Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = mouldboard plough

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 16982 KiB  
Article
Cultivation of Crops in Strip-Till Technology and Microgranulated Fertilisers Containing a Gelling Agent as a Farming Response to Climate Change
by Dariusz Jaskulski, Iwona Jaskulska, Emilian Różniak, Maja Radziemska and Martin Brtnický
Agriculture 2023, 13(10), 1981; https://doi.org/10.3390/agriculture13101981 - 12 Oct 2023
Cited by 3 | Viewed by 2204
Abstract
Climatic and soil conditions are changing in response to the increasing human impact. This requires the introduction of low-cost, low-emission, but effective technologies in the field cultivation of crops, in turn requiring and justifying research in this area. In laboratory tests and field [...] Read more.
Climatic and soil conditions are changing in response to the increasing human impact. This requires the introduction of low-cost, low-emission, but effective technologies in the field cultivation of crops, in turn requiring and justifying research in this area. In laboratory tests and field studies, the production and environmental effects of strip-till and the application of microgranular fertilisers with a gelling component were determined (and, in particular, their use in combination as a plant cultivation technology). These effects were measured in terms of soil properties, the biomass production, and the yields of maize (Zea mays L.), spring barley (Hordeum vulgare L.), and winter rape (Brassica napus L.). Fertiliser microgranules with a gelling agent absorbed water in the amount of 118.6–124.7% of fertiliser mass and increased the volumetric moisture content of the soil in the layer in which they were applied (0–7.5 cm) by 3.0–3.9 percentage points compared to the soil moisture without fertiliser. Strip tillage with the application of fertilisers with a gelling agent significantly increased the amount of water in the soil during the sowing period for winter and spring plants and reduced the CO2 emissions from the soil relative to the conventional tillage without microgranular fertiliser. The biomass of maize, spring barley, and winter rape before flowering, as well as the yields of these plants, were higher when cultivated using strip-till and fertilisers with gelling agents than when ploughed with a mouldboard plough without the use of microgranulated fertilisers. This technology also increased the number of microorganisms, including bacteria, actinobacteria, and filamentous fungi in the soil after harvesting compared to the unfertilised, ploughed soil. Strip tillage and microgranulated fertilisers containing a gelling agent can thus reduce the environmental pressure exerted by agriculture and reduce the risk of climate change, as well as being a way of adapting agriculture to climate change. Full article
Show Figures

Figure 1

14 pages, 2003 KiB  
Article
Effect of Different Tillage and Residue Management Options on Soil Water Transmission and Mechanical Behavior
by Vicky Singh, Rajeev Kumar Gupta, M. S. Kahlon, A. S. Toor, K. B. Singh, Nadhir Al-Ansari and Mohamed A. Mattar
Land 2023, 12(10), 1895; https://doi.org/10.3390/land12101895 - 9 Oct 2023
Cited by 8 | Viewed by 2421
Abstract
Understanding the variability in the mechanical and hydrological soil characteristics resulting from diverse tillage and residue management practices is essential for evaluating the adoption of conservation strategies to preserve soil’s physical well-being. Zero-tillage techniques combined with residue retention or incorporation have gained widespread [...] Read more.
Understanding the variability in the mechanical and hydrological soil characteristics resulting from diverse tillage and residue management practices is essential for evaluating the adoption of conservation strategies to preserve soil’s physical well-being. Zero-tillage techniques combined with residue retention or incorporation have gained widespread recognition for their capacity to conserve soil and water resources, reduce energy consumption, and enhance soil quality and environmental sustainability. Nevertheless, the choice of tillage and residue management options may vary depending on the geographical locations and specific soil conditions. To assess the impacts of four distinct tillage and residue management approaches, a two-year experiment (2020–2021 and 2021–2022) was conducted: T1: conventional tillage followed by wheat sowing after the removal of rice straw (CT-RS); T2: zero tillage with wheat sowing using a Happy Seeder while retaining rice straw (ZT+RS); T3: conventional tillage followed by wheat sowing after rice straw incorporation using a reversible mouldboard plough (CT+RS); T4: minimum tillage with wheat sowing using a Super Seeder with rice straw incorporation (MT+RS); the effects were recorded on the physical soil properties. Our findings indicate that zero tillage combined with residue retention (T2) had a positive influence on various physical soil attributes. Notably, significant differences were observed among the tillage and residue management options, particularly in terms of the bulk density with T1 exhibiting the highest values and the lowest being in T2, whereas the soil penetration resistance was lowest in T3 compared to T1. In the case of T3, sandy loam and clay loam soils had the highest measured saturated hydraulic conductivity values, measuring 5.08 and 4.57 cm h−1 and 4.07 and 3.73 cm h−1, respectively. Furthermore, T2 (zero tillage with residue retention) demonstrated the highest mean weight diameter (MWD) and maximum water stable aggregate. These results collectively underscore the positive effects of adopting zero tillage and retaining residue (T2) on soil structure and quality, particularly concerning the mechanical and hydrological soil properties. Full article
(This article belongs to the Special Issue Tillage Methods on Soil Properties and Crop Growth)
Show Figures

Figure 1

18 pages, 10772 KiB  
Article
Simulation of Mouldboard Plough Soil Cutting Based on Smooth Particle Hydrodynamics Method and FEM–SPH Coupling Method
by Xiaoming Jin, Fangping Ma, Di Wang and Zhengtao Zhu
Agriculture 2023, 13(9), 1847; https://doi.org/10.3390/agriculture13091847 - 21 Sep 2023
Cited by 7 | Viewed by 2664
Abstract
In the field of agricultural machinery, various empirical field tests are performed to measure the tillage force for precision tillage. However, the field test performance is costly and time-consuming, and there are many constraints on weather and field soil conditions; the utilization of [...] Read more.
In the field of agricultural machinery, various empirical field tests are performed to measure the tillage force for precision tillage. However, the field test performance is costly and time-consuming, and there are many constraints on weather and field soil conditions; the utilization of simulation studies is required to overcome these shortcomings. As a result, the SPH method and the coupled FEM-SPH method are used in this paper to investigate the mouldboard plough–soil interaction. In this paper, the finite element software LS-DYNA was used to build the SPH model and the FEM-SPH coupling model of soil cutting, as well as to investigate the change in cutting resistance during the soil cutting process. The simulation results are compared with those of the experiments, and the curves of the simulation and experiment are in good agreement, which verifies the reliability of the model. The validated simulation model was used to investigate the effects of the cutting speed, depth of cut, inclination angle, and lifting angle of the mouldboard plough on cutting resistance. The simulation studies show that the SPH model takes 5 h and 2 min to compute, while the FEM-SPH coupled model takes 38 min; obviously, the computational efficiency of the FEM-SPH coupled model is higher. The relative errors between the SPH model and the experiment are 2.17% and 3.65%, respectively. The relative errors between the FEM-SPH coupled model and the experiment are 5.96% and 10.67%, respectively. Obviously, the SPH model has a higher computational accuracy. The average cutting resistances predicted by the SPH model and the FEM-SPH coupled model, respectively, were 349.48 N and 306.25 N; these resistances are useful for precision tillage. The cutting resistance increases with the increase in cutting speed and is quadratic; the cutting resistance increases with the increase in cutting depth and is quadratic; the horizontal cutting resistance and the combined cutting resistance increase with the increase in inclination angle, while the vertical cutting resistance remains essentially constant with the increase in inclination angle; the horizontal cutting resistance and combined cutting resistance increase as the lifting angle increases, while the vertical cutting resistance decreases as the lifting angle increases. Full article
(This article belongs to the Special Issue Advances in Modern Agricultural Machinery)
Show Figures

Figure 1

13 pages, 9110 KiB  
Article
Monitoring Patch Expansion Amends to Evaluate the Effects of Non-Chemical Control on the Creeping Perennial Cirsium arvense (L.) Scop. in a Spring Wheat Crop
by Marian Malte Weigel, Sabine Andert and Bärbel Gerowitt
Agronomy 2023, 13(6), 1474; https://doi.org/10.3390/agronomy13061474 - 26 May 2023
Cited by 7 | Viewed by 2048
Abstract
The creeping perennial weed species Cirsium arvense (L.) Scop. occurs in patches. Expanding creeping roots allow these patches to increase their covered area. This characteristic has rarely been addressed when investigating the effects of control options in arable fields. We designed a three-year [...] Read more.
The creeping perennial weed species Cirsium arvense (L.) Scop. occurs in patches. Expanding creeping roots allow these patches to increase their covered area. This characteristic has rarely been addressed when investigating the effects of control options in arable fields. We designed a three-year field experiment (2019–2021) in north-eastern Germany, accounting for existing patch patterns. The experimental setup included an untreated control, a competition treatment (cover crop, CC), two disturbance treatments by mouldboard ploughing (PL), root cutting (RC), and four combined applications (RC + CC, PL + CC, PL + RC, PL + RC + CC). Root cutting was performed by a prototype tillage machine produced by “Kverneland”. Plots were defined by the species growth pattern and mapped by GPS and UAV. The experiment investigates the thistle response variables: “Expansion”, “Density”, “Coverage”, and “Height”. Treatments including disturbance by ploughing (PL, PL + CC, PL + RC, PL + RC + CC) reduced “Density” by the factor 0.15 and “Expansion” by 0.25, while those without ploughing (CC, RC, RC + CC) only reduced “Density” by the factor 0.68 and “Expansion” by 0.71. Adding root cuttings or cover crops did not further increase the reduction effect of ploughing. Treatments with competition by cover crops impacted “Expansion” more clearly than “Density”. When cover crops were combined with root cutting (RC + CC), “Expansion” was almost additively reduced, resulting in a reduction comparable to that of ploughing. The “Height” of the shoots was significantly reduced in four treatments (PL, RC + CC, PL + RC, PL + RC + CC), while “Coverage” did not change significantly. UAV patch monitoring proved to be accurate enough for thistle “Expansion” but not for thistle “Density” within the patch. The results of this study demand innovative research when controlling patch-forming creeping perennial weeds. The need for patches will limit small-scale experimental set ups. Full article
(This article belongs to the Special Issue Innovations in Agriculture for Sustainable Agro-Systems)
Show Figures

Figure 1

11 pages, 38213 KiB  
Communication
Erosion Modelling Indicates a Decrease in Erosion Susceptibility of Historic Ridge and Furrow Fields near Albershausen, Southern Germany
by Johannes Schmidt, Nik Usmar, Leon Westphal, Max Werner, Stephan Roller, Reinhard Rademacher, Peter Kühn, Lukas Werther and Aline Kottmann
Land 2023, 12(3), 544; https://doi.org/10.3390/land12030544 - 23 Feb 2023
Cited by 3 | Viewed by 2822
Abstract
Ridge and furrow fields are land-use-related surface structures that are widespread in Europe and represent a geomorphological key signature of the Anthropocene. Previous research has identified various reasons for the intentional and unintentional formation of these structures, such as the use of a [...] Read more.
Ridge and furrow fields are land-use-related surface structures that are widespread in Europe and represent a geomorphological key signature of the Anthropocene. Previous research has identified various reasons for the intentional and unintentional formation of these structures, such as the use of a mouldboard plough, soil improvement and drainage. We used GIS-based quantitative erosion modelling according to the Universal Soil Loss Equation (USLE) to calculate the erosion susceptibility of a selected study area in Southern Germany. We compared the calculated erosion susceptibility for two scenarios: (1) the present topography with ridges and furrows and (2) the smoothed topography without ridges and furrows. The ridges and furrows for the studied site reduce the erosion susceptibility by more than 50% compared to the smoothed surface. Thus, for the first time, we were able to identify lower soil erosion susceptibility as one of the possible causes for the formation of ridge and furrow fields. Finally, our communication paper points to future perspectives of quantitative analyses of historical soil erosion. Full article
(This article belongs to the Special Issue Historical Landscape Evolution)
Show Figures

Figure 1

12 pages, 2606 KiB  
Article
Can a Change in Agriculture Management Practice Improve Soil Physical Properties
by Mohamed Abu-hashim, Holger Lilienthal, Ewald Schnug, Rosa Lasaponara and Elsayed Said Mohamed
Sustainability 2023, 15(4), 3573; https://doi.org/10.3390/su15043573 - 15 Feb 2023
Cited by 4 | Viewed by 2083
Abstract
Soil conventional tillage has been associated with deterioration of its characteristics, while organic farming has been promoted as an approach to conserve a favorable soil environment. With the interest in nominating the tillage strategies without ploughing for maintaining long-term soil quality and subsequently [...] Read more.
Soil conventional tillage has been associated with deterioration of its characteristics, while organic farming has been promoted as an approach to conserve a favorable soil environment. With the interest in nominating the tillage strategies without ploughing for maintaining long-term soil quality and subsequently increasing yields, this study set to identify if and how conservation tillage practices in organic management (OM) do improve soil physical properties compared to conventional management (CM). This study was conducted on matched field pairs in Baden-Württemberg, Germany. The conservation tillage treatment effects of OM (superficial tillage using chisel at 10 cm depth) was compared with conventional tillage practices CM (mouldboard ploughing at 30 cm depth). The field pairs were homogenous in most respects that would reflect tillage impacts. Measurements included soil infiltration capacity, saturated hydraulic conductivity, penetration resistance, and effective bulk density. Infiltration rate, measured using a hood infiltrometer at 10 parcels, was computed using Wooding’s analytical method, while Gardner’s equation was used to calculate the saturated hydraulic conductivity (Ks). The steady infiltration rate qs (h) was two times higher under OM than under CM with an average of 624 mm/h and 303 mm/h, respectively. Penetration resistances of OM were lower than under CM irrespective of the clay content. The degree of compactness (effective bulk density) was greater under CM than OM. That small change in soil compactness affects the water infiltration rate and the hydraulic properties rather than intrinsic soil matrix such as texture. Numerical model Hydrus-1D results were more representative for simulating the soil water transfer and hydraulic parameters under tillage changes. Full article
Show Figures

Figure 1

23 pages, 3803 KiB  
Article
Early Effects of No-Till Use on Durum Wheat (Triticum durum Desf.): Productivity and Soil Functioning Vary between Two Contrasting Mediterranean Soils
by Giuseppe Badagliacca, Emilio Lo Presti, Andrea Ferrarini, Flavio Fornasier, Vito Armando Laudicina, Michele Monti and Giovanni Preiti
Agronomy 2022, 12(12), 3136; https://doi.org/10.3390/agronomy12123136 - 10 Dec 2022
Cited by 3 | Viewed by 2237
Abstract
The diffusion of no-tillage (NT) is to be encouraged because of the benefits it can provide in terms of improving soil fertility and counteracting global warming and climate change as part of climate-smart agriculture practices. However, the introduction of this management can be [...] Read more.
The diffusion of no-tillage (NT) is to be encouraged because of the benefits it can provide in terms of improving soil fertility and counteracting global warming and climate change as part of climate-smart agriculture practices. However, the introduction of this management can be difficult, especially in the first years of application, and can lead to unpredictable yield results depending on the soil type. Therefore, the aim of this experiment was to evaluate the early effect of NT use, compared to the conventional mouldboard ploughing (CT), on two different soils, a clay-loam (GAL) and a sandy-clay-loam soil (SMA), by monitoring a set of 43 different soil and plant variables that were expected to vary with tillage and/or soil type. At both experimental sites, NT showed lower wheat total biomass (−29%) and grain yields (−17%) than CT with a more pronounced decrease in GAL than in SMA. Yield differences were accompanied by modifications in nutrient, microbial community and soil enzyme activity dynamics which highlighted higher stress in GAL, than in SMA soil, attributable to lower crop residues decomposition and substrate availability. Therefore, our findings suggest that the negative consequences due to the transition to NT depend on specific soil characteristics, like texture and organic matter concentration, with different repercussions on soil quality as well as on wheat growth and productivity. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

12 pages, 1517 KiB  
Article
Levels of Whole-Body Vibrations Transmitted to the Driver of a Tractor Equipped with Self-Levelling Cab during Soil Primary Tillage
by Daniele Pochi, Laura Fornaciari, Gennaro Vassalini, Renato Grilli and Roberto Fanigliulo
AgriEngineering 2022, 4(3), 695-706; https://doi.org/10.3390/agriengineering4030044 - 1 Aug 2022
Cited by 12 | Viewed by 3294
Abstract
Agricultural tractor drivers’ health preservation and comfort represent important aspects of the evolution of agricultural machinery and led to the development of devices aimed at improving working conditions, such as soundproof cab and driver seat suspension, nowadays commonly adopted in tractors. The vibrations [...] Read more.
Agricultural tractor drivers’ health preservation and comfort represent important aspects of the evolution of agricultural machinery and led to the development of devices aimed at improving working conditions, such as soundproof cab and driver seat suspension, nowadays commonly adopted in tractors. The vibrations are one of the factors mostly affecting health and comfort conditions, resulting from the characteristics and interaction of specific tractor’s parts (tyres, axles, chassis, cab). Trying to improve their products, manufacturers developed a cab prototype equipped with an automatic self-levelling system, whose goal is to maintain the driver’s vertebral column in a correct position during heavy agricultural operations such as primary soil tillage. A tractor with a such a prototype was tested to assess its effectiveness in maintaining the cab horizontal and any effects on the transmitted levels of whole-body vibration, during soil primary tillage carried out by means of a mouldboard plough and a subsoiling plough, both in plain and hilly surfaces. The results showed that the device worked well at a slope lower than the operating limits of the system, keeping the cabin horizontal through progressive adjustments. A slight reduction of the level of vibration was observed with a self-levelling system working during the tillage tests in the plain, compared to the traditional condition. Full article
Show Figures

Figure 1

12 pages, 797 KiB  
Article
The Effects of Conservation Tillage on Chemical and Microbial Soil Parameters at Four Sites across Europe
by Ilka Engell, Deborah Linsler, Mignon Sandor, Rainer Georg Joergensen, Catharina Meinen and Martin Potthoff
Plants 2022, 11(13), 1747; https://doi.org/10.3390/plants11131747 - 30 Jun 2022
Cited by 25 | Viewed by 2850
Abstract
Conservation tillage is often discussed as an effective tool to improve the soil quality in agriculture. Four sites across Europe (in Germany, Romania, Spain, and Sweden) were investigated as case studies for country-specific reductions in tillage intensity. Conventional tillage (CT) by mouldboard ploughing [...] Read more.
Conservation tillage is often discussed as an effective tool to improve the soil quality in agriculture. Four sites across Europe (in Germany, Romania, Spain, and Sweden) were investigated as case studies for country-specific reductions in tillage intensity. Conventional tillage (CT) by mouldboard ploughing was compared with shallow and deep non-inversion minimum tillage (MT) and/or no-tillage (NT). In Sweden, NT and MT had positive effects on the concentrations of soil organic carbon (SOC), total nitrogen (N), and microbial biomass carbon (MBC) in the upper 20 cm compared with CT. At the German site, MT increased SOC, N, and MBC concentrations in the top 10 cm. In contrast, CT increased MBC contents and bulk density between 20 and 30 cm soil depth. At the Romanian site, soil parameters showed no differences between inverse tillage (CT) and non-inverse tillage (MT), both with a working depth of 25 to 30 cm. At the Spanish site, the use of NT significantly increased the concentrations as well as the stocks of C, N, and MBC compared to CT. In conclusion, reduced tillage improved soil microbial properties in most cases. However, the effectiveness of reduced tillage appears to be highly dependent on site conditions such as pH, soil texture, and climatic conditions. Full article
(This article belongs to the Special Issue Conservation Tillage for Sustainable Agriculture)
Show Figures

Figure 1

11 pages, 426 KiB  
Article
Exchangeable and Plant-Available Macronutrients in a Long-Term Tillage and Crop Rotation Experiment after 15 Years
by Reinhard W. Neugschwandtner, Jiřina Száková, Vera Pachtrog, Pavel Tlustoš, Martin Kulhánek, Jindřich Černý, Hans-Peter Kaul, Helmut Wagentristl, Gerhard Moitzi and Pia Euteneuer
Plants 2022, 11(4), 565; https://doi.org/10.3390/plants11040565 - 21 Feb 2022
Cited by 12 | Viewed by 2705
Abstract
The status of macronutrients phosphorus (P), potassium (K), sulphur (S), calcium (Ca) and magnesium (Mg) was assessed 15 years after the establishment of a long-term crop rotation and soil tillage trial with mouldboard ploughing (MP), no-till (NT), deep conservation tillage (CTd) and shallow [...] Read more.
The status of macronutrients phosphorus (P), potassium (K), sulphur (S), calcium (Ca) and magnesium (Mg) was assessed 15 years after the establishment of a long-term crop rotation and soil tillage trial with mouldboard ploughing (MP), no-till (NT), deep conservation tillage (CTd) and shallow conservation tillage (CTs). The mobile proportions of macronutrients in an Austrian Chernozem soil were determined to a depth of 50 cm with the single reagent extractant acetic acid (AA) and Mehlich 3 (M3), which uses several reagents as extractants. AA revealed less P and K, but more Ca and Mg compared to M3. Both extractants could capture the distribution pattern of the nutrients in the soil profile, but M3 showed higher differences among the soil layers. In the first 5 cm in NT, the P concentration was higher than in MP, CTd and CTs. The concentration of K was higher in NT, CTd and CTs than in MP in the first 10 cm of the soil. Phosphorus and K concentrations did not differ between tillage treatments below these soil layers, and S, Ca and Mg were similar in all soil layers. As none of the analysed elements except for Ca were fertilized and no accumulation of S, Ca and Mg was observed in the upper soil layer, the higher concentrations are attributed to accumulation through crop residues and then less leaching of P and K. Crop rotation did not affect the distribution of the analysed macronutrients in the soil but affected the nutrient uptake by winter wheat mostly due to the yield differences of winter wheat in the two crop rotations. Full article
(This article belongs to the Special Issue Plant Nutrition Volume II)
Show Figures

Figure 1

20 pages, 1897 KiB  
Article
Communities of Mycorrhizal Fungi among Seedlings of Scots Pine (Pinus sylvestris L.) Growing on a Clearcut in Microsites Generated by Different Site-Preparation Methods
by Roman Mariusz Bzdyk, Katarzyna Sikora, Marcin Studnicki and Marta Aleksandrowicz-Trzcińska
Forests 2022, 13(2), 353; https://doi.org/10.3390/f13020353 - 19 Feb 2022
Cited by 5 | Viewed by 2991
Abstract
In European forests, the Scots pine (Pinus sylvestris L.) most often regenerates on clearcuts, following mechanical site preparation. Both of these silvicultural treatments (the removal of trees and preparation) have an impact on soil properties, and on the mycorrhizal fungi associated with [...] Read more.
In European forests, the Scots pine (Pinus sylvestris L.) most often regenerates on clearcuts, following mechanical site preparation. Both of these silvicultural treatments (the removal of trees and preparation) have an impact on soil properties, and on the mycorrhizal fungi associated with the roots of seedlings. We therefore compared assemblages of mycorrhizal fungi associating with natural-regeneration pine seedlings growing on a clearcut, in relation to six types of microsite created using three mechanical site-preparation tools, i.e., a double-mouldboard forest plough (creating furrow and ridge), an active single-disc plough (establishing another type of furrow and ridge), and a forest mill—developing strips, as well as a non-mechanical site preparation control. A total of 46 taxa of mycorrhizal fungi were detected, with Wilcoxina mikolae being the most abundant species (relative abundance—79.8%), and the one occurring most frequently (96.8%). Other abundant mycorrhizal fungi were Thelephora terrestris (3.8%), Tylospora asterophora (3.2%), Hyaloscypha bicolor (2.2%), and Cenococcum geophilum (1.7%). The roots of seedlings growing in the non-mechanical site preparation control were characterised by a significantly greater presence of mycorrhizal root tips, compared with the roots of seedlings growing at other microsites. The highest percentage of non-mycorrhizal root tips was present on pines growing on the two types of ridge: the microsites which characterized the highest levels of mineral nutrients. Communities of mycorrhizal fungi differed between microsites. The five microsites: both types of furrow, forest plough ridge, forest mill strip, and non-mechanical site preparation control, were not found to differ from each other, but did differ from the active plough ridge treatment. The highest diversity of mycorrhizal fungi (Shannon–Wiener and Simpson indexes) was in the non-mechanical site preparation control. Any method of mechanical site preparation in the clearcut decreases the level of root mycorrhization and the biodiversity of mycorrhizal fungi. The least suitable method from the point of view of mycorrhizal fungal communities is the use of an active plough. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 1440 KiB  
Article
Herbicide Resistance of Centaurea cyanus L. in Poland in the Context of Its Management
by Marta Stankiewicz-Kosyl, Małgorzata Haliniarz, Mariola Wrochna, Agnieszka Synowiec, Anna Wenda-Piesik, Ewa Tendziagolska, Magdalena Sobolewska, Krzysztof Domaradzki, Grzegorz Skrzypczak, Witold Łykowski, Michał Krysiak, Marcin Bednarczyk and Katarzyna Marcinkowska
Agronomy 2021, 11(10), 1954; https://doi.org/10.3390/agronomy11101954 - 28 Sep 2021
Cited by 14 | Viewed by 3367
Abstract
Cornflower (Centaurea cyanus L.), one of the main weeds found among winter crops in Poland, has developed herbicide resistance (HR) to acetolactate synthase (ALS) herbicides, a finding first reported in 2006, and in recent years, farmers have been complaining about inadequate chemical [...] Read more.
Cornflower (Centaurea cyanus L.), one of the main weeds found among winter crops in Poland, has developed herbicide resistance (HR) to acetolactate synthase (ALS) herbicides, a finding first reported in 2006, and in recent years, farmers have been complaining about inadequate chemical control of this weed. This study aimed to characterise the current state of cornflower HR to ALS inhibitors and synthetic auxins in Poland and the agricultural practices in fields with herbicide-resistant populations. From 2017 to 2020, 159 seed samples together with the field history were collected across the country and biological tests performed in glasshouses. This revealed that 47 populations of C. cyanus were cross-resistant to both tribenuron and florasulam, 28 and 8 populations were single resistant to tribenuron and florasulam, respectively, and 3 populations had developed multiple resistance to both ALS inhibitors and synthetic auxins, i.e., 2,4-D and dicamba. Resistant populations were found mostly frequent in northern Poland, but also in the eastern and western parts of the country. Based on a survey of farmers, the resistant populations were found in winter crops regardless of the tillage system (77% of fields with HR cornflower were mouldboard ploughed). Based on the proposed population treatment (PT) index showing the frequency of herbicide use during three consecutive seasons on farms with HR cornflower, the average PT for all the surveyed farms was 5.4. The highest PT of 7.4 was found in the province of Warmia-Masuria in northern Poland. Full article
Show Figures

Figure 1

25 pages, 2515 KiB  
Article
Effects of Different Tillage Intensities on Physicochemical and Microbial Properties of a Eutric Fluvisol Soil
by Anna Maria Gajda, Ewa Antonina Czyż and Agnieszka Klimkowicz-Pawlas
Agronomy 2021, 11(8), 1497; https://doi.org/10.3390/agronomy11081497 - 28 Jul 2021
Cited by 15 | Viewed by 3196
Abstract
The physicochemical and microbial properties of soil under long-term monoculture of winter wheat were studied to assess the effects of two tillage systems of different intensities: reduced (RT) and conventional (CT). The research was carried out on an 18-year-old experimental field at Grabów [...] Read more.
The physicochemical and microbial properties of soil under long-term monoculture of winter wheat were studied to assess the effects of two tillage systems of different intensities: reduced (RT) and conventional (CT). The research was carried out on an 18-year-old experimental field at Grabów (eastern Poland) between 2018 and 2020. The RT (ploughless) and the CT (mouldboard ploughing) systems with machine operating depths of up to 10 and 25 cm, respectively, were used. The analysed parameters were as follows: soil texture, pH, readily dispersible clay content (RDC), soil organic matter (SOM), carbon from particulate organic matter (POM-C), hot- and cold-water-extractable organic carbon (HWEC, CWEC) and nitrogen (HWEN, CWEN), soil basal respiration (SBR), microbial biomass carbon (MBC) and nitrogen (MBN), nitrification potential (NP), dehydrogenases (DEH), and acid (ACP) and alkaline (ALP) phosphatases activities. Several single soil quality indices, including: metabolic (qCO2) and microbial (MicQ) quotients, enzymatic pH level indicator (EpHI), stratification ratio (SR), and metabolic potential index (MP) were calculated. The use of RT resulted in increased SOM and, therefore, in decreased RDC and increased values of soil stability, POM-C, HWEC, CWEC, HWEN, CWEN, MBC, and MBN in relation to CT. The MicQ, EpHI, SR, and MP well reflected the effects of RT and CT systems on soil and appeared to be useful in soil quality assessment. The results showed the beneficial effects on soil of the less intensive RT system in comparison with CT. Statistical analysis showed the significance of differences between tillage systems and interrelationships between the studied soil quality parameters. Full article
Show Figures

Figure 1

13 pages, 275 KiB  
Article
The Effects of Management (Tillage, Fertilization, Plant Density) on Soybean Yield and Quality in a Three-Year Experiment under Transylvanian Plain Climate Conditions
by Felicia Chețan, Cornel Chețan, Ileana Bogdan, Adrian Ioan Pop, Paula Ioana Moraru and Teodor Rusu
Land 2021, 10(2), 200; https://doi.org/10.3390/land10020200 - 16 Feb 2021
Cited by 21 | Viewed by 3452
Abstract
The regional agroecological conditions, specific to the Transylvanian Plain, are favorable to soybean crops, but microclimate changes related to global warming have imposed the need for agrotechnical adaptive measures in order to maintain the level of soybean yield. In this study, we consider [...] Read more.
The regional agroecological conditions, specific to the Transylvanian Plain, are favorable to soybean crops, but microclimate changes related to global warming have imposed the need for agrotechnical adaptive measures in order to maintain the level of soybean yield. In this study, we consider the effect of two soil tillage systems, the seeding rate, as well as the fertilizer dosage and time of application on the yield and quality of soybean crops. A multifactorial experiment was carried out through the A × B × C × D − R: 3 × 2 × 3 × 3 − 2 formula, where A represents the year (a1, 2017; a2, 2018; and a3, 2019); B represents the soil tillage system (b1, conventional tillage with mouldboard plough; b2, reduced tillage with chisel cultivator); C represents the fertilizer variants (c1, unfertilized; c2, one single rate of fertilization: 40 kg ha−1 of nitrogen + 40 kg ha−1 of phosphorus; and c3, two rates of fertilization: 40 kg ha−1 of nitrogen + 40 kg ha−1 of phosphorus (at sowing) + 46 kg ha−1 of nitrogen at V3 stage); D represents the seeding rate (1 = 45 germinating grains (gg) m−2; d2 = 55 gg m−2; and d3 = 65 gg m−2); and R represents the replicates (r1 = the first and r2 = the second). Tillage had no effect, the climate specific of the years and fertilization affected the yield and the quality parameters. Regarding the soybean yield, it reacted favorably to a higher seeding rate (55–65 gg m−2) and two rates of fertilization. The qualitative characteristics of soybeans are affected by the fertilization rates applied to the crop, which influence the protein and fiber content in the soybean grains. Higher values of protein content were recorded with a reduced tillage system, i.e., 38.90 g kg−1 DM in the variant with one single rate of fertilization at a seeding rate of 45 gg per m−2 and 38.72 g kg−1 DM in the variant with two fertilizations at a seeding rate of 65 gg m−2. Full article
(This article belongs to the Special Issue Soil Tillage Systems and Conservative Agriculture)
20 pages, 1600 KiB  
Article
Effects of Environmental Drivers and Agricultural Management on Soil CO2 and N2O Emissions
by Márton Dencső, Ágota Horel, Igor Bogunovic and Eszter Tóth
Agronomy 2021, 11(1), 54; https://doi.org/10.3390/agronomy11010054 - 29 Dec 2020
Cited by 24 | Viewed by 4593
Abstract
Understanding the roles of natural drivers and anthropogenic activities in greenhouse gas (GHG) emissions of arable fields is crucial for adopting the most appropriate agricultural management. This study investigated the effect of two tillage treatments of mouldboard ploughing (MP) and no-tillage (NT), and [...] Read more.
Understanding the roles of natural drivers and anthropogenic activities in greenhouse gas (GHG) emissions of arable fields is crucial for adopting the most appropriate agricultural management. This study investigated the effect of two tillage treatments of mouldboard ploughing (MP) and no-tillage (NT), and the environmental factors (soil water content and temperature, carbon content and nitrogen forms) on soil carbon dioxide (CO2) and nitrous oxide (N2O) emissions. The research was conducted on chernozem soil under winter wheat cultivation. Besides field monitoring, several laboratory experiments took place to examine the effects of environmental drivers and fertilization management on soil GHG emissions. We observed no significant difference between the CO2 emission of MP and NT during a full year period. Nevertheless, significant differences were found in the sub-periods (more particularly during vegetation and then after harvest). NT had higher CO2 emission than MP in all laboratory experiments (p < 0.001) and in the after harvest period of the field trial, measured on bare soil (p < 0.0001). NT had significantly higher N2O emission both under laboratory (p < 0.0001) and field conditions (p < 0.0081). Different fertilization showed no distinguishable effect on N2O emission in the laboratory. This study confirms that N2O emission of the arable field depended more on soil water content than soil temperature, and vice-versa for CO2 emission. Full article
Show Figures

Figure 1

Back to TopTop