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Abstract: Climatic and soil conditions are changing in response to the increasing human impact.
This requires the introduction of low-cost, low-emission, but effective technologies in the field
cultivation of crops, in turn requiring and justifying research in this area. In laboratory tests and field
studies, the production and environmental effects of strip-till and the application of microgranular
fertilisers with a gelling component were determined (and, in particular, their use in combination as
a plant cultivation technology). These effects were measured in terms of soil properties, the biomass
production, and the yields of maize (Zea mays L.), spring barley (Hordeum vulgare L.), and winter rape
(Brassica napus L.). Fertiliser microgranules with a gelling agent absorbed water in the amount of
118.6–124.7% of fertiliser mass and increased the volumetric moisture content of the soil in the layer
in which they were applied (0–7.5 cm) by 3.0–3.9 percentage points compared to the soil moisture
without fertiliser. Strip tillage with the application of fertilisers with a gelling agent significantly
increased the amount of water in the soil during the sowing period for winter and spring plants and
reduced the CO2 emissions from the soil relative to the conventional tillage without microgranular
fertiliser. The biomass of maize, spring barley, and winter rape before flowering, as well as the yields
of these plants, were higher when cultivated using strip-till and fertilisers with gelling agents than
when ploughed with a mouldboard plough without the use of microgranulated fertilisers. This
technology also increased the number of microorganisms, including bacteria, actinobacteria, and
filamentous fungi in the soil after harvesting compared to the unfertilised, ploughed soil. Strip tillage
and microgranulated fertilisers containing a gelling agent can thus reduce the environmental pressure
exerted by agriculture and reduce the risk of climate change, as well as being a way of adapting
agriculture to climate change.

Keywords: strip tillage; starter fertiliser; soil moisture; CO2 emission; microorganisms; plant productivity

1. Introduction

There is a feedback loop between agriculture and the environment (including the
climate). Agriculture is the source of over 10% of global greenhouse gas emissions and
about half of non-CO2 greenhouse gas emissions. Practices such as land use, soil cultivation,
fertilisation, and livestock breeding are among the causes of climate change [1–3]. In recent
decades, the concentration of greenhouse gases such as methane, carbon dioxide, and nitro-
gen oxides in the atmosphere has been increasing. There is an increase in air temperature
of about 0.15–0.20 ◦C per decade. Weather anomalies, including extreme air temperatures
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and precipitation, droughts, and floods, are occurring increasingly often [4]. Changes
in the environment are changing the conditions and results of agricultural production.
Increased atmospheric CO2 concentrations and higher air temperatures can increase plant
productivity [5]. However, the water and thermal stress, soil erosion [6,7], weed infestation,
and activity of pathogens and pests that climate change brings reduce yields [8–10].

In the conditions of the environment being threatened by human activity, there is a
preference for agroecological and agricultural practices that have lower risks of adverse
impacts on the soil, water, and air [11,12]. Elements of conservation agriculture that
allow sustainable development are of particular importance [13,14]. Protecting the soil
against erosion, the degradation of organic matter, and excessive compaction, as well as
increasing the biodiversity and biological activity and improving the water conditions and
nutrient circulation are equally important; they are sometimes even more important for
soil cultivation tasks than its immediate preparation for plant cultivation [15]. Currently,
conventional tillage with soil inversion via a mouldboard plough is being reduced. There is
an increasing use of non-inversion tillage, which leaves a large amount of plant residues on
the soil surface, and mechanical cultivation is increasingly being abandoned entirely [16,17].
One method of conservation soil cultivation is strip-till. Soil is only loosened deeply in
narrow strips and not inverted. At the same time, fertilisers can be applied and crop seeds
sown in these strips. Between the strips of loosened soil and the rows of plants, the soil is
left intact and covered with plant residues [18–20]. The water and thermal conditions in
the rows—loosened strips and between the rows—uncultivated strips are different due to
the different soil properties in these zones. In loosened strips, the soil has low density and
compactness, allowing water to infiltrate quickly and warm up. The non-loosened inter-row
is covered by plant residues, limiting the evaporation, and thus, keeping the soil moist and
maintaining a lower temperature [21,22]. This method is especially recommended in dry
climates and areas with deficits of precipitation for field crop production [23]. By limiting
the aeration and water retention in the soil, ploughless soil cultivation systems (including
strip-till) create favourable conditions for the accumulation of organic matter. However, a
specific ploughless cultivation system must be used continuously for a relatively long time
to stabilise the amount of organic matter in the soil, and especially, to increase it. Organic
matter builds up mainly in the top layer, which increases not only the productivity of the
soil, but also its resistance to degradation under the influence of agricultural treatments and
environmental factors. The consequence of increasing the content and amount of organic
carbon in the soil as a result of ploughless cultivation may be a reduction in CO2 emissions
into the atmosphere, but with a greater risk of N2O emissions [24–26]. The presence of soil
organic matter and mulch creates an aggregate structure, and soil aggregates are water-
resistant and durable [27,28]. Therefore, ploughless and no-till soil cultivation reduce
water and wind erosion [29–31]. An equally effective agrotechnical method of reducing
surface runoff and soil erosion is strip-till [32,33]. The accumulation of organic matter and
favourable physical and chemical soil properties that result from conservation agriculture
(including conservation soil tillage) create ideal conditions for the presence and activity of
soil organisms [34–36]. Soil fertility and health depend on the abundance of the microbial
population in terms of the species diversity and population size of bacteria and fungi.
The occurrence of these organisms in the soil is also conditioned via soil cultivation and
fertilisation [37–39].

One of the goals of modern field crop production is to improve the efficiency of
fertilisation and reduce its negative environmental impact, and this is achieved by using
microgranulated starter fertilisers. Very small granules with a diameter of ~1 mm are
applied in the immediate vicinity of the seeds during sowing. The microgranules, each
with the same chemical composition, provide nutrients for the plant roots from germination.
This increases the efficiency of fertilisation, allowing doses and the costs of fertiliser and
its application all to be reduced. The environmental benefits result from reductions in
the leaching of ingredients not taken up by plants, the fuel consumption (and thus lower
CO2 emissions), and the consumption of packaging. The efficiency of nutrient use by
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plants is greater, which allows the dose of fertiliser to be reduced. This, in turn, reduces
the energy consumption and greenhouse gas emissions [40]. Starter fertilisers, including
as microgranules, are increasingly being used in the agrotechnology of crops such as
maize [41], other cereals [42], sugar beet [43], winter rape [44], and vegetables [45].

Conservation agriculture practices, including ploughless soil cultivation methods and
localised starter fertilisation, must be well-suited to the local conditions to provide the ben-
eficial production and environmental effects hoped of them. This is because their incorrect
use can negatively affect the soil properties and plant yields [46–48]. The ambiguity of
results published in past scientific works, the changing habitat conditions of field plant
production, and the technical and technological advances in soil cultivation and plant
fertilisation all justify further scientific research in this area. The aim of the present study
was to determine what impact strip-till and microgranulated fertilisers containing a gelling
agent (and, in particular, their combined use) had on the soil properties and productivity
of maize, spring barley, and winter rape. It was assumed that the positive results could
be used in agricultural development strategies that reduce pressure on the environment,
including the risk of deepening climate change.

2. Materials and Methods
2.1. Study Site

Tests and experiments were conducted for three years during 2020–2023. The industrial
research and development work was carried out as part of the projects co-financed by
the National Centre for Research and Development using European Union funds at the
Research and Development Centre of Agro-Land Marek Różniak in Śmielin (53◦09′04.0′′ N;
17◦29′10.7′′ E; 93.8 m a.s.l.) in Kuyavia-Pomerania Voivodeship (Poland), which is located
in a humid continental climate zone (Dfb) [49].

2.2. Laboratory and Field Tests

The laboratory tests, and then field tests, employed microgranulated fertilisers for-
mulated as part of research project POIR.01.01.01-00-0348/20 (Figure 1). These fertilisers’
chemical composition includes a gelling agent designed to keep water in the hydrated
granules and in the soil in the immediate vicinity of the roots of young plants. The proper
names and properties of fertilisers dedicated to various species and groups of crops are
presented in Table 1. To assess how the gelling agent affected the properties of the fertilisers,
fertilisers were produced that had the same chemical composition, minus the gelling agent.

Table 1. Properties of microgranulated fertilisers with gelling agent.

Parameter Unit
Fertiliser

Cereals Maize Oilseed

Phosphorus (P2O5) % m/m 12.3 12.6 12.3
Potassium (K2O) % m/m 8.4 8.5 8.5
Magnesium (MgO) % m/m 6.0 5.6 6.0
Sulphur (SO3) % m/m 14.2 14.4 13.9
Zinc (Zn) % m/m 1.03 1.17 1.06
Boron (B) % m/m 0.023 0.019 0.130
Copper (Cu) % m/m 0.19 0.12 0.11
Iron (Fe) % m/m 0.53 0.54 0.48
Manganese (Mn) % m/m 0.22 0.18 0.18
Molybdenum (Mo) % m/m 0.005 0.005 0.012
Gelling agent % m/m 24.0 25.0 27.0
Bulk density g/cm3 0.92 0.93 0.92
Share of microgranules
of Ø 0.6–1.2 mm % 93.0 92.0 93.0
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Figure 1. Microgranulated fertilisers with a gelling agent ((A)—Cereals, (B)—Maize, and (C)—Oilseeds).

The water absorption capacity of the fertilisers with the gelling agent was determined
as the ratio of the mass of water absorbed and then retained by the granules for 1 h to the
mass of the fertiliser sample. The assessment was performed five times, each time for a
fertiliser sample of 100 g, in three consecutive series. The fertiliser samples were placed on
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filter paper and then placed on a water-saturated 0.5-mm mesh. An analogous assessment
of the water absorption capacity of the fertilisers was performed in soil. The microgranulate
(five samples, 100 g each) was placed in 0.5 mm mesh bags, and then at a depth of 5 cm in a
soil-filled 10 dm3 pot with a moisture content equal to the full water capacity.

A fertiliser solubility test was also performed in the pot by placing the samples (1 g) on
the surface of the water-saturated soil through which the moisture could rise via capillary
action. The presence and condition of the microgranules were observed after 1, 2, 4, 6, 12,
24, 48, and 72 h.

Soil laboratory tests assessed the impact of fertilisers with the gelling agent on the
soil moisture. Into 10 dm3 pots was placed soil (sand 36.1%; silt 55.7%; clay 8.2%; content
in 1 kg of soil: Corg 13.1 g; available phosphorus according to Egner–Riehm 89.6 mg P,
potassium (Egner–Riehm) 183.1 mg K, magnesium (Schatschabel) 60.4 mg Mg, and pH(KCl)
was 6.3, bulk density 1.5 g/cm3, moisture 20% vol.) in four repetitions, and the tested
fertilisers were placed in them at a depth of 5 cm. The experimental treatments being
compared were the presence of the gelling agent in the fertiliser: fertiliser with a gelling
agent, fertiliser without a gelling agent, and no fertiliser. The mass of fertiliser relative to
the mass of soil in the pot corresponded to a dose of 30 kg/ha, assuming that in the field
conditions, 30 kg of this fertiliser acts on a mass of soil of 3000 tonnes (area—10,000 m2,
arable layer thickness—0.2 m, and soil bulk density—1.5 t/m3). The pots were placed in
a plant growth chamber that controlled the environmental conditions (Biogenet, Józefów,
Poland). Day/night was 16 h/8 h, temperature 20 ◦C/12 ◦C, and air humidity 60%. After
7 days of incubation, the moisture content of the 0–7.5-cm soil layer was determined using
a FieldScout TDR 350 m (Spectrum Technologies, Inc., Thayer Ct. Aurora, IL, USA). A
similar test was performed in the field conditions, in soil with the same texture as the soil
in the pots, and the humidity at the time of the fertiliser application was 22.1% vol. The soil
moisture was assessed after 10 days without rainfall.

After 4 weeks of incubation of the soil with fertilisers in the plant growth chamber, the
occurrence of microorganisms was assessed in terms of the total bacteria, actinomycetes,
and filamentous fungi, as well as the cellulolytic, amylolytic and proteolytic microor-
ganisms. Ten soil samples of 100 g each were taken from each pot. The samples were
thoroughly mixed and averaged. The number of individual groups of microorganisms
was assessed in a laboratory soil sample that was shaken for 30 min after the addition
of Ringer’s solution. Microbiological inoculations were performed after preparing a se-
ries of ten-fold dilutions of soil solutions (10−1–10−7). Inoculations were performed on
media appropriate to each group of microorganisms and according to generally used meth-
ods [50–52]: total bacteria—YPS with the addition of soil extract; actinomycetes—Pochon’s
medium with the addition of nystatin (100 µg·mL−1); filamentous fungi—Martin’s medium
with the addition of streptomycin (30 µg·mL−1); cellulolytic microorganisms—Congo red
Agar with CMC-Na; amylolytic—medium with the addition of Difco starch (0.2%); and
proteolytic—method according to Alef and Nannipieri [53]. The abundance of individual
groups of microorganisms was expressed in cfu (colony-forming units)·g−1 of soil.

The influence that the tested fertilisers (in an amount corresponding to a dose of
30 kg/ha under the field conditions) had on the initial growth of maize, spring barley, and
winter rapeseed was also determined in the plant growth chamber. The pots measuring
10 cm × 10 cm × 10 cm were filled with soil, the same as in the pot experiment assessing the
effect of fertilisers on the soil moisture and on microorganisms. In each pot (five repetitions
of each treatment), 12 grains of barley and rape seeds were placed, and in the pots with a
diameter of 22 cm and a height of 20 cm, 12 maize grains were placed. The pots were placed
in a chamber that regulated the environmental parameters: day/night was 16/8 h, air
temperature 22 ◦C/12 ◦C (maize) or 20 ◦C/10 ◦C (barley, rapeseed), and air humidity 60%.
The soil moisture was maintained in the range of 18–20% vol. After emergence, 10 plants
were left in each pot. After three weeks of vegetation, the aboveground mass of the plants
was determined and expressed in g/plant. The tests were repeated four times.
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2.3. Field Experiments

In the years 2021–2023, a field experiment was carried out in which maize, spring
barley, and winter rape were cultivated in succession. The meteorological conditions, long-
term averages, and those occurring in the initial study period have been presented in the
authors’ earlier work—the experiment was also performed in this location (Śmielin) [54].
Moreover, in 2022, rainfall at the study site amounted to 528.0 mm, being the highest
in February at 128.6 mm and September at 56.0 mm, and the lowest in March, at only
0.2 mm. The average air temperature was 9.4 ◦C. The warmest was August at 21.5 ◦C.
During the 2022/2023 winter rapeseed growing season, the total rainfall was 503.6 mm.
The most rainfall occurred in June 2023, with 89.9 mm. May 2023 (17.6 mm) and November
2022 (20.4 mm) were very dry. The warmest month was July 2023, at 19.2 ◦C, and the
coldest was December 2022, at 0.25 ◦C. The field experiment was located on the soils
classified as Cambisols according to the World Reference Base for Soil Resources [55]. The
granulometric composition of the soil is: sand (2.0–0.05 mm) 39.6%, silt (0.05–0.002 mm)
53.3%, and clay (<0.002 mm) 7.1%. One kilogram of the soil contained Corg 12.8 g; available
phosphorus according to Egner–Riehm 117.0 mg P; potassium (Egner–Riehm) 203.5 mg K;
and magnesium (Schatschabel) 55.7 mg Mg, and pH(KCl) was 6.8.

The experiment compared the impact of the soil cultivation method and the application
of microgranulated fertilisers on the soil water conditions, CO2 emissions from the soil,
the occurrence of microorganisms in the soil, and plant productivity. The experimental
treatments were plant cultivation technologies with the differences in the soil tillage and
application of microgranulated fertilisers: strip-till with the application of a fertiliser
with a gelling agent (strip-till/with agent), strip-till with the application of a fertiliser
without a gelling agent (strip-till/without agent), strip-till without the application of a
microgranulated fertiliser (strip-till/no fertiliser), conventional tillage, and ploughing the
soil without a microgranulated fertiliser (ploughing/no fertiliser). The experiment was
planned in a randomised block design, in four repetitions, with plot sizes enabling the use
of agricultural machines, i.e., 12 m × 200 m. The plough technology for soil cultivation
involved: a Maschio Gaspardo s4 plough, Horsch Tiger 6 AS tilling set, Amazone ZG-TS
8200 pre-sowing fertiliser spreader, Horsch Pronto 4DC + MiniDrill grain and rapeseed
seeder, and maize seeder Monosem NG PLUS 4 with a microgranulate applicator. Strip-
till technology performs soil cultivation, basic fertilisation, sowing seeds of each crop
species, and the application of the microgranulated fertiliser all using a single pass of one
multifunctional Mzuri Pro-Til 4T machine adapted to the local conditions as part of the
POIR.01.01.01-00-0910/17 project (Figure 2).

Basic fertilisation of N, P2O5, and K2O for corn, spring barley, and winter rapeseed
was recommended in appropriate amounts (in kg/ha) on all plots, based on soil fertility:
120, 60, 120; 100, 50, 80; and 160, 70, 120. In maize cultivation, the full dose of phosphorus,
potassium, and nitrogen in maize cultivation was applied immediately before sowing for
plough tillage or at the time of sowing for strip-till. In the period immediately before
sowing, 60% of the nitrogen dose was also applied in the cultivation of spring barley
and 20% of nitrogen in the cultivation of winter rapeseed. At the time of sowing, the
microgranulated fertiliser was applied to the plots of the first two experimental treatments
(strip-till/yes and strip-till/no) at a dose of 30 kg/ha into a loosened strip of soil to a
depth of about 5 cm. Maize cv. Kokuna was sown on 23 April 2021, spring barley cv.
Ismena on 4 April 2022, and winter rapeseed cv. Momento 23 August 2022. The remaining
agrotechnical treatments were conducted on crops in accordance with the principles of
integrated agricultural production. Seeds were harvested at full maturity (spring barley
and winter rapeseed) and at a 32% water content in grain for maize. Yields were expressed
after conversion, taking into account a water content of 15% for maize and spring barley,
and 8% for winter rapeseed.
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Figure 2. A multifunctional machine for strip soil tillage, fertilisation, sowing, and application
of microgranules.

At the time of plant sowing (two days after sowing), the water content in the soil was
determined. Its amount in the top 20 cm layer over an area of 1 ha (W) was calculated
according to Formula (1):

W =
F h VWC BD

100, 000

[
t

ha

]
(1)

where F is the area of 10,000 m2; h is the soil layer thickness of 0.2 m; VWC is the volumetric
water content (soil moisture), %; and BD is the bulk density of water equal to 1000 kg·m−3.

CO2 emissions from soil to the atmosphere were assessed immediately (up to 48 h)
after basic pre-sowing soil tillage, i.e., spring loosening and levelling tillage for the maize
and spring barley cultivation, and after ploughing and levelling the field for the winter
rapeseed cultivation. Subsequent measurements were made immediately after sowing
(next day), 10 days after sowing, and 20 days after sowing. Soil respiration was measured
using an automatic ACE system (ADC BioScientific Ltd., Hoddesdon, UK).

In the phase of intensive biomass growth, before the plants flowered, the mass of their
aboveground parts was determined, and in the period from maturity until harvesting, the
mass of grain and seeds was determined. After harvesting, the soil samples were taken
from the 0–20-cm layer for microbiological analyses. The abundance of microorganisms
was assessed in the same way as in the soil samples from the laboratory pots.
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2.4. Analysis of Results

The laboratory test, field test, and field experiment results were analysed mathe-
matically and statistically. The normality of the distribution of values of the parameters
measured in the factor tests was assessed. The assumption of the normal distribution
was verified using the Shapiro–Wilk test, assuming the null hypothesis H0 that the vari-
ables were normally distributed. Normally distributed data were subjected to ANOVA
analysis according to the model appropriate for single-factor experiments. The statistical
significance of the influence of the experimental treatments was assessed via the F test.
Meanwhile, the significance of the differences between the mean values of the individual
characteristics determined under the influence of the individual experimental treatments
was assessed via Tukey’s post-hoc test at p < 0.05. The coefficient of variation (CV) was
calculated for the result of water absorption via fertiliser microgranules as a quotient of
the standard deviation value and the arithmetic mean. Mathematical and statistical anal-
yses were performed using the Microsoft Excel 2016 [56] and Statistica, version 12 [57]
software packages.

3. Results
3.1. Laboratory and Field Tests

The mass of water absorbed by the granules placed on paper ranged from 122.2%
of the mass of the Oilseed fertiliser to 124.7% of the Cereals fertiliser. The coefficient of
variation in these results was 3.8–5.1% (Table 2). The water absorption of the microgranules
placed in wet soil was 1.8–6.1 percentage points lower than in the tests on paper and the
CV was 0.2–2.2% higher. The microgranules of fertilisers with a gelling agent remained on
wet soil for about 60–70 h, while those without a gelling additive had dissolved completely
within about 5–6 h (Figure 3).

Table 2. Water absorption (% m/m) of microgranulated fertilisers with gelling agent.

Test Series
Fertiliser

Cereals Maize Oilseed

Laboratory

I 131.2 126.9 125.3
II 120.6 119.4 121.7
III 122.4 121.2 119.7

average 124.7 122.5 122.2

coefficient of variation 5.1 3.9 3.8

Soil

I 125.6 130.0 122.2
II 116.3 116.4 119.8
III 113.9 115.7 116.0

average 118.6 120.7 119.3

coefficient of variation 5.6 6.1 4.0

The soil in the laboratory pots to which microgranular fertilisers with the gelling agent
were applied had higher moisture than soil with fertiliser without the gelling agent and soil
without fertiliser (Table 3). Seven days after the application of fertilisers with the gelling
agent, the moisture of the 0–7.5-cm soil layer was 2.7–3.7 percentage points higher than the
soil moisture for fertiliser without the gelling agent and 3.0–3.9 percentage points higher
than the soil moisture without fertiliser. The effect of microgranulated fertilisers on the soil
moisture in the field conditions was similar to that in the laboratory. Ten rainless days after
the application of fertilisers, the only soil moisture that did not differ significantly from
that of the soil with fertiliser without the gelling agent and that of the unfertilised soil was
that to which the Oilseed fertiliser with the gelling agent had been applied.
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Table 3. Soil moisture (% vol.) in the soil layer to which microgranulated fertilisers were applied.

Test Gelling Agent in Fertiliser
Fertiliser

Cereals Maize Oilseed

Laboratory
with agent 13.8 a * 14.3 a 14.4 a
without agent 11.1 b 10.8 b 10.7 b
no fertiliser 10.8 b 10.9 b 10.5 b

Field
with agent 14.6 a 11.9 a 9.5 a
without agent 12.2 b 10.0 b 9.0 a
no fertiliser 12.3 b 10.2 b 9.3 a

*—the letters being the same in the laboratory column as in the field test column for a given fertiliser indicates a
lack of statistically significant differences.

In the laboratory tests, microgranulated fertilisers both with and without the gelling
agent significantly increased the population of bacteria, actinobacteria, and filamentous
fungi compared to the unfertilised soil. Under the influence of the Oilseed fertiliser with
the gelling agent, the abundance of fungi in the soil was significantly higher than after
applying the same fertiliser without the gelling agent (Table 4). Under the influence of
fertilisers with a gelling agent, the abundance of cellulolytic, amylolytic, and proteolytic
microorganisms in the soil increased compared to the unfertilised soil. Compared to the
fertiliser without the gelling agent, the Cereal fertiliser with the gelling agent significantly
increased the abundance of proteolytic microorganisms, the Oilseed fertiliser increased the
abundance of cellulolytic and amylolytic microorganisms, and the Maize fertiliser increased
all three groups of microorganisms.

Table 4. Abundance of microorganisms after 4 weeks of soil incubation with microgranulated
fertilisers with gelling agent.

Microorganisms Unit Gelling Agent in Fertiliser
Fertiliser

Cereals Maize Oilseed

Total bacteria cfu × 106
with agent 13.4 a * 12.9 a 13.3 a
without agent 13.1 a 12.9 a 13.1 a
no fertiliser 11.4 b 11.4 b 11.4 b

Actinobacteria cfu × 105
with agent 33.6 a 33.9 a 33.4 a
without agent 33.7 a 33.5 a 33.3 a
no fertiliser 30.5 b 30.5 b 30.5 b

Filamentous fungi cfu × 104
with agent 39.4 a 38.9 a 39.4 a
without agent 38.6 a 38.1 a 38.4 b
no fertiliser 36.3 b 36.3 b 36.3 c

Cellulolytic
microorganisms cfu × 105

with agent 17.2 a 17.0 a 16.9 a
without agent 16.7 a 16.4 b 16.2 b
no fertiliser 15.5 b 15.5 c 15.5 c

Amylolytic
microorganisms cfu × 105

with agent 5.9 a 5.9 a 6.0 a
without agent 5.6 ab 5.5 b 5.5 b
no fertiliser 5.4 b 5.4 b 5.4 b

Proteolytic
microorganisms cfu × 105

with agent 10.1 a 9.8 a 9.5 a
without agent 9.4 b 9.2 b 9.5 a
no fertiliser 7.8 c 7.8 c 7.8 b

*—the letters being the same in the laboratory column as in the field test column for a given group of microorgan-
isms indicates a lack of statistically significant differences.

Every microgranulated fertiliser with the gelling agent significantly increased the
mass of the above-ground part of three-week-old plants compared to the unfertilised plants
(Figure 4). At the same time, the mass of spring barley and winter rapeseed plants under
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the influence of fertilisers with the gelling agent was significantly higher than the mass of
plants fertilised with appropriate fertilizers lacking a gelling agent.
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3.2. Field Experiment

Plant cultivation technology, including varied soil tillage methods and the application
of microgranulated fertilisers, significantly modified the soil water resources available to
plants from the beginning of their vegetation period (Figure 5). After sowing the maize,
the water content in the upper soil layer, i.e., 0–20 cm, was highest in the strip-till plots,
regardless of whether microgranulated fertilisers were applied. Such plots contained about
100 m3/ha more water than those tilled conventionally with a plough. Strip-till combined
with fertilisation and the sowing of spring barley and winter rape performed in a single
pass of a machine resulted in soil water resources also being significantly higher than after
ploughing. None of the microgranulated fertilisers with a gelling agent increased the water
resources in the soil to a significantly greater extent than did the fertilisers without the
gelling agent. However, the water resources in the soil in plots where fertilisers with a
gelling agent were used in the cultivation of maize, spring barley, and winter rapeseed was,
respectively, 5.9 m3/ha, 10.2 m3/ha, and 12.6 m3/ha higher than after the application of
fertilisers without the additive.

The CO2 emission from the soil was highest in the first measurement period, imme-
diately after intensive ploughing, and in the second measurement period, after tillage
with simultaneous sowing via strip-till technology. In the first measurement period, the
differences in CO2 emissions from the soil between plots was associated only with the
differences in the soil tillage method and uncontrolled environmental factors. In this period,
there was no possible impact of microgranulated fertilisers because the date of measure-
ment preceded the fertiliser application (Table 5). At each subsequent measurement date,
regardless of the application of microgranulated fertilisers, the amount of CO2 released
from the plough-cultivated soil was significantly higher than from the strip-tilled soil. In
the second to fourth periods, neither the use of microgranular fertilisers nor the presence of
the gelling agent in them was found to have any significant effect on the CO2 emissions
from the soil.
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Figure 5. Water supply in the soil immediately after sowing plants, by soil tillage method (strip-till,
plough) and application of microgranulated fertilisers with gelling agent (with agent, without agent);
*—the letters being the same in columns of results for a given crop indicates a lack of statistically
significant differences.

Table 5. CO2 emission from soil (mg CO2/m2/h), by soil tillage method and application of micro-
granulated fertilisers with gelling agent.

Crop Tillage Method/Gelling
Agent in Fertiliser

Measurement Date

I II III IV

Maize

strip-till/with agent 286 a * 473 a 322 a 275 a
strip-till/without agent 274 a 482 a 313 a 288 a
strip-till/no fertiliser 292 a 459 a 330 a 282 a
plough/no fertiliser 614 b 511 b 447 b 361 b

Spring barley

strip-till/with agent 194 a 406 a 276 a 249 a
strip-till/without agent 185 a 398 a 270 a 252 a
strip-till/no fertiliser 201 a 422 a 281 a 239 a
plough/no fertiliser 478 b 459 b 350 b 308 b

Winter
rapeseed

strip-till/with agent 174 a 363 a 175 a 211 a
strip-till/without agent 163 a 351 a 171 a 203 a
strip-till/no fertiliser 170 a 349 a 184 a 204 a
plough/no fertiliser 745 b 442 b 287 b 338 b

*—the letters being the same in columns of results for a given crop indicates a lack of statistically significant
differences.

The pre-flowering biomass of strip-tilled spring barley and winter rapeseed was
higher than that sown after ploughing. However, the weight of the above-ground parts
of strip-tilled and conventionally ploughed maize plants did not differ significantly from
one another (Figure 6). Microgranulated fertilisers with the gelling agent applied during
sowing increased the pre-flowering mass of plants compared to the plants also grown
using strip-till technology but either with microgranulated fertiliser without the gelling
agent or without microgranulated fertiliser. Only the biomass of winter rapeseed after
the application of Oilseed fertiliser with and without the gelling agent did not differ
significantly from one another.
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Figure 6. Pre-flowering plant biomass, by soil tillage method (strip-till, plough) and application of
microgranulated fertilisers with gelling agent (with agent, without agent); *—the letters being the
same in columns of results for a given crop indicates a lack of statistically significant differences.

The yield of each crop grown using conventional technology with ploughing and
without microgranulated fertiliser was significantly lower than the yield of crops sown in
strip-till (Figure 7). The application of microgranular fertiliser with a gelling component
as compared to the fertiliser without the additive resulted in a significant increase in the
yield of maize grain only. Each fertiliser with a gelling component, i.e., Maize, Grain, and
Oilseed, increased the yield of maize, spring barley, and winter rapeseed, respectively,
compared to the plants not fertilised with these fertilisers.
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After harvesting the crops grown conventionally with ploughing, there were sig-
nificantly fewer microorganisms of all groups in the soil than after strip-till, regardless
of whether microgranulated fertilisers were applied and regardless of their composition
(Table 6). As compared to microgranulated fertilisers with no gelling agent, there were
significant increases in the abundances of filamentous fungi and amylolytic microorgan-
isms for the Maize microgranulated fertiliser with the gelling agent in the plots after maize
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harvesting; filamentous fungi for the Cereal fertiliser in the spring barley plots after harvest;
and total bacteria and cellulolytic and amylolytic microorganisms for the Oilseeds fertiliser
in the plots after winter rapeseed harvesting. However, the same fertilisers, but without
the gelling agent, increased the abundances of some microorganism groups in the soil
compared to the strip-tilled soils not fertilised with microgranules. In these plots, after
harvesting maize, there were more filamentous fungi and proteolytic microorganisms; in
the plots after harvesting spring barley, there were more actinobacteria and cellulolytic
microorganisms; and in the soil after harvesting winter rapeseed, there were more total
bacteria and proteolytic microorganisms.

Table 6. Abundances of microorganisms in soil after harvest, by tillage method and application of
microgranular fertilisers with gelling agent.

Microorganisms Unit
Tillage Method/Gelling
Agent in Fertiliser

Crop

Maize Spring Barley Winter Rapeseed

Total bacteria cfu × 106

strip-till/with agent 2.63 a * 3.24 a 4.11 a
strip-till/without agent 2.63 a 3.15 ab 3.88 b
strip-till/no fertiliser 2.54 a 3.08 b 3.65 c
plough/no fertiliser 2.26 b 2.91 c 3.20 d

Actinobacteria cfu × 105

strip-till/with agent 6.33 a 4.83 a 4.57 a
strip-till/without agent 6.17 a 4.86 a 4.44 ab
strip-till/no fertiliser 6.26 a 4.67 b 4.26 b
plough/no fertiliser 5.84 b 4.02 c 3.83 c

Filamentous
Fungi cfu × 104

strip-till/with agent 9.04 a 23.3 a 12.3 a
strip-till/without agent 8.18 b 21.6 b 11.8 a
strip-till/no fertiliser 7.41 c 21.9 b 11.7 a
plough/no fertiliser 6.63 d 20.2 c 10.7 b

Cellulolytic
microorganisms cfu × 105

strip-till/with agent 6.67 a 17.6 ab 7.61 a
strip-till/without agent 6.41 ab 17.8 a 7.29 b
strip-till/no fertiliser 6.10 b 16.8 b 7.04 b
plough/no fertiliser 5.09 c 14.6 c 5.81 c

Amylolytic
microorganisms cfu × 105

strip-till/with agent 3.65 a 6.51 a 6.02 a
strip-till/without agent 3.37 b 6.23 a 5.70 b
strip-till/no fertiliser 3.40 b 6.26 a 5.66 b
plough/no fertiliser 3.06 c 5.67 b 5.12 c

Proteolytic
microorganisms cfu × 105

strip-till/with agent 4.84 a 8.36 a 9.14 a
strip-till/without agent 4.89 a 8.55 a 9.01 a
strip-till/no fertiliser 4.37 b 8.29 a 8.55 b
plough/no fertiliser 3.90 c 7.36 b 7.47 c

*—the letters being the same in columns of results for a given group of microorganisms for a given crop indicates
a lack of statistically significant differences.

4. Discussion

Observations and research results from recent decades confirm far-reaching unfavourable
environmental changes both on a global scale and in various regions of the world, resulting
in reduced agricultural productivity, lower quality of agricultural produce, and threats to
the food security of the human population [58,59]. However, the response of agriculture to
these changes is ambiguous. Negative effects can be reduced and positive ones enhanced,
but this requires that current agricultural practices be adapted to the amount of atmospheric
CO2 and to the water and thermal conditions [60]. It is therefore justified to promote and
implement conservation agriculture practices, especially in regions where intensive agri-
culture dominates. In European countries, especially in Poland, such practices account for
a relatively small area to date [61,62]. Our own research was conducted in an area with a
large rainfall deficit for field crop production. According to Kuśmierek-Tomaszewska and
Żarski [63], the frequency of meteorological droughts in the period of intensive plant vege-
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tation in central Poland is about 30.0%. However, the frequency of extreme droughts is 6.7%.
In this region, as in Central Europe, dry periods occur mainly in spring and summer [64].
Water shortages for plants are exacerbated by rising air temperatures. Their increase in
recent decades (1961–2018) is estimated at 0.33 ◦C per 10 years. The greatest temperature
increase has occurred in the summer months, with a July increase of 0.48 ◦C per 10 years.
A slightly smaller increase in temperature is observed in the winter months (0.46 ◦C per
10 years for January) and spring months (0.41 ◦C per 10 years for April) [65]. Therefore,
the fact that strip-till cultivation is being increasingly implemented and popularised in this
region should be considered positive [66].

The researched agricultural practices, I.e., strip-till and the application of microgranu-
lar starter fertilisers in accordance with the adopted research assumption, had a positive
effect on some soil properties that are important factors in plant productivity. According
to Maharjan et al. [67], an agro-ecosystem assessment of soil cultivation should take into
account its impact on, among other things: soil bulk density, soil aggregates and struc-
ture, porosity, hydraulic properties, content of soil organic matter and nutrients, plant
residues, weed diaspores, diversity and activity of soil organisms, and biochemical proper-
ties. Abandoning ploughing and field-wide soil fertilisation followed by sowing in multiple
successive agrotechnical treatments in favour of a single pass of a multifunctional machine
implementing strip-till technology had a positive effect on the soil properties in our own
research. As a result of the use of this technology, water resources in the soil increased
during the sowing and emergence of winter and spring plants, and CO2 emissions from
the soil decreased. As compared to conventionally-cultivated crops, the post-harvest soil
of strip-tilled crops were more abundant in bacteria, actinobacteria, filamentous fungi,
and cellulolytic, amylolytic, and proteolytic microorganisms. Reducing loosening, and
especially eliminating ploughing with a mouldboard plough, improves the soil water con-
ditions. Abdallah et al. [68] emphasise that conservation agriculture practices significantly
reduce the evaporation from the soil surface. Mulch also helps reduce water losses from
the soil [69,70]. In strip-till, inter-rows are mulched, and they account for up to two thirds
or more of the field area [71,72]. Mulch on the surface and the higher water content in
the soil keep the temperature lower, further reducing the water evaporation [73]. Licht
and Al-Kaisi [74] indicate that the deep loosening of soil strips, unlike no-till, accelerates
the warming of the soil, which, due to the excessive moisture, may be too cold for plant
germination and emergence. The difference in the soil temperature in the upper 5 cm layer
may be 1.0–1.4 ◦C. In turn, according to Blanco-Canqui et al. [75], deep soil loosening, e.g.,
in ploughing, increases water infiltration, and no-till cultivation does not always have a
positive effect on the total porosity, hydraulic conductivity, or water retention in the soil.

A reduction in conventional tilling is associated with reduced soil respiration [76].
Soil CO2 emissions depend on the tillage method and are generally lower in ploughless
systems. A several-fold increase in CO2 emissions from the soil in the first hours after
its cultivation is indicated by Bregaglio et al. [77]. Al-Kaisi and Yin [78] found that for
20 days after soil tillage, total CO2 emission was 26% lower after strip-tilling than after
ploughing. In our own research, replacing conventional tillage with strip-till resulted in
a greater than four-fold reduction in the emission of this greenhouse gas at the time of
ploughing before sowing winter rape and a more than two-fold reduction in the same
emissions during loosening tilling for maize and spring barley. The lower CO2 emissions
from the soil after strip-tilling also persisted in the later period. Twenty days after sowing
the maize, spring barley, and winter rapeseed it was, respectively, 21.9%, 22.6%, and 39.6%
lower than after ploughing.

Conservation tillage practices affect the soil composition and microbial diversity [79].
The reduced mechanical intervention in the soil, mulching, increased carbon sequestration,
smaller changes in the amount and temperatures of water and air that typify conservation
soil cultivation create favourable conditions for microorganisms [80,81]. Strip-till, like
other methods of ploughless cultivation, usually increases the presence and activity of
microorganisms in the soil [82,83]. In our own research, the number of total bacteria, acti-
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nobacteria, filamentous fungi, and cellulolytic, amylolytic, and proteolytic microorganisms
in the strip-tilled soil was significantly higher than in the soil after ploughing. The relative
differences in bacteria abundances in the three consecutive years was 12.4%, 5.8%, and
14.1%—and 11.8%, 8.4%, and 9.3% for fungi. The abundances of some groups of microor-
ganisms in strip-tilled soil depended on the type of starter fertiliser used. The addition of a
gelling agent that changed the hydration of the microgranules and the moisture content
of the adjacent soil layer, as demonstrated in the pot experiments, increased the number
of filamentous fungi in the soil after the harvesting of maize and spring barley, and of the
total bacteria and cellulolytic and amylolytic microorganisms after the harvesting of winter
rapeseed. According to Mackay et al. [84], the composition of microbial communities in
strip-tilled soil is similar to the composition of microbial communities in no-till soil, but it
differs from the conventional tillage. The differences in microbial communities result from
the differences in the carbon sources and pH of soils cultivated using different methods.
The presence of specific groups of microorganisms is also influenced by many other abiotic
factors, including fertilisation and the soil nutrient contents [85,86].

Given the current challenges facing modern agriculture, not only should new-generation
fertilisers be a source of nutrients, but they should also have the capacity for a greater
efficiency of use and reduce possible negative environmental impacts. Such functions are
fulfilled via microgranulated starter fertilisers placed into a single sowing furrow along
with seeds [87,88]. These fertilisers, which contain additional ingredients that, for example,
slow the release of ingredients and influence soil properties and/or plant growth, are
called “smart fertilisers” [89,90]. Such ingredients include hydrophobic matrix material,
hydrophilic hydrogel, or poorly soluble inorganic compounds [91,92]. In our own research,
as in the study [93,94], fertilisers contained an ingredient that had the ability to absorb
large amounts of water and release it over a long time. The absorption of water by these
fertilisers in the amount of >120% of the fertiliser mass and their keeping it within the
granules explains why they remained on the surface of moist soil for 60–70 h and the
3–4 p.p. higher volumetric soil moisture in the pot tests compared to the use of fertilisers
without the gelling agent. The weaker impact of these fertilisers on the soil water properties
in the field conditions was probably due to the lower concentration of the fertiliser relative
to the soil mass.

Laboratory tests and field experiments confirmed the possibility of adding gelling
agents to the fertilisers indicated by Sarmah and Karak [95], not only to improve soil prop-
erties, but also to stimulate plant growth. The cited authors, after adding a superabsorbent
hydrogel modified with starch in an amount of 0.25% to the soil, found a 120% increase
in the soil’s water retention capacity and an impact on the soil bulk density and porosity.
Hydrogel applied with urea also increased the growth rate of chickpeas (Cicer arietinum).
In our own research, the seedlings of corn and winter rapeseed grown in the presence of
microgranulated fertilisers in the soil had a greater mass than those grown without fertiliser.
However, the same fertilisers with the additional gelling agent increased the weight of
seedlings of all tested plant species in the pots, as well as the pre-flowering weight of plants
grown in the field conditions using strip-till technology. This technology allows similar or
even higher yields to be obtained for lower expense and less environmental impact than
conventional technology that used ploughing as the basic soil tillage, including in the region
of the world where our own research was carried out [20,96–98]. Our research confirmed
higher yields of maize, spring barley grain, and winter rapeseed grown under strip-till than
using conventional technology. The yields of these plants were highest when microgranular
fertilisers, especially those with a gelling component, were applied at the same time as
sowing. Microgranulated fertiliser was also found to have a beneficial effect on the yield
of winter rapeseed by Jankowski et al. [99], of wheat and barley by Bartzialis et al. [100],
and of maize by Balawejder et al. [101]. These last cited authors indicate that the beneficial
effect of the fertiliser on the growth and yield of maize did not result directly from the
amounts contained in the nutrients, but from the mechanism of the fertiliser’s action on the
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soil and plants. Fertiliser containing protein fractions increased maize resistance to water
stress during its vegetation period.

5. Conclusions

The challenge for modern intensive agriculture is to introduce alternative practices
that can meet the food needs of a growing human population while reducing the envi-
ronmental pressure in the changing climate conditions. One technology that can replace
conventional crop cultivation that includes ploughing soil seems to be strip-till one-pass
technology. According to the literature and previous research by the authors, this low-cost
and environmentally friendly technology of soil tillage, fertilisation, and sowing in one
pass of a multifunctional machine can provide similar or even higher yields than conven-
tional cultivation with mouldboard ploughing. The present research confirmed higher
productivity of both winter and spring plants with different sowing dates in a region with
a high risk of drought. It was also shown that this technology allows basic soil fertilisers
but also microgranulated fertilisers to be applied. These “smart” fertilisers containing a
gelling agent improve the soil water conditions, biomass production, and plant yields. The
cumulative effect of strip-till and microgranulated fertilisers, especially with the gelling
agent, was expressed in a larger water supply in the soil, lower CO2 emissions from the
soil to the atmosphere and, in terms of the plants themselves, a higher mass of vegetative
parts and seeds than the plants cultivated after ploughing. Innovative plant cultivation
technologies with strip-till cultivation and the simultaneous application of microgranular
fertilisers with a gelling agent also create conditions favourable to the soil microbiome. As
a result of their use in the cultivation of maize, spring barley, and winter rape, the number
of bacteria, actinobacteria, filamentous fungi, and cellulolytic, amylolytic, and proteolytic
microorganisms in the soil increased. Strip-till and microgranulated fertilisers—especially
those containing additives that increase the use of nutrients, improve soil properties, and
stimulate plant growth—can be a production-effective, pro-environmental alternative to
the current agricultural practices.
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