Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (184)

Search Parameters:
Keywords = mould growth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 723 KiB  
Proceeding Paper
Octanoic Fatty Acid Significantly Impacts the Growth of Foodborne Pathogens and Quality of Mabroom Date Fruits (Phoenix dactylifera L.)
by Elshafia Ali Hamid Mohammed, Károly Pál and Azza Siddig Hussien Abbo
Biol. Life Sci. Forum 2025, 47(1), 2; https://doi.org/10.3390/blsf2025047002 - 24 Jul 2025
Viewed by 261
Abstract
Mabroom dates (Phoenix dactylifera L.) are recognized as one of the most important crops in Qatar. Fresh fruit dates are susceptible to mould and post-harvest spoilage, resulting in a significant financial loss. Octanoic fatty acid (OFA) has been shown to regulate the [...] Read more.
Mabroom dates (Phoenix dactylifera L.) are recognized as one of the most important crops in Qatar. Fresh fruit dates are susceptible to mould and post-harvest spoilage, resulting in a significant financial loss. Octanoic fatty acid (OFA) has been shown to regulate the growth of mould-causing organisms such as fungi and bacteria. It is known to have antibacterial properties. The objective of the current study was to evaluate the in vitro effect of OFA on the post-harvest pathogens of Mabroom fruits. Fresh, apparently healthy, and fully ripe Mabroom dates were obtained from the National Agriculture and Food Corporation (NAFCO). The chosen fruits were packed in sterile, well-ventilated plastic boxes and transported to the lab under controlled conditions. The fruits were distributed into five groups (G1 to G5). The groups G1, G2, and G3 received 1%, 2%, and 3.5% OFA, respectively, while G4 was left untreated and G5 was washed only with tap water as a positive control treatment. Each group contained 200 g of fresh and healthy semi-soft dates. The samples were then dried and incubated in a humidity chamber at 25 °C ± 2 for seven days. The signs and symptoms of decay were monitored and recorded. The presence of pathogens was confirmed via phenotypic and microscopic-based methods. The results showed a significant difference (p ≤ 0.05) among the groups. OFA at 3.5% had the strongest inhibitory action against post-harvest pathogens, followed by OFA2%. However, there were no differences (p ≤ 0.05) between OFA1% and the control groups. Aspergillus spp., Penicillium spp., Rhizopus spp., and Botrytis spp. were most abundant in the control group, followed by OFA2% and OFA1%, respectively. In conclusion, octanoic fatty acid at 3.5% may improve the quality of date fruits through its high antimicrobial activity, reduce the effect of post-harvest decay, minimize the loss of date fruits during storage, and improve the sustainability of date fruits. Further experiments are necessary to confirm the effectiveness of OFA as a green solution for sustainable date fruit production. Full article
Show Figures

Figure 1

25 pages, 15328 KiB  
Article
Mould Growth Risk for Internal Retrofit Insulation of Heritage-Protected Timber Plank Frame Walls
by Martha Eilertsen Harberg, Silje Kathrin Asphaug and Tore Kvande
Heritage 2025, 8(7), 278; https://doi.org/10.3390/heritage8070278 - 14 Jul 2025
Viewed by 220
Abstract
A wave of energy efficiency-focused activity has spread across Europe in recent years, with ambitious goals for improving the energy performance of existing buildings through various directives. Among these existing buildings, there are older structures with heritage-protected facades. Some of the protected facades [...] Read more.
A wave of energy efficiency-focused activity has spread across Europe in recent years, with ambitious goals for improving the energy performance of existing buildings through various directives. Among these existing buildings, there are older structures with heritage-protected facades. Some of the protected facades consist of timber plank frame walls, which were common in Norway in the 19th and early 20th centuries. Internal insulation is an option for increasing the energy efficiency of such walls while preserving their protected facades. However, this approach alters the moisture performance of the wall and introduces a potential risk for mould growth, which must be assessed. To better understand the performance of these walls, the sd values of traditional types of building paper have been tested, as timber plank frame walls comprise vertical planks covered in building paper. In addition, the risk of mould growth in timber plank frame walls has been evaluated using the one-dimensional simulation tool WUFI® Pro by modelling the wall with internal retrofitting and varying input parameters. The types of building paper used have a wide range of vapour resistance values (diffusion-equivalent air layer thicknesses, sd values), which range from 0.008 m to 5.293 m. Adding 50 mm of interior insulation generally resulted in a low risk of mould growth, except in cases involving the use of a moisture-adaptive vapour barrier (MAVB). The MAVB did not result in an acceptable mould growth risk in any of the tested scenarios. Full article
Show Figures

Figure 1

24 pages, 3328 KiB  
Article
Biocontrol of Cheese Spoilage Moulds Using Native Yeasts
by Catalina M. Cabañas, Alejandro Hernández León, Santiago Ruiz-Moyano, Almudena V. Merchán, José Manuel Martínez Torres and Alberto Martín
Foods 2025, 14(14), 2446; https://doi.org/10.3390/foods14142446 - 11 Jul 2025
Viewed by 407
Abstract
Biocontrol is one of the most promising alternatives to chemical preservatives for food preservation. This study investigated the biocontrol potential of yeasts isolated from raw milk cheese against spoilage moulds. Eighty-four native yeast strains were screened for antagonistic activity against Penicillium commune, [...] Read more.
Biocontrol is one of the most promising alternatives to chemical preservatives for food preservation. This study investigated the biocontrol potential of yeasts isolated from raw milk cheese against spoilage moulds. Eighty-four native yeast strains were screened for antagonistic activity against Penicillium commune, Fusarium verticillioides, and Mucor plumbeus/racemosus via confrontation using a milk-based culture medium. Fifteen strains from the species Pichia jadinii, Kluyveromyces lactis, Kluyveromyces marxianus, and Geotrichum candidum exhibited significant antagonistic activity (inhibition zone > 2 mm) against M. plumbeus/racemosus and F. verticillioides. The modelling of the impact of ripening conditions revealed that temperature was the primary factor influencing yeast antagonism. In addition, notable variability at both species and strain levels was found. The antagonist activity was associated with different mechanisms depending on the species and strains. K. lactis stood out for its proteolytic activity and competition for iron and manganese. Additionally, two strains of this species (KL890 and KL904) were found to produce volatile organic compounds with antifungal properties (phenylethyl alcohol and 1-butanol-3-methyl propionate). G. candidum GC663 exhibited strong competition for space, as well as the ability to parasitise hyphae linked to its pectinase and β-glucanase activity. The latter enzymatic activity was detected in all P. jadinii strains, with P. jadinii PJ433 standing out due to its proteolytic activity. In a cheese matrix, the efficacy of eight yeast strains against three target moulds was assessed, highlighting the potential of G. candidum GC663 and P. jadinii PJ433 as biocontrol agents, exhibiting high and moderate efficacy, respectively, in controlling the growth of F. verticillioides and M. plumbeus/racemosus. Nonetheless, further research is necessary to elucidate their full spectrum of antifungal mechanisms and to validate their performance under industrial-scale conditions, including their impact on cheese quality. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

20 pages, 877 KiB  
Article
Effect of Lyophilised Sumac Extract on the Microbiological, Physicochemical, and Antioxidant Properties of Fresh Carrot Juice
by Marta Krajewska, Agnieszka Starek-Wójcicka, Agnieszka Sagan, Monika Sachadyn-Król and Emilia Osmólska
Sustainability 2025, 17(13), 6169; https://doi.org/10.3390/su17136169 - 4 Jul 2025
Viewed by 389
Abstract
The lyophilised sumac (Rhus coriaria L) extract (LSE), in amounts of 0.25, 0.5, 1.0, 1.25, and 1.5 g/100 ml of juice, was incorporated into carrot juice, and its properties were assessed after 24, 48, and 72 h. A product without the lyophilised [...] Read more.
The lyophilised sumac (Rhus coriaria L) extract (LSE), in amounts of 0.25, 0.5, 1.0, 1.25, and 1.5 g/100 ml of juice, was incorporated into carrot juice, and its properties were assessed after 24, 48, and 72 h. A product without the lyophilised sumac extract served as the control. The highest supplementation level enhanced the physicochemical characteristics of carrot juice, increasing carotenoid and polyphenolic contents by 22% and 70% on the first day. The LSE significantly boosted antioxidant activity, yielding over a tenfold increase, while reducing capacity was elevated more than sevenfold. LC-MS analysis confirmed the presence of bioactive compounds, such as chalcones, flavonols, flavones, and phenolic acids, further validating the extract’s functional potential. Acidity and redness exhibited a proportional increase with the rising concentrations of the additive used. Additionally, microbial growth, including aerobic mesophiles, yeasts, and moulds, was markedly suppressed. After 72 h, the total count of aerobic microorganisms and yeasts/mould was reduced by 5.64 log and 4.94 log, respectively, compared to the control. The lyophilised sumac extract, rich in valuable bioactive compounds with antioxidant properties, effectively preserved freshly pressed carrot juice, mitigating spoilage and extending its shelf life. This form of sumac serves as a sustainable beverage additive, minimises food waste, and aligns with clean-label trends. Full article
Show Figures

Figure 1

30 pages, 9217 KiB  
Article
Navigating Energy Efficiency and Mould Risk in Australian Low-Rise Homes: A Comparative Analysis of Nine External Wall Systems in Southeast Australia
by Liqun Guan, Mark Dewsbury, Louise Wallis and Hartwig Kuenzel
Energies 2025, 18(11), 2843; https://doi.org/10.3390/en18112843 - 29 May 2025
Viewed by 877
Abstract
As energy-efficient buildings become central to climate change mitigation, the opportunity for interior and interstitial moisture accumulation and mould growth can increase. This study investigated the potential simulation-based mould growth risks associated with the current generation of insulated low-rise timber framed external wall [...] Read more.
As energy-efficient buildings become central to climate change mitigation, the opportunity for interior and interstitial moisture accumulation and mould growth can increase. This study investigated the potential simulation-based mould growth risks associated with the current generation of insulated low-rise timber framed external wall systems within southeastern Australia. More than 8000 hygrothermal and bio-hygrothermal simulations were completed to evaluate seasonal moisture patterns and calculate mould growth potential for nine typical external wall systems. Results reveal that the combination of increased thermal insulation and air-tightness measures between the 2010 and 2022 specified building envelope energy efficiency regulations further increased predicted Mould Index values, particularly in cool-temperate climates. This was in part due to insufficient moisture management requirements, like an air space between the cladding and the weather resistive layer and/or the low-water vapour permeability of exterior weather resistive pliable membranes. By contrast, warmer temperate climates and drier cool-temperate climates exhibit consistently lower calculated Mould Index values. Despite the 2022 requirement for a greater water vapour-permeance of exterior pliable membranes, the external walls systems explored in this research had a higher calculated Mould Index than the 2010 regulatory compliant external wall systems. Lower air change rates significantly increased calculated interstitial mould growth risk, while the use of interior vapour control membranes proved effective in its mitigation for most external wall systems. The addition of ventilated cavity in combination with either or both an interior vapour control membrane and a highly vapour-permeable exterior pliable membranes further reduced risk. The findings underscore the need for tailored, climate-responsive design interventions to minimise surface and interstitial mould growth risk and building durability, whilst achieving high performance external wall systems. Full article
Show Figures

Figure 1

28 pages, 5187 KiB  
Article
Seagrass as Climate-Smart Insulation for the Tropics: Key Insights from Numerical Simulations and Field Studies
by Benno Rothstein, Lena Heiderich, Michael Bühler and Lalit Kishor Bhati
Sustainability 2025, 17(9), 4160; https://doi.org/10.3390/su17094160 - 5 May 2025
Viewed by 805
Abstract
Seagrass ecosystems provide essential ecological services and are increasingly recognized for their potential as sustainable building insulation. While prior studies have examined seagrass insulation in temperate climates, its suitability for tropical construction remains largely unexplored. This study assesses the insulation performance, practical challenges, [...] Read more.
Seagrass ecosystems provide essential ecological services and are increasingly recognized for their potential as sustainable building insulation. While prior studies have examined seagrass insulation in temperate climates, its suitability for tropical construction remains largely unexplored. This study assesses the insulation performance, practical challenges, and adoption barriers of seagrass insulation in tropical climates, using building physics simulations and structured expert interviews, with case studies in Seychelles and Auroville, India. Simulation results indicate that seagrass insulation with its high specific heat capacity effectively reduces overheating risks and demonstrates consistently low mould-growth potential under persistently humid tropical conditions. Despite these technical advantages, expert interviews reveal significant non-technical barriers, including negative public perception, regulatory uncertainties, and logistical complexities. Seychelles faces particular hurdles such as limited coastal storage capacity and stringent environmental regulations. In contrast, Auroville emerges as an ideal demonstration site due to its strong sustainability culture and openness to innovative building materials. The study further identifies that integrating seagrass insulation into a structured, regulated supply chain—from sustainable harvesting and processing to quality assurance—could simultaneously enhance ecosystem conservation and material availability. Implementing a harvesting framework analogous to sustainable forestry could ensure environmental protection alongside supply stability. The findings emphasize the urgent need for targeted awareness initiatives, regulatory alignment, and economic feasibility assessments to overcome barriers and enable wider adoption. Overall, this research highlights seagrass insulation as a promising, climate-positive construction material with strong potential under tropical conditions, provided that identified logistical, societal, and regulatory challenges are addressed through dedicated research, stakeholder collaboration, and practical pilot projects. Full article
(This article belongs to the Special Issue Green Construction Materials and Sustainability)
Show Figures

Figure 1

13 pages, 1192 KiB  
Article
Reducing Postharvest Losses in Organic Apples: The Role of Yeast Consortia Against Botrytis cinerea
by Joanna Krzymińska and Jolanta Kowalska
Agriculture 2025, 15(6), 602; https://doi.org/10.3390/agriculture15060602 - 11 Mar 2025
Viewed by 1027
Abstract
Grey mould caused by Botrytis cinerea presents significant challenges to apple production including organic farming. Biocontrol yeasts and their consortia can limit fungal diseases. This study evaluates the efficacy of selected yeast isolates and their consortia in suppressing B. cinerea in stored apples. [...] Read more.
Grey mould caused by Botrytis cinerea presents significant challenges to apple production including organic farming. Biocontrol yeasts and their consortia can limit fungal diseases. This study evaluates the efficacy of selected yeast isolates and their consortia in suppressing B. cinerea in stored apples. The yeast strains tested—Wickerhamomyces anomalus 114/73, Naganishia albidosimilis 117/10, and Sporobolomyces roseus 117/67—were assessed at 4 °C and 23 °C, individually and in consortia. The results demonstrate the superior efficacy of a consortium combining all three isolates, which achieved the highest reduction in spore germination and disease severity. A two-strain consortium of isolates 114/73 and 117/10 also showed substantial biocontrol activity, outperforming single-strain treatments. These combinations effectively suppressed B. cinerea growth and displayed rapid colonization of apple wounds. The study highlights the potential of yeast isolates and their consortia to manage postharvest fungal decay, addressing a critical need for sustainable, eco-friendly solutions in organic apple production. Full article
(This article belongs to the Special Issue Exploring Sustainable Strategies That Control Fungal Plant Diseases)
Show Figures

Figure 1

14 pages, 252 KiB  
Review
Applications of Platelet-Rich Fibrin (PRF) Membranes Alone or in Combination with Biomimetic Materials in Oral Regeneration: A Narrative Review
by Javier Valenzuela-Mencia and Francisco Javier Manzano-Moreno
Biomimetics 2025, 10(3), 172; https://doi.org/10.3390/biomimetics10030172 - 11 Mar 2025
Viewed by 1311
Abstract
Platelet-rich fibrin (PRF) membranes are a biomaterial derived from the patient’s own blood, used in different medical and dental areas for their ability to promote healing, tissue regeneration, and reduce inflammation. They are obtained by centrifuging the blood, which separates the components and [...] Read more.
Platelet-rich fibrin (PRF) membranes are a biomaterial derived from the patient’s own blood, used in different medical and dental areas for their ability to promote healing, tissue regeneration, and reduce inflammation. They are obtained by centrifuging the blood, which separates the components and concentrates the platelets and growth factors in a fibrin matrix. This material is then moulded into a membrane that can be applied directly to tissues. The use of these PRF membranes is often associated with the use of different biomimetic materials such as deproteinized bovine bone mineral (DBBM), β-tricalcium phosphate (β-TCP), enamel matrix derivative (EMD), and hydroxyapatite (HA). Different indications of PRF membranes have been proposed, like alveolar ridge preservation, alveolar ridge augmentation, guided tissue regeneration (GTR), and sinus floor augmentation. The aim of this narrative review is to check the state-of-the-art and to analyze the existing gaps in the use of PRF membranes in combination with biomimetic materials in alveolar ridge preservation, alveolar ridge augmentation, guided tissue regeneration (GTR), and sinus floor augmentation. Full article
(This article belongs to the Special Issue Bioinspired Materials for Tissue Engineering)
14 pages, 4323 KiB  
Article
Use of Natamycin for the Development of Polymer Systems with Antifungal Activity for Packaging Applications
by Vincenzo Titone, Manuela Ceraulo, Francesco Lopresti, Giuliana Garofalo, Raimondo Gaglio, Maria Chiara Mistretta and Luigi Botta
Polymers 2025, 17(5), 686; https://doi.org/10.3390/polym17050686 - 4 Mar 2025
Viewed by 1237
Abstract
Recently, there has been a rapid growth in the use of biodegradable polymers as alternatives to petroleum-based polymers, particularly in the packaging sector, to reduce environmental pollution. In this scenario, the aim of this work was to study the use of different amounts [...] Read more.
Recently, there has been a rapid growth in the use of biodegradable polymers as alternatives to petroleum-based polymers, particularly in the packaging sector, to reduce environmental pollution. In this scenario, the aim of this work was to study the use of different amounts of Natamycin on two polymer systems: one that is non-biodegradable but widely known in the field of packaging and one that is biodegradable and is emerging as a possible replacement, in order to accelerate progress toward the achievement of the sustainable development goals. Both systems were produced through melt mixing followed by compression moulding. Subsequently, they were fully characterized by rheological, morphological, mechanical, thermal, and wettability analyses. Natamycin release was evaluated in water at 4 °C by UV-Vis measurements. The antifungal activity of both polymeric systems containing Natamycin was assessed in vitro against three strains of undesirable filamentous fungi of food interest. The results show that PCL with 5% Natamycin represents an effective biodegradable alternative to EVA for inhibiting undesirable filamentous fungi. More specifically, both systems at 5% showed comparable inhibition zones of about 30 mm. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

15 pages, 1900 KiB  
Article
Wood Frame Walls Designed with Low Water Vapour Diffusion Resistance Wind Shields
by Nickolaj Feldt Jensen, Torben Valdbjørn Rasmussen and Lars Hofmann
Buildings 2025, 15(5), 706; https://doi.org/10.3390/buildings15050706 - 23 Feb 2025
Viewed by 661
Abstract
In response to concerns over resource shortages and environmental impacts, biobased materials are increasing in popularity. This includes an interest in replacing traditional vapour control systems, including polyethene (PE) membranes. However, the susceptibility of these materials to moisture-related degradation poses challenges. This study [...] Read more.
In response to concerns over resource shortages and environmental impacts, biobased materials are increasing in popularity. This includes an interest in replacing traditional vapour control systems, including polyethene (PE) membranes. However, the susceptibility of these materials to moisture-related degradation poses challenges. This study examines the water vapour diffusion resistance of the vapour retarder and the wind shield as key properties. Examining wood frame walls designed with low water vapour diffusion resistance wind shields, this study analyses the necessary properties of the vapour retarder as a function of the properties of the wind shield. We evaluated exterior wood frame walls that were thermally insulated with materials including mineral wool and biobased options such as flax, grass, wood fibre, straw, and cellulose. Using WUFI Pro software, we determined the relations between properties necessary to prevent mould growth. Hygrothermal simulations determined the necessary properties of the vapour retarder as a function of the properties of the wind shield. Analyses were carried out in temperate cold climates. Wind shield diffusion tightnesses ranging from 0.01 to 1 (m2·s·GPa)/kg were evaluated. Assessments were performed for walls with a U-value of 0.15 and 0.10 W/(m2·K). The indoor humidity classes 1 to 3, as defined in EN ISO 13788, were used for the simulations. The results indicate that the necessary properties of the vapour retarder depend on the properties of the wind shield, as well as the insulation material, the indoor humidity, and the U-value. As the wind shield diffusion tightness decreases, the necessary vapour retarder diffusion tightness also decreases, eventually reaching a fixed value determined by the insulation material, the indoor humidity, and the U-value. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

14 pages, 7571 KiB  
Article
Sterol Regulatory Element-Binding Protein Sre1 Mediates the Development and Pathogenicity of the Grey Mould Fungus Botrytis cinerea
by Ye Yuan, Shengnan Cao, Jiao Sun, Jie Hou, Mingzhe Zhang, Qingming Qin and Guihua Li
Int. J. Mol. Sci. 2025, 26(3), 1365; https://doi.org/10.3390/ijms26031365 - 6 Feb 2025
Viewed by 988
Abstract
The grey mould fungus Botrytis cinerea is a dangerous plant pathogen responsible for substantial agricultural losses worldwide. The pathogenic mechanisms still have many unclear aspects, and numerous new pathogenic genes remain to be identified. Here, we show that the sterol regulatory element-binding protein [...] Read more.
The grey mould fungus Botrytis cinerea is a dangerous plant pathogen responsible for substantial agricultural losses worldwide. The pathogenic mechanisms still have many unclear aspects, and numerous new pathogenic genes remain to be identified. Here, we show that the sterol regulatory element-binding protein Sre1 plays an important role in the development and pathogenicity of B. cinerea. We identified a homologue of gene SRE1 in the B. cinerea genome and utilized a reverse genetics approach to create the knockout mutant Δsre1. Our results demonstrate that SRE1 is essential for conidiation, as Δsre1 produced only 3% of the conidia compared to the wild-type strain. Conversely, Δsre1 exhibited increased sclerotium production, indicating a negative regulatory role of SRE1 in sclerotium formation. Furthermore, ergosterol biosynthesis was significantly reduced in the Δsre1 mutant, correlating with increased sensitivity to low-oxygen conditions. Pathogenicity assays revealed that Δsre1 had significantly reduced virulence, although it maintained normal infection cushion formation and penetration capabilities. Additionally, SRE1 was found to be crucial for hypoxia adaptation, as Δsre1 showed abnormal germination and reduced growth under low-oxygen conditions. These findings suggest that SRE1 mediates the development and pathogenicity of B. cinerea by regulating lipid homeostasis and facilitating adaptation to host tissue environments. Full article
(This article belongs to the Special Issue Plant Responses to Biotic and Abiotic Stresses)
Show Figures

Figure 1

12 pages, 253 KiB  
Article
Effect of Seed Treatment and Sowing Time on Microdochium spp. Caused Root Rot in Winter Wheat Cultivars
by Aurimas Sabeckis, Roma Semaškienė, Akvilė Jonavičienė, Eimantas Venslovas, Karolina Lavrukaitė and Mohammad Almogdad
Agronomy 2025, 15(2), 330; https://doi.org/10.3390/agronomy15020330 - 27 Jan 2025
Viewed by 745
Abstract
Microdochium species are harmful pathogens of winter cereals, causing snow mould and stem base diseases such as root rot. With changing climatic conditions, including prolonged wet autumns and mild winters, addressing pathogens that thrive at low positive temperatures has become increasingly important. Integrated [...] Read more.
Microdochium species are harmful pathogens of winter cereals, causing snow mould and stem base diseases such as root rot. With changing climatic conditions, including prolonged wet autumns and mild winters, addressing pathogens that thrive at low positive temperatures has become increasingly important. Integrated strategies, including optimized sowing times, resistant cultivars, and the use of seed treatment fungicides have been suggested as effective approaches to mitigate Microdochium-induced damage. Field trials were conducted between 2021 and 2024 using five winter wheat cultivars treated with different seed treatment fungicides and sown at either optimal or delayed sowing times. Laboratory analyses identified Microdochium spp. as the dominant pathogens on the stem base across all trial years. Disease severity assessments indicated that seed treatment fungicides were generally effective against root rot, with products containing fludioxonil and SDHI group fungicides delivering the best performance. While disease pressure varied between optimal and late sowing experiments, late-sown winter wheat exhibited slightly reduced damage in most years. Additionally, some of the tested winter wheat cultivars demonstrated better performance against Microdochium spp. damage compared to others, highlighting the importance of selecting resistant cultivars. This study provides valuable insights into the control of Microdochium spp. under changing climatic conditions, particularly during the early growth stages of winter wheat. Full article
(This article belongs to the Section Pest and Disease Management)
18 pages, 2662 KiB  
Article
Propolis Hydroalcoholic Extracts: Biochemical Characterization and Antifungal Efficacy
by Abderraouf Sadallah, Eugenio Aprea, Rudy Cignola, Andrea Caratti, Chiara Cordero, Andrea Angeli, Stefan Martens and Alessandra Di Francesco
Horticulturae 2025, 11(2), 122; https://doi.org/10.3390/horticulturae11020122 - 23 Jan 2025
Viewed by 1324
Abstract
The present study investigated the antifungal potential of hydroalcoholic extracts of propolis against the causal agent of grey mould, Botrytis cinerea, by in vitro and in vivo assays. Five different propolis from different Italian regions were subjected to hydroalcoholic extraction using different [...] Read more.
The present study investigated the antifungal potential of hydroalcoholic extracts of propolis against the causal agent of grey mould, Botrytis cinerea, by in vitro and in vivo assays. Five different propolis from different Italian regions were subjected to hydroalcoholic extraction using different ethanol concentrations and extraction methods. The preliminary bio-assay showed significant inhibitory effects on B. cinerea mycelial growth of propolis extracts obtained using 90% ethanol and subjected to sonication. The calculation of EC50 values, based on the demonstrated efficacy of non-volatile and volatile metabolites of propolis extracts, was useful to understand the main fraction involved in the antifungal activity of the samples and to perform the in vivo assay on grape and blueberry fruits. Three of the propolis extracts showed a high amount of genistein. Conversely, the other two propolis showed a fair amount of apigenin, caffeic acid, chrysin, ferulic acid, kaempferol, luteolin, p-coumaric acid and quercetin. From the volatile analysis of propolis, the main compounds detected were α-cadinol, α-eudesmol, calamenene, cadinol, benzyl acetate, benzyl benzoate and benzyl alcohol. The results suggest that propolis extracts have potential as an effective postharvest antifungal treatment, with varying degrees of efficacy depending on the extraction method and the type of propolis metabolites. Full article
(This article belongs to the Special Issue Alternative Control of Fruit Phytopathogens Pre- and Postharvest)
Show Figures

Figure 1

21 pages, 3301 KiB  
Article
The Use of Specific Non-Saccharomyces Yeasts as Sustainable Biocontrol Solutions Against Botrytis cinerea on Apples and Strawberries
by Zukisani Gomomo, Morris Fanadzo, Maxwell Mewa-Ngongang, Boredi Silas Chidi, Justin Wallace Hoff, Marieta van der Rijst, Lucky Mokwena, Mathabatha Evodia Setati and Heinrich Wilbur du Plessis
J. Fungi 2025, 11(1), 26; https://doi.org/10.3390/jof11010026 - 2 Jan 2025
Cited by 1 | Viewed by 1409
Abstract
Apples and strawberries hold significant commercial and nutritional value but face pre- and post-harvest spoilage due to infections by Botrytis cinerea. While spoilage is conventionally managed using synthetic chemicals, there is a growing interest in utilising yeasts as biological control agents. This study [...] Read more.
Apples and strawberries hold significant commercial and nutritional value but face pre- and post-harvest spoilage due to infections by Botrytis cinerea. While spoilage is conventionally managed using synthetic chemicals, there is a growing interest in utilising yeasts as biological control agents. This study aimed to assess the antifungal potential of non-Saccharomyces yeasts Suhomyces pyralidae, Meyerozyma guilliermondii, Pichia kluyveri, Zygoascus hellenicus, and Aureobasidium melanogenum against three B. cinerea strains (B05.10, IWBT-FF1, and PPRI 30807) on agar plates and in post-harvest trials on apples and strawberries. Aureobasidium melanogenum exhibited a broad range of extracellular enzyme production and inhibition rates of 55%, 52%, and 40% against the strains. In volatile organic compound (VOC) assays, P. kluyveri and S. pyralidae achieved 79% and 56% inhibition, respectively, with VOCs like isobutanol, isoamyl alcohol, 2-phenylethanol, isoamyl acetate, and 2-phenethyl acetate identified. In post-harvest trials, S. pyralidae was most effective on apples, with inhibition rates up to of 64%. The commercial fungicide Captan and S. pyralidae and P. kluyveri achieved 100% inhibition against the B. cinerea strains B05.10 and IWBT-FF1 on strawberries. These findings highlight the potential of the selected yeast species as biological control agents against B. cinerea, warranting further research into their application in commercial fruit protection. Full article
(This article belongs to the Special Issue Management of Postharvest Fungal Diseases of Fruits and Vegetables)
Show Figures

Figure 1

13 pages, 1254 KiB  
Article
Novel Formulations of Sourdough Bread Based on Supplements Containing Chokeberry Juice Fermented by Potentially Probiotic L. paracasei SP5
by Ioanna Mantzourani, Maria Daoutidou, Antonia Terpou and Stavros Plessas
Foods 2024, 13(24), 4031; https://doi.org/10.3390/foods13244031 - 13 Dec 2024
Cited by 2 | Viewed by 1240
Abstract
The current study focused on sourdough breads produced with various supplements consisting of freeze-dried black chokeberry juice, (i) unfermented and (ii) fermented by Lactiplantibacillus paracasei SP5, aiming to enhance their functionality and nutritional value. Specifically, the impact of these supplements on the quality [...] Read more.
The current study focused on sourdough breads produced with various supplements consisting of freeze-dried black chokeberry juice, (i) unfermented and (ii) fermented by Lactiplantibacillus paracasei SP5, aiming to enhance their functionality and nutritional value. Specifically, the impact of these supplements on the quality of sourdough breads was evaluated in terms of their nutritional features, antimicrobial capacity, and sensorial characteristics. Sourdough breads produced with freeze-dried fermented chokeberry juice exhibited elevated concentrations of lactic acid (2.82–2.99 g/kg) and acetic acid (0.93–0.99 g/kg), which significantly prolonged their resistance to mould growth and rope contamination, maintaining freshness for over 13 days. These samples also demonstrated higher antioxidant activity, with DPPH values exceeding 4 μmol TE/g and ABTS values surpassing 218 mg TE/100 g, along with a total phenolic content ranging from 85.9 to 96.3 mg GAE/100 g. Additionally, these samples showed a greater reduction in phytate, an antinutrient, compared to all other samples, including the control. The sensory evaluation conducted with consumer panels indicated that sourdough breads prepared with freeze-dried fermented chokeberry juice achieved the highest ratings in terms of taste and appearance among all tested samples. The findings are highly promising and suggest the potential for commercializing the developed supplements in the production of additive-free sourdough bread with enhanced nutritional value. Full article
(This article belongs to the Special Issue Microorganisms in Fermented Foods: Diversity, Function, and Safety)
Show Figures

Figure 1

Back to TopTop