Effects of Environmental Drivers and Agricultural Management on Soil CO2 and N2O Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Introduction of Field Trial
2.2. Greenhouse Gas (GHG) Emission Measurements—Laboratory Experiments
- (i)
- In the Tillage experiment we examined the effect of the two tillage methods (MP, NT) on GHG emission under constant air temperature. For the investigations, we collected samples from MP and NT treatments and one fertilizer dose of 80 kg ha−1 N (MP80, NT80) was applied besides non-fertilized control (MP0, NT0). Calcium ammonium nitrate (CAN) was used as fertilizer. SWC was constant in the first part of the experiment and then columns were left to air dry, which enabled us to study the SWC-dependency of GHG emission.
- (ii)
- In the Fertilizer experiment we examined the effect of different fertilizer doses of 80 kg ha−1 N (MP80, NT80) and 160 kg ha−1 N (MP160, NT160) on the GHG emissions of MP and NT under constant air temperature. In the Fertilizer experiment, the initial field SWC was maintained in the first part of the experiments, then a higher SWC was used in the second part of this investigation.
- (iii)
- In the Temperature dependency experiment we investigated the effect of Ts on GHG emissions of MP and NT under two constant SWC and fertilization conditions.
2.3. GHG Emission Measurements—Field Experiment
2.4. Instrumentation
2.5. Soil Chemical and Physical Analyses
2.6. Data Handling and Statistical Analyses
3. Results
3.1. GHG Emissions of Laboratory Experiments
3.1.1. CO2 Emission
3.1.2. N2O Emission
3.2. Environmental Governing Factors of GHG Emissions in Laboratory Experiments
3.3. Soil Chemical Parameters of Laboratory Experiments
3.4. GHG Emissions of Field Experiment
3.5. Environmental Governing Factors of GHG Emissions in Field Experiment
3.6. Soil Chemical Parameters of the Field Experiment
3.7. Plant Parameters—Field Experiment
4. Discussion
4.1. GHG Emissions Affected by Tillage and Fertilization
4.2. GHG Emissions Affected by Soil Temperature (Ts) and Soil Water Content (SWC)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trogler, W.C. Physical properties and mechanisms of formation of nitrous oxide. Coord. Chem. Rev. 1999, 187, 303–327. [Google Scholar] [CrossRef]
- Portmann, R.W.; Daniel, J.S.; Ravishankara, A.R. Stratospheric ozone depletion due to nitrous oxide: Influences of other gases. Philos. Trans. R. Soc. B: Biol. Sci. 2012, 367, 1256–1264. [Google Scholar] [CrossRef] [Green Version]
- Change, I.C. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Hursh, A.; Ballantyne, A.; Cooper, L.; Maneta, M.; Kimball, J.; Watts, J. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Glob. Chang. Biol. 2017, 23, 2090–2103. [Google Scholar] [CrossRef]
- Hénault, C.; Grossel, A.; Mary, B.; Roussel, M.; Léonard, J. Nitrous Oxide Emission by Agricultural Soils: A Review of Spatial and Temporal Variability for Mitigation. Pedosphere 2012, 22, 426–433. [Google Scholar] [CrossRef]
- Raich, J.W.; Potter, C. Global patterns of carbon dioxide emissions from soils. Glob. Biogeochem. Cycles 1995, 9, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-G.; Vargas, R.; Bondlamberty, B.; Turetsky, M.R. Effects of soil rewetting and thawing on soil gas fluxes: A review of current literature and suggestions for future research. Biogeosciences 2012, 9, 2459–2483. [Google Scholar] [CrossRef] [Green Version]
- Butterbachbahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B: Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef]
- Jianwen, Z.; Huang, Y.; Lianggang, Z.; Xunhua, Z.; Yuesi, W. Carbon dioxide, methane, and nitrous oxide emissions from a rice-wheat rotation as affected by crop residue incorporation and temperature. Adv. Atmospheric Sci. 2004, 21, 691–698. [Google Scholar] [CrossRef]
- Chatterjee, A.; Jenerette, G. Changes in soil respiration Q10 during drying–rewetting along a semi-arid elevation gradient. Geoderma 2011, 163, 171–177. [Google Scholar] [CrossRef]
- Liang, L.L.; Grantz, D.A.; Jenerette, G.D. Multivariate regulation of soil CO2 and N2O pulse emissions from agricultural soils. Glob. Chang. Biol. 2016, 22, 1286–1298. [Google Scholar] [CrossRef]
- Westphal, M.; Tenuta, M.; Entz, M.H. Nitrous oxide emissions with organic crop production depends on fall soil moisture. Agric. Ecosyst. Environ. 2018, 254, 41–49. [Google Scholar] [CrossRef]
- Furon, A.C.; Wagner-Riddle, C.; Smith, C.R.; Warland, J.S. Wavelet analysis of wintertime and spring thaw CO2 and N2O fluxes from agricultural fields. Agric. For. Meteorol. 2008, 148, 1305–1317. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Agriculture. In Climate Change 2007: Mitigation; Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A., Eds.; Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Deng, Q.; Hui, D.; Wang, J.; Yu, C.-L.; Li, C.; Reddy, K.C.; Dennis, S. Assessing the impacts of tillage and fertilization management on nitrous oxide emissions in a cornfield using the DNDC model. J. Geophys. Res. Biogeosci. 2016, 121, 337–349. [Google Scholar] [CrossRef] [Green Version]
- Zurovec, O.; Sitaula, B.K.; Čustović, H.; Žurovec, J.; Dörsch, P. Effects of tillage practice on soil structure, N2O emissions and economics in cereal production under current socio-economic conditions in central Bosnia and Herzegovina. PLoS ONE 2017, 12, e0187681. [Google Scholar] [CrossRef] [Green Version]
- Silva, B.D.O.; Moitinho, M.R.; Santos, G.A.D.A.; Teixeira, D.D.B.; Fernandes, C.; La Scala, N. Soil CO2 emission and short-term soil pore class distribution after tillage operations. Soil Tillage Res. 2019, 186, 224–232. [Google Scholar] [CrossRef]
- Bilandžija, D.; Zgorelec, Z.; Kisic, I. Influence of tillage systems on short-term soil CO2 emissions. Hung. Geogr. Bull. 2017, 66, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Krištof, K.; Šima, T.; Nozdrovicky, L.; Findura, P. The effect of soil tillage intensity on carbon dioxide emissions released from soil into the atmosphere. Agron. Res. 2014, 12, 115–120. [Google Scholar]
- Mangalassery, S.; Sjogersten, S.; Sparkes, D.L.; Sturrock, C.J.; Craigon, J.; Mooney, S.J. To what extent can zero tillage lead to a reduction in greenhouse gas emissions from temperate soils? Sci. Rep. 2015, 4, 4586. [Google Scholar] [CrossRef] [Green Version]
- Yeboah, S.; Zhang, R.; Cai, L.; Song, M.; Li, L.; Xie, J.; Luo, Z.; Wu, J.; Zhang, J. Greenhouse gas emissions in a spring wheat–field pea sequence under different tillage practices in semi-arid Northwest China. Nutr. Cycl. Agroecosystems 2016, 106, 77–91. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, W.; Wang, L.; Hui, D.; Grove, J.H.; Yang, X.; Tao, B.; Goff, B. Greenhouse gas emissions and crop yield in no-tillage systems: A meta-analysis. Agric. Ecosyst. Environ. 2018, 268, 144–153. [Google Scholar] [CrossRef]
- Alvarez, R.; Russo, M.E.; Prystupa, P.; Scheiner, J.D.; Blotta, L. Soil Carbon Pools under Conventional and No-Tillage Systems in the Argentine Rolling Pampa. Agron. J. 1998, 90, 138–143. [Google Scholar] [CrossRef]
- Li, C.-F.; Zhou, D.-N.; Kou, Z.-K.; Zhang, Z.-S.; Wang, J.-P.; Cai, M.-L.; Cao, C.-G. Effects of Tillage and Nitrogen Fertilizers on CH4 and CO2 Emissions and Soil Organic Carbon in Paddy Fields of Central China. PLoS ONE 2012, 7, e34642. [Google Scholar] [CrossRef] [Green Version]
- Lognoul, M.; Theodorakopoulos, N.; Hiel, M.-P.; Regaert, D.; Broux, F.; Heinesch, B.; Bodson, B.; Vandenbol, M.; Aubinet, M. Impact of tillage on greenhouse gas emissions by an agricultural crop and dynamics of N2O fluxes: Insights from automated closed chamber measurements. Soil Tillage Res. 2017, 167, 80–89. [Google Scholar] [CrossRef]
- Regina, K.; Alakukku, L. Greenhouse gas fluxes in varying soils types under conventional and no-tillage practices. Soil Tillage Res. 2010, 109, 144–152. [Google Scholar] [CrossRef]
- Behnke, G.D.; Zuber, S.M.; Pittelkow, C.M.; Nafziger, E.D.; Villamil, M.B. Long-term crop rotation and tillage effects on soil greenhouse gas emissions and crop production in Illinois, USA. Agric. Ecosyst. Environ. 2018, 261, 62–70. [Google Scholar] [CrossRef]
- Ball, B.C.; Scott, A.; Parker, J.P. Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil Tillage Res. 1999, 53, 29–39. [Google Scholar] [CrossRef]
- Almaraz, J.J.; Mabood, F.; Zhou, X.; Madramootoo, C.; Rochette, P.; Ma, B.-L.; Smith, D.L. Carbon Dioxide and Nitrous Oxide Fluxes in Corn Grown under Two Tillage Systems in Southwestern Quebec. Soil Sci. Soc. Am. J. 2009, 73, 113–119. [Google Scholar] [CrossRef]
- Yao, Z.; Zheng, X.; Wang, R.; Xie, B.; Butterbach-Bahl, K.; Zhu, J. Nitrous oxide and methane fluxes from a rice–wheat crop rotation under wheat residue incorporation and no-tillage practices. Atmospheric Environ. 2013, 79, 641–649. [Google Scholar] [CrossRef]
- Six, J.; Ogle, S.M.; Breidt, F.J.; Conant, R.T.; Mosier, A.R.; Paustian, K. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob. Chang. Biol. 2004, 10, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Yonemura, S.; Nouchi, I.; Nishimura, S.; Sakurai, G.; Togami, K.; Yagi, K. Soil respiration, N2O, and CH4 emissions from an Andisol under conventional-tillage and no-tillage cultivation for 4 years. Biol. Fertil. Soils 2014, 50, 63–74. [Google Scholar] [CrossRef]
- Zhu, X.; Chang, L.; Liu, J.; Zhou, M.; Li, J.; Gao, B.; Wu, D. Exploring the relationships between soil fauna, different tillage regimes and CO2 and N2O emissions from black soil in China. Soil Biol. Biochem. 2016, 103, 106–116. [Google Scholar] [CrossRef]
- Van Kessel, C.; Venterea, R.T.; Six, J.; Adviento-Borbe, M.A.; A Linquist, B.; Van Groenigen, K.J. Climate, duration, and N placement determine N2O emissions in reduced tillage systems: A meta-analysis. Glob. Chang. Biol. 2013, 19, 33–44. [Google Scholar] [CrossRef]
- Baggs, E.; Stevenson, M.; Pihlatie, M.; Regar, A.; Cook, H.; Cadisch, G. Nitrous oxide emissions following application of residues and fertiliser under zero and conventional tillage. Plant Soil 2003, 254, 361–370. [Google Scholar] [CrossRef]
- Dambreville, C.; Morvan, T.; Germon, J.-C. N2O emission in maize-crops fertilized with pig slurry, matured pig manure or ammonium nitrate in Brittany. Agric. Ecosyst. Environ. 2008, 123, 201–210. [Google Scholar] [CrossRef]
- Zhai, L.; Liu, H.-B.; Zhang, J.-Z.; Huang, J.; Wang, B.-R. Long-Term Application of Organic Manure and Mineral Fertilizer on N2O and CO2 Emissions in a Red Soil from Cultivated Maize-Wheat Rotation in China. Agric. Sci. China 2011, 10, 1748–1757. [Google Scholar] [CrossRef]
- Herr, C.; Mannheim, T.; Müller, T.; Ruser, R. Effect of cattle slurry application techniques on N2O and NH3 emissions from a loamy soil. J. Plant Nutr. Soil Sci. 2019, 182, 964–979. [Google Scholar] [CrossRef] [Green Version]
- Velthof, G.; Kuikman, P.J.; Oenema, O. Nitrous oxide emission from animal manures applied to soil under controlled conditions. Biol. Fertil. Soils 2003, 37, 221–230. [Google Scholar] [CrossRef]
- Guo, Z.; Han, J.; Li, J.; Xu, Y.; Wang, X. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure. PLoS ONE 2019, 14, e0211163. [Google Scholar] [CrossRef] [Green Version]
- Al-Kaisi, M.M.; Kruse, M.L.; Sawyer, J.E. Effect of Nitrogen Fertilizer Application on Growing Season Soil Carbon Dioxide Emission in a Corn-Soybean Rotation. J. Environ. Qual. 2008, 37, 325–332. [Google Scholar] [CrossRef]
- De Rosa, D.; Rowlings, D.W.; Biala, J.; Scheer, C.; Basso, B.; Grace, P.R. N2O and CO2 emissions following repeated application of organic and mineral N fertiliser from a vegetable crop rotation. Sci. Total. Environ. 2018, 813–824. [Google Scholar] [CrossRef]
- Volpi, I.; Laville, P.; Bonari, E.; O Di Nasso, N.N.; Bosco, S. Improving the management of mineral fertilizers for nitrous oxide mitigation: The effect of nitrogen fertilizer type, urease and nitrification inhibitors in two different textured soils. Geoderma 2017, 307, 181–188. [Google Scholar] [CrossRef]
- FAO. World Reference Base For Soil Resources 2014, Update 2015: International Soil Classification System For Naming Soils and Creating Legends For Soil Maps; FAO: Rome, Italy, 2015; p. 192. [Google Scholar]
- Dekemati, I.; Simon, B.; Bogunovic, I.; Kisic, I.; Kassai, K.; Kende, Z.; Birkás, M. Long term Effects of Ploughing and Conservation Tillage Methods on Earthworm Abundance and Crumb Ratio. Agronomy 2020, 10, 1552. [Google Scholar] [CrossRef]
- Tóth, E.; Gelybó, G.; Dencső, M.; Kása, I.; Birkás, M.; Horel, Á. Soil CO2 emission in a long-term tillage treatment experiment. In Soil Management and Climate Change—Effects on Organic Carbon, Nitrogen Dynamics and Greenhouse Gas Emissions; Munoz, M.A., Zornoza, R., Eds.; Academic Press: London, UK, 2018; pp. 293–308. [Google Scholar]
- Pumpanen, J.; Kolari, P.; Ilvesniemi, H.; Minkkinen, K.; Vesala, T.; Niinistö, S.M.; Lohila, A.; Larmola, T.; Morero, M.; Pihlatie, M.; et al. Comparison of different chamber techniques for measuring soil CO2 efflux. Agric. For. Meteorol. 2004, 123, 159–176. [Google Scholar] [CrossRef]
- Heinemeyer, A.; McNamara, N.P. Comparing the closed static versus the closed dynamic chamber flux methodology: Implications for soil respiration studies. Plant Soil 2011, 346, 145–151. [Google Scholar] [CrossRef]
- Diefenderfer, H.; Cullinan, V.I.; Borde, A.B.; Gunn, C.M.; Thom, R. High-frequency greenhouse gas flux measurement system detects winter storm surge effects on salt marsh. Glob. Chang. Biol. 2018, 24, 5961–5971. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Tottman, D.R. The decimal code for the growth stages of cereals, with illustrations. Ann. Appl. Biol. 1987, 110, 441–454. [Google Scholar] [CrossRef]
- Buzás, I. Methodology book for soil and agrochemical analyses; (in Hungarian). Buzás, I., Ed.; INDA 4231; Kiadó: Budapest, Hungary, 1993. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk Density. Methods Biogeochem. Wetl. 2018, 363–375. [Google Scholar] [CrossRef]
- Cueva, A.; Volkman, T.H.; Van Haren, J.; Troch, P.A.; Meredith, L.K. Reconciling Negative Soil CO2 Fluxes: Insights from a Large-Scale Experimental Hillslope. Soil Syst. 2019, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Chen, X.; Pu, Z. Negative Soil Respiration Fluxes in Unneglectable Arid Regions. Pol. J. Environ. Stud. 2015, 24, 24. [Google Scholar] [CrossRef]
- Xie, J.; Li, Y.; Zhai, C.; Li, C.; Lan, Z. CO2 absorption by alkaline soils and its implication to the global carbon cycle. Environ. Earth Sci. 2009, 56, 953–961. [Google Scholar] [CrossRef]
- Windham-Myers, L.; Bergamaschi, B.; Anderson, F.; Knox, S.; Miller, R.; Fujii, R. Potential for negative emissions of greenhouse gases (CO2, CH4 and N2O) through coastal peatland re-establishment: Novel insights from high frequency flux data at meter and kilometer scales. Environ. Res. Lett. 2018, 13, 045005. [Google Scholar] [CrossRef]
- Han, G.; Xing, Q.; Luo, Y.; Rafique, R.; Yu, J.; Mikle, N. Vegetation Types Alter Soil Respiration and Its Temperature Sensitivity at the Field Scale in an Estuary Wetland. PLoS ONE 2014, 9, e91182. [Google Scholar] [CrossRef] [PubMed]
- Chapuis-Lardy, L.; Wrage, N.; Metay, A.; Chotte, J.-L.; Bernoux, M. Soils, a sink for N2O? A review. Glob. Chang. Biol. 2007, 13, 1–17. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate use and interpretation. Anesthesia Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Yang, X.; Drury, C.F.; Wander, M.M.; Kay, B. Evaluating the Effect of Tillage on Carbon Sequestration Using the Minimum Detectable Difference Concept. Pedosphere 2008, 18, 421–430. [Google Scholar] [CrossRef]
- Kravchenko, Y.S.; Rogovska, N.; Petrenko, L.; Zhang, X.; Song, C.; Chen, Y. Quality and dynamics of soil organic matter in a typical Chernozem of Ukraine under different long-term tillage systems. Can. J. Soil Sci. 2012, 92, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Van Eerd, L.L.; Congreves, K.A.; Hayes, A.; Verhallen, A.; Hooker, D.C. Long-term tillage and crop rotation effects on soil quality, organic carbon, and total nitrogen. Can. J. Soil Sci. 2014, 94, 303–315. [Google Scholar] [CrossRef]
- Dimassi, B.; Mary, B.; Wylleman, R.; Labreuche, J.; Couture, D.; Piraux, F.; Cohan, J.-P. Long-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years. Agric. Ecosyst. Environ. 2014, 188, 134–146. [Google Scholar] [CrossRef]
- Gubler, A.; Wächter, D.; Schwab, P.; Müller, M.; Keller, A. Twenty-five years of observations of soil organic carbon in Swiss croplands showing stability overall but with some divergent trends. Environ. Monit. Assess. 2019, 191, 277. [Google Scholar] [CrossRef] [Green Version]
- Silvola, J.; Alm, J.; Ahlholm, U.; Martikainen, P.J. The contribution of plant roots to CO2 fluxes from organic soils. Biol. Fertil. Soils 1996, 23, 126–131. [Google Scholar] [CrossRef]
- Li, X.; Fu, H.; Guo, D.; Li, X.; Wan, C. Partitioning soil respiration and assessing the carbon balance in a Setaria italica (L.) Beauv. Cropland on the Loess Plateau, Northern China. Soil Biol. Biochem. 2010, 42, 337–346. [Google Scholar] [CrossRef]
- Bilandzija, D.; Zgorelec, Z.; Kisic, I. Influence of Tillage Practices and Crop Type on Soil CO2 Emissions. Sustain. 2016, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Ussiri, D.A.N.; Lal, R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Tillage Res. 2009, 104, 39–47. [Google Scholar] [CrossRef]
- Feizienė, D.; Kadžienė, G. The influence of soil organic carbon, moisture and temperature on soil surface CO2 emission in the 10th year of different tillage-fertilisation management. Zemdirb. Agric. 2008, 95, 29–45. [Google Scholar]
- Bhatia, A.; Sasmal, S.; Jain, N.; Pathak, H.; Kumar, R.; Singh, A. Mitigating nitrous oxide emission from soil under conventional and no-tillage in wheat using nitrification inhibitors. Agric. Ecosyst. Environ. 2010, 136, 247–253. [Google Scholar] [CrossRef]
- Oorts, K.; Merckx, R.; Gréhan, E.; Labreuche, J.; Nicolardot, B. Determinants of annual fluxes of CO2 and N2O in long-term no-tillage and conventional tillage systems in northern France. Soil Tillage Res. 2007, 95, 133–148. [Google Scholar] [CrossRef]
- Dong, W.; Hu, C.; Zhang, Y.; Wu, D. Gross mineralization, nitrification and N2O emission under different tillage in the North China Plain. Nutr. Cycl. Agroecosystems 2012, 94, 237–247. [Google Scholar] [CrossRef]
- Gupta, D.K.; Bhatia, A.; Kumar, A.; Das, T.; Jain, N.; Tomer, R.; Malyan, S.K.; Fagodiya, R.; Dubey, R.; Pathak, H. Mitigation of greenhouse gas emission from rice–wheat system of the Indo-Gangetic plains: Through tillage, irrigation and fertilizer management. Agric. Ecosyst. Environ. 2016, 230, 1–9. [Google Scholar] [CrossRef]
- Passianoto, C.C.; Ahrens, T.; Feigl, B.J.; Steudler, P.A.; Carmo, J.B.D.; Melillo, J.M. Emissions of CO2, N2O, and NO in conventional and no-till management practices in Rondônia, Brazil. Biol. Fertil. Soils 2003, 38, 200–208. [Google Scholar] [CrossRef]
- Malhi, S.S.; Lemke, R. Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gas emissions in a second 4-yr rotation cycle. Soil Tillage Res. 2007, 96, 269–283. [Google Scholar] [CrossRef]
- Xiaoxiao, S.; Li, Q. Effect of Different Tillage Methods on Soil Emissions of N2O and Crop Yield in North China Grain Field. IOP Conf. Ser. Earth Environ. Sci. 2019, 310, 042020. [Google Scholar] [CrossRef]
- Shakoor, A.; Shahbaz, M.; Farooq, T.H.; Sahar, N.E.; Shahzad, S.M.; Altaf, M.M.; Ashraf, M. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage. Sci. Total. Environ. 2021, 750, 142299. [Google Scholar] [CrossRef]
- Feng, J.; Li, F.; Zhou, X.; Xu, C.; Ji, L.; Chen, Z.; Fang, F. Impact of agronomy practices on the effects of reduced tillage systems on CH4 and N2O emissions from agricultural fields: A global meta-analysis. PLoS ONE 2018, 13, e0196703. [Google Scholar] [CrossRef] [Green Version]
- Bessou, C.; Mary, B.; Léonard, J.; Roussel, M.; Gréhan, E.; Gabrielle, B. Modelling soil compaction impacts on nitrous oxide emissions in arable fields. Eur. J. Soil Sci. 2010, 61, 348–363. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Kisic, I.; Sajko, K.; Sraka, M. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena 2018, 160, 376–384. [Google Scholar] [CrossRef]
- Alskaf, K.; Mooney, S.; Sparkes, D.L.; Wilson, P.; Sjogersten, S. Short-term impacts of different tillage practices and plant residue retention on soil physical properties and greenhouse gas emissions. Soil Tillage Res. 2021, 206, 104803. [Google Scholar] [CrossRef]
- Rochette, P. No-till only increases N2O emissions in poorly-aerated soils. Soil Tillage Res. 2008, 101, 97–100. [Google Scholar] [CrossRef]
- Grave, R.A.; Nicoloso, R.D.S.; Cassol, P.C.; Da Silva, M.L.B.; Mezzari, M.P.; Aita, C.; Wuaden, C.R. Determining the effects of tillage and nitrogen sources on soil N2O emission. Soil Tillage Res. 2018, 175, 1–12. [Google Scholar] [CrossRef]
- Sitaula, B.; Hansen, S.; Sitaula, J.; Bakken, L. Effects of soil compaction on N2O emission in agricultural soil. Chemosphere - Glob. Chang. Sci. 2000, 2, 367–371. [Google Scholar] [CrossRef]
- Yamulki, S.; Jarvis, S. Short-term effects of tillage and compaction on nitrous oxide, nitric oxide, nitrogen dioxide, methane and carbon dioxide fluxes from grassland. Biol. Fertil. Soils 2002, 36, 224–231. [Google Scholar] [CrossRef]
- van Groenigen, J.; Kasper, G.; Velthof, G.; Dasselaar, A.V.D.P.-V.; Kuikman, P. Nitrous oxide emissions from silage maize fields under different mineral nitrogen fertilizer and slurry applications. Plant Soil 2004, 263, 101–111. [Google Scholar] [CrossRef]
- Grant, R.F.; Pattey, E.; Goddard, T.W.; Kryzanowski, L.M.; Puurveen, H. Modeling the Effects of Fertilizer Application Rate on Nitrous Oxide Emissions. Soil Sci. Soc. Am. J. 2006, 70, 235–248. [Google Scholar] [CrossRef]
- Schaufler, G.; Kitzler, B.; Schindlbacher, A.; Skiba, U.; Sutton, M.A.; Zechmeister-Boltenstern, S. Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature. Eur. J. Soil Sci. 2010, 61, 683–696. [Google Scholar] [CrossRef]
- Zhang, X.B.; Xu, M.; Sun, N.; Wang, X.; Wu, L.; Wang, B.; Li, D. How do environmental factors and different fertilizer strategies affect soil CO2 emission and carbon sequestration in the upland soils of southern China? Appl. Soil Ecol. 2013, 72, 109–118. [Google Scholar] [CrossRef]
- Reth, S.; Reichstein, M.; Falge, E. The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux—A modified model. Plant Soil 2005, 268, 21–33. [Google Scholar] [CrossRef]
- Horák, J.; Igaz, D.; Aydin, E.; Šimanský, V.; Buchkina, N.; Balashov, E. Changes in direct CO2 and N2O emissions from a loam Haplic Luvisol under conventional moldboard and reduced tillage during growing season and post-harvest period of red clover. J. Hydrol. Hydromech. 2020, 68, 271–278. [Google Scholar] [CrossRef]
Year | Crop Type | Date of Fertilization | Applied N Fertilizer Doses | Date of Sowing | Date of Harvest | Date of Tillage |
---|---|---|---|---|---|---|
2015 | Winter wheat (Triticum aestivum L.) | 07/10/2014 | 28.5 kg ha−1 | 08/10/2014 | 08/09/2015 | 02/10/2014 |
16/04/2015 | 35 kg ha−1 | |||||
29/05/2015 | 15 kg ha−1 | |||||
2016 | Maize (Zea mays L.) | 28/10/2015 | 42 kg ha−1 | 18/04/2016 | 24/10/2016 | 28/10/2015 |
16/04/2016 | 72 kg ha−1 | |||||
2017 | Winter oat (Avena sativa L.) | 27/10/2016 | 24 kg ha−1 | 01/11/2016 | 12/07/2017 | 28/10/2016 |
03/03/2017 | 100 kg ha−1 | |||||
2018 | Soy (Glycine max) | 20/03/2018 | 60 kg ha−1 | 26/04/2018 | 17/09/2018 | 11/09/2017 |
2019 | Winter wheat (Triticum aestivum L.) | 10/10/2018 | 20 kg ha−1 | 10/10/2018 | 18/07/2019 | 10/10/2018 |
11/02/2019 | 30 kg ha−1 |
Tillage Experiment | ||||||
Treatment | MP0 | MP80 | MP160 | NT0 | NT80 | NT160 |
Sample replicates | 5 | 5 | - | 5 | 5 | - |
Duration (days) | 31 | 31 | - | 31 | 31 | - |
Sampling times (days) | 12 | 12 | - | 12 | 12 | - |
SWC (%) | 30.4 ± 2.8 *,b | 30.6 ± 2.7 *,b | - | 32.3 ± 2.4 *,a | 33.2 ± 2.8 *,a | - |
Temperature (°C) | 27 ± 0.6 | 27 ± 0.6 | - | 27 ± 0.6 | 27 ± 0.6 | - |
Fertilization dose (kg ha−1 N) | 0 | 80 | - | 0 | 80 | - |
Tillage experiment in the drying out period | ||||||
Treatment | MP0 | MP80 | MP160 | NT0 | NT80 | NT160 |
Sample replicates | 5 | 5 | - | 5 | 5 | - |
Duration (days) | 16 | 16 | - | 16 | 16 | - |
Sampling times (days) | 4 | 4 | - | 4 | 4 | - |
SWC (%) at the beginning | 32.5 | 32.7 | - | 34.2 | 34.9 | - |
SWC (%) at the end | 22.4 | 22.8 | - | 25.2 | 25.6 | - |
Temperature (°C) | 27 ± 0.6 | 27 ± 0.6 | 27 ± 0.6 | 27 ± 0.6 | 27 ± 0.6 | 27 ± 0.6 |
Fertilization dose (kg ha−1 N) | 0 | 80 | - | 0 | 80 | - |
Fertilizer experiment at initial SWC | ||||||
Treatment | MP0 | MP80 | MP160 | NT0 | NT80 | NT160 |
Sample replicates | 3 | 5 | 5 | 3 | 5 | 5 |
Duration (days) | 29 | 29 | 29 | 29 | 29 | 29 |
Sampling times (days) | 12 | 12 | 12 | 12 | 12 | 12 |
SWC (%) | 33.2 ± 1.3 b | 34.6 ± 1.5 b | 32.7 ± 1.4 b | 40.5 ± 1.6 a | 39.7 ± 1.6 a | 40.8 ± 1.5 a |
Temperature (°C) | 21 ± 0.7 | 21 ± 0.7 | 21 ± 0.7 | 21 ± 0.7 | 21 ± 0.7 | 21 ± 0.7 |
Fertilization dose (kg ha−1 N) | 0 | 80 | 160 | 0 | 80 | 160 |
Fertilizer experiment at high SWC content | ||||||
Treatment | MP0 | MP80 | MP160 | NT0 | NT80 | NT160 |
Sample replicates | 3 | 5 | 5 | 3 | 5 | 5 |
Duration (days) | 27 | 27 | 27 | 27 | 27 | 27 |
Sampling times (days) | 12 | 12 | 12 | 12 | 12 | 12 |
SWC (%) | 39.0 ± 0.8 b | 43.0 ± 0.8 b | 40.7 ± 0.7 b | 48.2 ± 3.4 a | 46.6 ± 0.9 a | 48.2 ± 1.0 a |
Temperature (°C) | 20 ± 0.4 | 20 ± 0.4 | 20 ± 0.4 | 20 ± 0.4 | 20 ± 0.4 | 20 ± 0.4 |
Fertilization dose (kg ha−1 N) | 0 | 80 | 160 | 0 | 80 | 160 |
Temperature Dependency Experiment at Initial SWC | ||||||||
Treatment | MP0 | NT0 | MP0 | NT0 | MP0 | NT0 | MP0 | NT0 |
Temperature (°C) | - | 10 | 10 | 20 | 20 | 30 | 30 | |
Sample replicates | - | 5 | 5 | 5 | 5 | 5 | 5 | |
Sampling times (days) | - | 1 | 1 | 1 | 1 | 1 | 1 | |
SWC (%) | - | 33.9 ± 0.4 b | 39.6 ± 0.3 a | 33.9 ± 0.4 b | 39.6 ± 0.3 a | 33.9 ± 0.4 b | 39.6 ± 0.3 a | |
Fertilization dose (kg ha−1 N) | - | 0 | 0 | 0 | 0 | 0 | 0 | |
Temperature dependency experiment at high SWC | ||||||||
Treatment | MP0 | NT0 | MP0 | NT0 | MP0 | NT0 | MP0 | NT0 |
Temperature (°C) | - | 10 | 10 | 20 | 20 | 30 | 30 | |
Sample replicates | - | 5 | 5 | 5 | 5 | 5 | 5 | |
Sampling times (days) | - | 1 | 1 | 1 | 1 | 1 | 1 | |
SWC (%) | - | 43.3 ± 0.4 b | 46.7 ± 0.4 a | 43.3 ± 0.4 b | 46.7 ± 0.4 a | 43.3 ± 0.4 b | 46.7 ± 0.4 a | |
Fertilization dose (kg ha−1 N) | - | 0 | 0 | 0 | ||||
Temperature dependency experiment at high SWC with fertilization | ||||||||
Treatment | MP80 | NT80 | MP80 | NT80 | MP80 | NT80 | MP80 | NT80 |
Temperature (°C) | 4 °C | 4 °C | 10 °C | 10 °C | 20 °C | 20 °C | 30 °C | 30 °C |
Sample replicates | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Sampling times (days) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
SWC (%) | 44.5 ± 0.5 b | 47.6 ± 0.6 a | 44.5 ± 0.5 b | 47.6 ± 0.6 a | 44.5 ± 0.5 b | 47.6 ± 0.6 a | 44.5 ± 0.5 b | 47.6 ± 0.6 a |
Fertilization dose (kg ha−1 N) | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 |
Investigated Period | Treatment | Sample Number in a Day | Number of Sampling Days | Total Number of Samples per Treatment | Duration of the Period (dd/mm) | SWC (%) | Ts (°C) |
---|---|---|---|---|---|---|---|
Whole year period | MP | 7 for CO2 3 for N2O | 29 for CO2 8 for N2O | 203 for CO2 24 for N2O | 18/02–18/12 | - | 1.2–23.9 |
NT | 7 for CO2 3 for N2O | 29 for CO2 8 for N2O | 203 for CO2 24 for N2O | 18/02–18/12 | - | 1.0–25.8 | |
Vegetation period | MP | 7 for CO2 0 for N2O | 13 for CO2 0 for N2O | 91 for CO2 0 for N2O | 18/02–01/08 | - | 1.2–23.4 |
NT | 7 for CO2 0 for N2O | 13 for CO2 0 for N2O | 91 for CO2 0 for N2O | 18/02–01/08 | - | 1.0–25.0 | |
After harvest period | MP | 7 for CO2 3 for N2O | 16 for CO2 8 for N2O | 112 for CO2 24 for N2O | 01/08–22/11 | 34.9 ± 5.5 b | 5.4–23.9 |
NT | 7 for CO2 3 for N2O | 16 for CO2 8 for N2O | 112 for CO2 24 for N2O | 01/08–22/11 | 38.8 ± 7.3 a | 5.7–25.8 |
Investigation | Analysis |
---|---|
CO2 emission of Tillage experiment | One-way ANOVA |
CO2 emission of Fertilizer experiment | Kruskal–Wallis |
N2O emission of Tillage experiment | Kruskal–Wallis |
N2O emission of Fertilizer experiment | Kruskal–Wallis |
CO2 emission of Field experiment | Unpaired Mann–Whitney t-test |
N2O emission of Field experiment | Unpaired Mann–Whitney t-test |
CO2 emission of the 3 periods of Field exp. | Kruskal–Wallis |
SWC of Tillage experiment | Kruskal–Wallis |
SWC of Fertilizer experiment | Kruskal–Wallis |
SWC of Field experiment | Mann–Whitney t-test |
SWC I and SWC II of Fertilizer exp. | Kruskal–Wallis |
Chemistry of the experiments | One-way ANOVA |
Treatment | Mean CO2 Emission (mg CO2 m−2 s−1) | |||
---|---|---|---|---|
Tillage Experiment | Fertilizer exp.—Whole Period | Fertilizer exp.— Initial SWC | Fertilizer exp.— High SWC | |
MP0 | 0.030 ± 0.007 c | 0.024 ± 0.006 c | 0.026 ± 0.014 b | 0.022 ± 0.006 b,c |
NT0 | 0.058 ± 0.012 a | 0.061 ± 0.016 a,b | 0.072 ± 0.031 a | 0.043 ± 0.008 a |
MP80 | 0.024 ± 0.007 d | 0.022 ± 0.004 c | 0.029 ± 0.006 b | 0.014 ± 0.003 c |
NT80 | 0.046 ± 0.012 b | 0.053 ± 0.013 b | 0.072 ± 0.038 a | 0.029 ± 0.003 b |
MP160 | - | 0.018 ± 0.005 c | 0.025 ± 0.008 b | 0.009 ± 0.003 d |
NT160 | - | 0.074 ± 0.008 a | 0.092 ± 0.024 a | 0.049 ± 0.011 a |
Treatment | Mean N2O Emission (µg N2O m−2 s−1) | |||
---|---|---|---|---|
Tillage Experiment | Fertilizer exp.— Whole Period | Fertilizer exp.— Initial SWC | Fertilizer exp.— High SWC | |
MP0 | 0.003 ± 0.002 c | 0.010 ± 0.013 c | 0.003 ± 0.002 d | 0.019 ± 0.017 d |
NT0 | 0.044 ± 0.017 a | 0.263 ± 0.148 b | 0.058 ± 0.048 b | 0.488 ± 0.278 b |
MP80 | 0.017 ± 0.016 b | 0.091 ± 0.071 c | 0.002 ± 0.001 d | 0.187 ± 0.162 c |
NT80 | 0.049 ± 0.026 a | 0.628 ± 0.270 a | 0.425 ± 0.233 a,b | 0.879 ± 0.507 a,b |
MP160 | - | 0.081 ± 0.092 c | 0.006 ± 0.003 c | 0.163 ± 0.164 c,d |
NT160 | - | 1.684 ± 2.506 a | 0.516 ± 0.345 a | 2.987 ± 1.984 a |
Treatment | Ts Dependency of CO2 | Ts Dependency of N2O |
---|---|---|
MP0—initial SWC | 0.97 (p = 0.1153) | 0.99 (p = 0.0001) * |
MP0—high SWC | 0.99 (p = 0.0200) * | 0.57 (p = 0.4544) |
MP80—high SWC | 0.97 (p = 0.1163) | 0.81 (p = 0.0978) |
NT0—initial SWC | 0.99 (p = 0.0062) * | 0.32 (p = 0.6143) |
NT0—high SWC | 0.97 (p = 0.1166) | 0.75 (p = 0.3333) |
NT80—high SWC and fertilization | 0.91 (p = 0.0479) * | 0.97 (p = 0.0176) * |
Experiment | Treatment | Ntot (%) | NH4+ (mg kg−1) | NO3− (mg kg−1) | Sample Number |
---|---|---|---|---|---|
Tillage | MP0 | 0.157 ± 0.005 b | 16.45 ± 0.29 b | 11.50 ± 2.38 b | 5 |
NT0 | 0.238 ± 0.010 a | 31.88 ± 2.34 a | 30.03 ± 9.97 a | 5 | |
MP80 | 0.172 ± 0.025 b | 19.47 ± 6.10 b | 17.27 ± 6.10 a,b | 5 | |
NT80 | 0.227 ± 0.038 a | 28.26 ± 6.52 a | 35.81 ± 14.68 a | 5 | |
Fertilizer | MP0 | 0.145 ± 0.007 b | 9.62 ± 0.26 b | 11.00 ± 1.30 c | 3 |
NT0 | 0.236 ± 0.012 a | 14.68 ± 0.29 a | 27.87 ± 7.55 c | 3 | |
MP80 | 0.151 ± 0.009 b | 9.15 ± 0.38 b | 70.68 ± 9.18 b | 5 | |
NT80 | 0.226 ± 0.010 a | 13.41 ± 1.37 a | 31.70 ± 12.78 b,c | 5 | |
MP160 | 0.159 ± 0.003 b | 14.05 ± 2.98 b | 141.83 ± 7.21 a | 5 | |
NT160 | 0.231 ± 0.009 a | 14.19 ± 0.43 a | 89.46 ± 48.83 b | 5 | |
Temperature dependence | MP80 | 0.182 ± 0.007 b | 15.96 ± 0.56 b | 59.03 ± 6.64 a | 5 |
NT80 | 0.245 ± 0.012 a | 22.23 ± 1.51 a | 45.12 ± 13.64 a | 5 |
Treatment | Mean CO2 Emission (mg m−2 s−1) | ||
---|---|---|---|
whole year period | vegetation period | after-harvest period | |
MP | 0.063 ± 0.035 a | 0.068 ± 0.037 a | 0.059 ± 0.031 a |
NT | 0.072 ± 0.032 b | 0.051 ± 0.022 c | 0.095 ± 0.041 a |
Investigated Period | Mean CO2 Emission (mg m−2 s−1) | Mean N2O Emission (µg m−2 s−1) | ||
---|---|---|---|---|
MP | NT | MP | NT | |
whole year | 0.063 ± 0.035 a | 0.072 ± 0.032 a | - | - |
vegetation | 0.068 ± 0.037 a | 0.051 ± 0.022 b | - | - |
after-harvest | 0.059 ± 0.031 b | 0.095 ± 0.041 a | 0.006 ± 0.005 b | 0.043 ± 0.035 a |
Investigated Period | Treatment | Ts Dependence of CO2 Emission | Ts Dependence of N2O Emission | SWC Dependence of CO2 Emission | SWC Dependence of N2O Emission |
---|---|---|---|---|---|
Whole year | MP | 0.27 (p = 0.0043) * | - | - | - |
NT | 0.25 (p = 0.0067) * | - | - | - | |
Vegetation period | MP | 0.02 (p = 0.6418) | - | - | - |
NT | 0.06 (p = 0.4277) | - | - | - | |
After harvest period | MP | 0.89 (p < 0.0001) * | 0.30 (p = 0.1995) | 0.00 (p = 0.9044) | 0.83 (p = 0.0347) * |
NT | 0.54 (p = 0.0018) * | 0.03 (p = 0.6984) | 0.02 (p = 0.7134) | 0.82 (p = 0.0399) * |
Chemical Parameter | MP | NT |
---|---|---|
Ntot (%) | 0.15 ± 0.01 b | 0.23 ± 0.02 a |
TC (%) | 1.62 ± 0.05 b | 2.35 ± 0.16 a |
NH4+-N (mg kg−1) | 3.78 ± 1.64 b | 5.05 ± 2.22 a |
NO3−-N (mg kg−1) | 8.41 ± 7.22 b | 17.73 ± 12.48 a |
Vegetation Parameter | MP | NT |
---|---|---|
Leaf area index (LAI, 205 days after sowing) | 1.86 | 1.43 |
LAI (236 days after sowing) | 2.60 | 1.90 |
Yield biomass (kg ha−1) | 4.79 | 3.87 |
Straw biomass (t ha−1) | 3.94 | 3.38 |
Root biomass (t ha−1) | 2.34 | 1.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dencső, M.; Horel, Á.; Bogunovic, I.; Tóth, E. Effects of Environmental Drivers and Agricultural Management on Soil CO2 and N2O Emissions. Agronomy 2021, 11, 54. https://doi.org/10.3390/agronomy11010054
Dencső M, Horel Á, Bogunovic I, Tóth E. Effects of Environmental Drivers and Agricultural Management on Soil CO2 and N2O Emissions. Agronomy. 2021; 11(1):54. https://doi.org/10.3390/agronomy11010054
Chicago/Turabian StyleDencső, Márton, Ágota Horel, Igor Bogunovic, and Eszter Tóth. 2021. "Effects of Environmental Drivers and Agricultural Management on Soil CO2 and N2O Emissions" Agronomy 11, no. 1: 54. https://doi.org/10.3390/agronomy11010054
APA StyleDencső, M., Horel, Á., Bogunovic, I., & Tóth, E. (2021). Effects of Environmental Drivers and Agricultural Management on Soil CO2 and N2O Emissions. Agronomy, 11(1), 54. https://doi.org/10.3390/agronomy11010054