. Full article
(This article belongs to the Special Issue Environmental Signals in Tree Rings)
Show Figures

Figure 1

23 pages, 3778 KiB  
Article
Evaluating Ecological Vulnerability and Its Driving Mechanisms in the Dongting Lake Region from a Multi-Method Integrated Perspective: Based on Geodetector and Explainable Machine Learning
by Fuchao Li, Tian Nan, Huang Zhang, Kun Luo, Kui Xiang and Yi Peng
Land 2025, 14(7), 1435; https://doi.org/10.3390/land14071435 - 9 Jul 2025
Viewed by 358
Abstract
This study focuses on the Dongting Lake region in China and evaluates ecological vulnerability using the Sensitivity–Resilience–Pressure (SRP) framework, integrated with Spatial Principal Component Analysis (SPCA) to calculate the Ecological Vulnerability Index (EVI). The EVI values were classified into five levels using the [...] Read more.
This study focuses on the Dongting Lake region in China and evaluates ecological vulnerability using the Sensitivity–Resilience–Pressure (SRP) framework, integrated with Spatial Principal Component Analysis (SPCA) to calculate the Ecological Vulnerability Index (EVI). The EVI values were classified into five levels using the Natural Breaks (Jenks) method, and spatial autocorrelation analysis was applied to reveal spatial differentiation patterns. The Geodetector model was used to analyze the driving mechanisms of natural and socioeconomic factors on EVI, identifying key influencing variables. Furthermore, the LightGBM algorithm was used for feature optimization, followed by the construction of six machine learning models—Multilayer Perceptron (MLP), Extremely Randomized Trees (ET), Decision Tree (DT), Random Forest (RF), LightGBM, and K-Nearest Neighbors (KNN)—to conduct multi-class classification of ecological vulnerability. Model performance was assessed using ROC–AUC, accuracy, recall, confusion matrix, and Kappa coefficient, and the best-performing model was interpreted using SHAP (SHapley Additive exPlanations). The results indicate that: ① ecological vulnerability increased progressively from the core wetlands and riparian corridors to the transitional zones in the surrounding hills and mountains; ② a significant spatial clustering of ecological vulnerability was observed, with a Moran’s I index of 0.78; ③ Geodetector analysis identified the interaction between NPP (q = 0.329) and precipitation (PRE, q = 0.268) as the dominant factor (q = 0.50) influencing spatial variation of EVI; ④ the Random Forest model achieved the best classification performance (AUC = 0.954, F1 score = 0.78), and SHAP analysis showed that NPP and PRE made the most significant contributions to model predictions. This study proposes a multi-method integrated decision support framework for assessing ecological vulnerability in lake wetland ecosystems. Full article
(This article belongs to the Section Land Innovations – Data and Machine Learning)
Show Figures

Figure 1

Back to TopTop