Effect of Lyophilised Sumac Extract on the Microbiological, Physicochemical, and Antioxidant Properties of Fresh Carrot Juice
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Lyophilised Sumac Extract (LSE)
2.2. Preparation of Carrot Juice with Lyophilised Sumac Extract
2.3. Microbiological Tests
2.4. Physicochemical Properties of Juice
2.4.2. Total Soluble Solids (TSS)
2.4.3. Determination of CIE Lab Colour Parameters
2.5. Bioactive Compounds
2.5.1. Determination of Vitamin C
2.5.2. Total Carotenoid Content (TCC)
2.5.3. Total Phenolic Content (TPC)
2.6. Antioxidant Activity
2.6.1. DPPH Radical Scavenging Activity Assay (DPPH)
2.6.2. ABTS Radical Scavenging Activity Assay (ABTS)
2.6.3. Ferric Reducing Antioxidant Power Assay (FRAP)
2.7. Phenolic Compound Profile—LC-MS
2.8. Statistical Data Analysis
3. Results and Discussion
3.1. Microbiological Analyses
3.2. Physicochemical Properties
3.3. Bioactive Compounds
3.4. Antioxidant Activity
3.5. Phenolic Compound Profile—LC-MS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borghoff, L.M.; Strassner, C.; Herzig, C. Organic Juice Processing Quality from the Processors’ Perspective: A Qualitative Study. Foods 2023, 12, 377. [Google Scholar] [CrossRef]
- Lisboa, H.M.; Pasquali, M.B.; dos Anjos, A.I.; Sarinho, A.M.; de Melo, E.D.; Andrade, R.; Batista, L.; Lima, J.; Diniz, Y.; Barros, A. Innovative and Sustainable Food Preservation Techniques: Enhancing Food Quality, Safety, and Environmental Sustainability. Sustainability 2024, 16, 8223. [Google Scholar] [CrossRef]
- Klink, J.; Langen, N.; Hecht, S.; Hartmann, M. Sustainability as Sales Argument in the Fruit Juice Industry? An Analysis of on-Product Communication. Int. J. Food Syst. Dyn. 2014, 5, 144–158. [Google Scholar] [CrossRef]
- Yang, S.; Mi, L.; Wang, K.; Wang, X.; Wu, J.; Wang, M.; Xu, Z. Comparative Metabolomics Analysis in the Clean Label Ingredient of NFC Spine Grape Juice Processed by Mild Heating vs. High Pressure Processing. Food Innov. Adv. 2023, 2, 95–105. [Google Scholar] [CrossRef]
- Bor, T.; Aljaloud, S.O.; Gyawali, R.; Ibrahim, S.A. Antimicrobials from Herbs, Spices, and Plants. In Fruits, Vegetables, and Herbs; Elsevier: Amsterdam, The Netherlands, 2016; pp. 551–578. [Google Scholar]
- Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Nur, H.; Ismail, A.F.; Sharif, S.; RamaKrishna, S.; Berto, F. Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants 2020, 9, 1309. [Google Scholar] [CrossRef]
- Perignon, M.; Vieux, F.; Soler, L.-G.; Masset, G.; Darmon, N. Improving Diet Sustainability through Evolution of Food Choices: Review of Epidemiological Studies on the Environmental Impact of Diets. Nutr. Rev. 2017, 75, 2–17. [Google Scholar] [CrossRef]
- Kocić-Tanackov, S.; Pavlović, H. Natural Antimicrobial Agents Utilized in Food Preservation. Foods 2023, 12, 3484. [Google Scholar] [CrossRef]
- Opara, E.I.; White, K.N.; Uvere, P.O. Chemical Analyses and Therapeutic Properties of Plant Extracts. Molecules 2025, 30, 610. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Mutha, R.E.; Tatiya, A.U.; Surana, S.J. Flavonoids as Natural Phenolic Compounds and Their Role in Therapeutics: An Overview. Futur. J. Pharm. Sci. 2021, 7, 25. [Google Scholar] [CrossRef]
- Belhassan, A.; Zaki, H.; Chtita, S.; Alaqarbeh, M.; Alsakhen, N.; Benlyas, M.; Lakhlifi, T.; Bouachrine, M. Camphor, Artemisinin and Sumac Phytochemicals as Inhibitors against COVID-19: Computational Approach. Comput. Biol. Med. 2021, 136, 104758. [Google Scholar] [CrossRef]
- Korkmaz, H. Could Sumac Be Effective on COVID-19 Treatment? J. Med. Food 2021, 24, 563–568. [Google Scholar] [CrossRef]
- Forouzanfar, F.; Ahmadpoor, M.; Farahi, M.M.; Hadianfar, A.; Sahebkar, A.; Esmaily, H.; Nematy, M.; Rakhshandeh, H. The Effect of Pomegranate Juice and Sumac Consumption in the Treatment of Outpatients with COVID-19. Mediat. Inflamm. 2022, 2022, 6850342. [Google Scholar] [CrossRef]
- Siudem, P. Wybrane Zioła w Prewencji i Wspomaganiu Leczenia Wirusowych Infekcji Dróg Oddechowych. Lek w Polsce 2022, 375, 13–20. [Google Scholar]
- Osmólska, E.; Stoma, M.; Sagan, A.; Chudzik, B.; Starek-Wójcicka, A. Effect of Supplementation of Freshly Pressed Carrot Juice with Rhus coriaria L. on Changes in Juice Quality. Sustainability 2022, 15, 719. [Google Scholar] [CrossRef]
- Fahmy, H.; Hegazi, N.; El-Shamy, S.; Farag, M.A. Pomegranate Juice as a Functional Food: A Comprehensive Review of Its Polyphenols, Therapeutic Merits, and Recent Patents. Food Funct. 2020, 11, 5768–5781. [Google Scholar] [CrossRef]
- Rickards, L.; Lynn, A.; Harrop, D.; Barker, M.E.; Russell, M.; Ranchordas, M.K. Effect of Polyphenol-Rich Foods, Juices, and Concentrates on Recovery from Exercise Induced Muscle Damage: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 2988. [Google Scholar] [CrossRef]
- Abu-Reida, I.M.; Jamous, R.M.; Ali-Shtayeh, M.S. Phytochemistry, Pharmacological Properties and Industrial Applications of Rhus coriaria L. (Sumac). Jordan J. Biol. Sci. 2014, 147, 1–12. [Google Scholar] [CrossRef]
- Alsamri, H.; Athamneh, K.; Pintus, G.; Eid, A.H.; Iratni, R. Pharmacological and Antioxidant Activities of Rhus coriaria L. (Sumac). Antioxidants 2021, 10, 73. [Google Scholar] [CrossRef]
- Batiha, G.E.-S.; Ogunyemi, O.M.; Shaheen, H.M.; Kutu, F.R.; Olaiya, C.O.; Sabatier, J.-M.; De Waard, M. Rhus coriaria L. (Sumac), a Versatile and Resourceful Food Spice with Cornucopia of Polyphenols. Molecules 2022, 27, 5179. [Google Scholar] [CrossRef]
- Hamza, R.A.T.; Osheba, A.S.; Sobhy, H.M.; Hekal, S.H.A. Antioxidant and Antimicrobial Activities of Galangal and Sumac to Improve Quality Attributes of Beef Burger. Adv. Anim. Vet. Sci 2022, 10, 1202–1210. [Google Scholar]
- Gulmez, M.; Oral, N.; Vatansever, L. The Effect of Water Extract of Sumac (Rhus coriaria L.) and Lactic Acid on Decontamination and Shelf Life of Raw Broiler Wings. Poult. Sci. 2006, 85, 1466–1471. [Google Scholar] [CrossRef]
- Aliakbarlu, J.; Mohammadi, S. Effect of Sumac (Rhus coriaria L.) and Barberry (Berberis vulgaris L.) Water Extracts on Microbial Growth and Chemical Changes in Ground Sheep Meat. J. Food Process. Preserv. 2015, 39, 1859–1866. [Google Scholar] [CrossRef]
- Mahlooji, M.; Ahmadi-Dastgerdi, A.; Sharafati-Chaloshtori, R. An Investigation of the Antibacterial Effect of Sumac Extract in Minced Beef Contaminated with Multidrug Resistance E. coli. Yafteh 2020, 22, 69–83. [Google Scholar]
- Fadiloglu, E.E.; Çoban, M.Z. The Effect of Glazing with Sumac (Rhus coriaria L.) Extract on the Quality of Frozen Rainbow Trout (Oncorhynchus mykiss) Fillets. Ecol. Life Sci. 2019, 14, 129–138. [Google Scholar]
- Mardoukhi, S.; Alizadeh, E. Effect of Aqueous Extract of Iranian Sumac (Rhus coriaria L.) on the Shelf Life of Hypophthalmichthys molitrix Fillet during Storage at 4 °C. Iran. J. Fish. Sci. 2021, 20, 615–627. [Google Scholar]
- Atwaa, E.S.H.; Shahein, M.R.; Radwan, H.A.; Mohammed, N.S.; Aloraini, M.A.; Albezrah, N.K.A.; Alharbi, M.A.; Sayed, H.H.; Daoud, M.A.; Elmahallawy, E.K. Antimicrobial Activity of Some Plant Extracts and Their Applications in Homemade Tomato Paste and Pasteurized Cow Milk as Natural Preservatives. Fermentation 2022, 8, 428. [Google Scholar] [CrossRef]
- Salama, H.H.; Kholif, A.M.; Fouad, M.T.; Koç, G.Ç. Properties of Novel Ultra-Filtrated Soft Cheese Supplemented with Sumac Extract. Egypt. J. Chem. 2022, 65, 219–231. [Google Scholar] [CrossRef]
- Osmólska, E.; Starek-Wójcicka, A.; Żukiewicz-Sobczak, W.; Sobczak, P. Effects of the Powdered Fruit of Rhus coriaria L. Addition on Quality Attributes Based on Total Polyphenols Content of Smoothie during Storage. J. Res. Appl. Agric. Eng. 2024, 69, 5–10. [Google Scholar] [CrossRef]
- Ozcan, A.; Susluoglu, Z.; Nogay, G.; Ergun, M.; Sutyemez, M. Phytochemical Characterization of Some Sumac (Rhus coriaria L.) Genotypes from Southern Part of Turkey. Food Chem. 2021, 358, 129779. [Google Scholar] [CrossRef]
- El Ghizzawi, F.; Khaled, S.; El Khatib, S.; Krayem, M. A Focused Insight into Sumac: Biological, Chemical, Health Benefits and Its Applications in Food Industry. Food Sci. Eng. 2023, 4, 191–203. [Google Scholar] [CrossRef]
- Plaskova, A.; Mlcek, J. New Insights of the Application of Water or Ethanol-Water Plant Extract Rich in Active Compounds in Food. Front. Nutr. 2023, 10, 1118761. [Google Scholar] [CrossRef]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef]
- Kyriakoudi, A.; Mourtzinos, I. Novel Plant Extracts as Food Additives. In Sustainable Use of Feed Additives in Livestock: Novel Ways for Animal Production; Springer: Berlin/Heidelberg, Germany, 2023; pp. 229–244. [Google Scholar]
- Jimenez-Garcia, S.N.; Vazquez-Cruz, M.A.; Ramirez-Gomez, X.S.; Beltran-Campos, V.; Contreras-Medina, L.M.; Garcia-Trejo, J.F.; Feregrino-Pérez, A.A. Changes in the Content of Phenolic Compounds and Biological Activity in Traditional Mexican Herbal Infusions with Different Drying Methods. Molecules 2020, 25, 1601. [Google Scholar] [CrossRef]
- Hazarika, U.; Gosztola, B. Lyophilization and Its Effects on the Essential Oil Content and Composition of Herbs and Spices—A Review. Acta Sci. Pol. Technol. Aliment. 2020, 19, 467–473. [Google Scholar]
- Macari, A.; Sturza, R.; Lung, I.; Soran, M.-L.; Opriş, O.; Balan, G.; Ghendov-Mosanu, A.; Vodnar, D.C.; Cojocari, D. Antimicrobial Effects of Basil, Summer Savory and Tarragon Lyophilized Extracts in Cold Storage Sausages. Molecules 2021, 26, 6678. [Google Scholar] [CrossRef]
- Tihauan, B.-M.; Marinas, I.-C.; Bleotu, C.; Dolete, G.; Onisei, T.; Serbancea, F.; Mateescu, C.; Răscol, M. Evaluation of Cytotoxicity, Nutritional and Anti-Oxidative Status of Lyophilized Plant Extracts Used in Dietary Supplements. Rom. Biotechnol. Lett. 2021, 26, 2396–2405. [Google Scholar] [CrossRef]
- Kosar, M.; Bozan, B.; Temelli, F.; Baser, K.H.C. Antioxidant Activity and Phenolic Composition of Sumac (Rhus coriaria L.) Extracts. Food Chem. 2007, 103, 952–959. [Google Scholar] [CrossRef]
- Bursal, E.; Köksal, E. Evaluation of Reducing Power and Radical Scavenging Activities of Water and Ethanol Extracts from Sumac (Rhus coriaria L.). Food Res. Int. 2011, 44, 2217–2221. [Google Scholar] [CrossRef]
- Przybylska, K.; Bennett, R.N.; Kromer, K.; Gee, J.M. Assessment of the Antiproliferative Activity of Carrot and Apple Extracts. Pol. J. Food Nutr. Sci. 2007, 57, 307–314. [Google Scholar]
- PN-EN ISO 4833-1:2013-12; Mikrobiologia Łańcucha Żywnościowego—Horyzontalna Metoda Oznaczania Liczby Drobnoustrojów—Część 1: Oznaczanie Liczby Metodą Posiewu Zalewowego w Temperaturze 30 Stopni C. Polish Committee for Standardization: Warsaw, Poland, 2013.
- PN ISO 21527-2: 2009; Mikrobiologia Żywności i Pasz—Horyzontalna Metoda Oznaczania Liczby Drożdży i Pleśni—Część 1: Metoda Liczenia Kolonii w Produktach o Aktywności Wody Niższej Lub Równej 0,95. Polish Commmittee for Standardization: Warsaw, Poland, 2009.
- Nweze, C.C.; Abdulganiyu, M.G.; Erhabor, O.G. Comparative Analysis of Vitamin C in Fresh Fruits Juice of Malus domestica, Citrus sinensi, Ananas comosus and Citrullus lanatus by Iodometric Titration. Int. J. Sci. Environ. Technol. 2015, 4, 17–22. [Google Scholar]
- González-Casado, S.; Martín-Belloso, O.; Elez-Martínez, P.; Soliva-Fortuny, R. Enhancing the Carotenoid Content of Tomato Fruit with Pulsed Electric Field Treatments: Effects on Respiratory Activity and Quality Attributes. Postharvest Biol. Technol. 2018, 137, 113–118. [Google Scholar] [CrossRef]
- Ratajczak, K.; Piotrowska-Cyplik, A.; Cyplik, P. Analysis of the Effect of Various Potential Antimicrobial Agents on the Quality of the Unpasteurized Carrot Juice. Molecules 2023, 28, 6297. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Staszowska-Karkut, M.; Chilczuk, B.; Materska, M.; Kontek, R.; Marciniak, B. Phenolic Compounds in Fractionated Blackcurrant Leaf Extracts in Relation to the Biological Activity of the Extracts. Molecules 2023, 28, 7459. [Google Scholar] [CrossRef]
- Sokolowska, B.; Chotkiewicz, M.; Niezgoda, J.; Dekowska, A. Ocena Zanieczyszczenia Mikrobiologicznego Świeżych, Niepasteryzowanych, Wyciskanych Soków Owocowych i Warzywnych Dostępnych w Handlu. Zesz. Probl. Postępów Nauk. Rol. 2011, 569, 219–228. [Google Scholar]
- Cushnie, T.T.; Lamb, A.J. Recent Advances in Understanding the Antibacterial Properties of Flavonoids. Int. J. Antimicrob. Agents 2011, 38, 99–107. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Hamilton, V.E.S.; Chapman, D.G.; Taylor, P.W.; Lamb, A.J. Aggregation of Staphylococcus aureus Following Treatment with the Antibacterial Flavonol Galangin. J. Appl. Microbiol. 2007, 103, 1562–1567. [Google Scholar] [CrossRef]
- Nasar-Abbas, S.M.; Halkman, A.K. Antimicrobial Effect of Water Extract of Sumac (Rhus coriaria L.) on the Growth of Some Food Borne Bacteria Including Pathogens. Int. J. Food Microbiol. 2004, 97, 63–69. [Google Scholar] [CrossRef]
- Gabr, S.A.; Alghadir, A.H. Phytochemical Analysis and in Vitro Antifungal Activities of Bioactive Fractions from Leaves of Rhus coriaria (Sumac). J. Pure Appl. Microbiol. 2015, 9, 559–565. [Google Scholar]
- Mahdavi, S.; Hesami, B.; Sharafi, Y. Antimicrobial and Antioxidant Activities of Iranian Sumac (Rhus coriaria L.) Fruit Ethanolic Extract. J. Appl. Microbiol. Biochem. 2018, 2, 2576–1412. [Google Scholar] [CrossRef]
- Wang, S.; Nie, S.; Gan, R.-Y.; Zhu, F. Properties of Cheese and Ground Beef in the Presence of Staghorn Sumac. eFood 2023, 4, e74. [Google Scholar] [CrossRef]
- Bayram, Ö.A.; Bayram, M.; Tekin, A.R. Spray Drying of Sumac Flavour Using Sodium Chloride, Sucrose, Glucose and Starch as Carriers. J. Food Eng. 2005, 69, 253–260. [Google Scholar] [CrossRef]
- Rodríguez, L.M.N.; Arias, R.; Soteras, T.; Sancho, A.; Pesquero, N.; Rossetti, L.; Tacca, H.; Aimaretti, N.; Cervantes, M.L.R.; Szerman, N. Comparison of the Quality Attributes of Carrot Juice Pasteurized by Ohmic Heating and Conventional Heat Treatment. LWT 2021, 145, 111255. [Google Scholar] [CrossRef]
- Jabbar, S.; Abid, M.; Hu, B.; Hashim, M.M.; Lei, S.; Wu, T.; Zeng, X. Exploring the Potential of Thermosonication in Carrot Juice Processing. J. Food Sci. Technol. 2015, 52, 7002–7013. [Google Scholar] [CrossRef]
- Umair, M.; Jabbar, S.; Lin, Y.; Nasiru, M.M.; Zhang, J.; Abid, M.; Murtaza, M.A.; Zhao, L. Comparative Study: Thermal and Non-Thermal Treatment on Enzyme Deactivation and Selected Quality Attributes of Fresh Carrot Juice. Int. J. Food Sci. Technol. 2022, 57, 827–841. [Google Scholar] [CrossRef]
- Al-Marazeeq, K.M.; Al-Rousan, W.; Al-obaidy, K.; Al-obaidy, M. The Effect of Using Water Sumac (Rhus coriaria L.) Extract on Wheat Pan Bread Quality Characteristics. Cereal Chem. 2019, 96, 847–855. [Google Scholar] [CrossRef]
- Kashiouris, M.G.; L’Heureux, M.; Cable, C.A.; Fisher, B.J.; Leichtle, S.W.; Fowler, A.A. The Emerging Role of Vitamin C as a Treatment for Sepsis. Nutrients 2020, 12, 292. [Google Scholar] [CrossRef]
- Padayatty, S.J.; Levine, M. Vitamin C: The Known and the Unknown and Goldilocks. Oral Dis. 2016, 22, 463–493. [Google Scholar] [CrossRef]
- Yadav, A.; Kumari, R.; Yadav, A.; Mishra, J.P.; Srivatva, S.; Prabha, S. Antioxidants and Its Functions in Human Body—A Review. Res. Environ. Life Sci 2016, 9, 1328–1331. [Google Scholar]
- Gong, Y.; Yu, J.; Qian, P.; Meng, J.; Zhang, X.; Lu, R. Comparative Study of the Microbial Stability and Quality of Carrot Juice Treated by High-Pressure Processing Combined with Mild Temperature and Conventional Heat Treatment. J. Food Process Eng. 2015, 38, 395–404. [Google Scholar] [CrossRef]
- Aderinola, T.A.; Abaire, K.E. Quality Acceptability, Nutritional Composition and Antioxidant Properties of Carrot-Cucumber Juice. Beverages 2019, 5, 15. [Google Scholar] [CrossRef]
- Michalczyk, M.; Macura, R.; Fiutak, G. Wpłlyw Warunków Przechowywania Na Zawartość Składników Bioaktywnych w Nieutrwalonych Termicznie Sokach Owocowych i Warzywnych. Żywność Nauka Technol. Jakość 2017, 24, 41–50. [Google Scholar]
- Bell, T.; Alamzad, R.; Graf, B.A. Effect of pH on the Chemical Stability of Carotenoids in Juice. Proc. Nutr. Soc. 2016, 75. [Google Scholar] [CrossRef]
- Arab, A.; Talebi, M.; Sayed Tabatabaei, B.E.; Rahimmalek, M. Evaluation of Plant Pigments Existence in Medicinal Plant, Sumac (Rhus coriaria L.) at Two Different Seasons. J. Med. Herbs 2013, 4, 95–100. [Google Scholar]
- Wang, S.; Zhu, F. Chemical Composition and Biological Activity of Staghorn Sumac (Rhus typhina). Food Chem. 2017, 237, 431–443. [Google Scholar] [CrossRef]
- Hosseini, S.; Ramezan, Y.; Arab, S. A Comparative Study on Physicochemical Characteristics and Antioxidant Activity of Sumac (Rhus coriaria L.), Cumin (Cuminum cyminum), and Caraway (Carum carvil) Oils. J. Food Meas. Charact. 2020, 14, 3175–3183. [Google Scholar] [CrossRef]
- Castro-López, C.; Sánchez-Alejo, E.J.; Saucedo-Pompa, S.; Rojas, R.; Aranda-Ruiz, J.; Martínez-Avila, G.C.G. Fluctuations in Phenolic Content, Ascorbic Acid and Total Carotenoids and Antioxidant Activity of Fruit Beverages during Storage. Heliyon 2016, 2, e00152. [Google Scholar] [CrossRef]
- Piljac-Žegarac, J.; Valek, L.; Martinez, S.; Belščak, A. Fluctuations in the Phenolic Content and Antioxidant Capacity of Dark Fruit Juices in Refrigerated Storage. Food Chem. 2009, 113, 394–400. [Google Scholar] [CrossRef]
- Khalil, M.; Hayek, S.; Khalil, N.; Serale, N.; Vergani, L.; Calasso, M.; De Angelis, M.; Portincasa, P. Role of Sumac (Rhus coriaria L.) in the Management of Metabolic Syndrome and Related Disorders: Focus on NAFLD-Atherosclerosis Interplay. J. Funct. Foods 2021, 87, 104811. [Google Scholar] [CrossRef]
- Soleymani Majd, N.; Coe, S.; Lightowler, H.; Thondre, P.S. The Effect of High-Polyphenol Sumac (Rhus coriaria) on Food Intake Using Sensory and Appetite Analysis in Younger and Older Adults: A Randomized Controlled Trial. Food Sci. Nutr. 2023, 11, 3833–3843. [Google Scholar] [CrossRef]
- Dziki, D.; Cacak-Pietrzak, G.; Hassoon, W.H.; Gawlik-Dziki, U.; Sułek, A.; Różyło, R.; Sugier, D. The Fruits of Sumac (Rhus coriaria L.) as a Functional Additive and Salt Replacement to Wheat Bread. LWT 2021, 136, 110346. [Google Scholar] [CrossRef]
- Zannou, O.; Pashazadeh, H.; Galanakis, C.M.; Alamri, A.S.; Koca, I. Carboxylic Acid-Based Deep Eutectic Solvents Combined with Innovative Extraction Techniques for Greener Extraction of Phenolic Compounds from Sumac (Rhus coriaria L.). J. Appl. Res. Med. Aromat. Plants 2022, 30, 100380. [Google Scholar] [CrossRef]
- Mohdaly, A.A.A.; Ramadan, M.F. Characteristics, Composition and Functional Properties of Seeds, Seed Cake and Seed Oil from Different Brassica carinata Genotypes. Food Biosci. 2022, 48, 100752. [Google Scholar]
- Isik, S.; Tayman, C.; Cakir, U.; Koyuncu, I.; Taskin Turkmenoglu, T.; Cakir, E. Sumac (Rhus coriaria) for the Prevention and Treatment of Necrotizing Enterocolitis. J. Food Biochem. 2019, 43, e13068. [Google Scholar] [CrossRef]
- Tohma, H.; Altay, A.; Köksal, E.; Gören, A.C.; Gülçin, İ. Measurement of Anticancer, Antidiabetic and Anticholinergic Properties of Sumac (Rhus coriaria): Analysis of Its Phenolic Compounds by LC–MS/MS. J. Food Meas. Charact. 2019, 13, 1607–1619. [Google Scholar] [CrossRef]
- Romboli, Y.; Mangani, S.; Buscioni, G.; Granchi, L.; Vincenzini, M. Effect of Saccharomyces cerevisiae and Candida zemplinina on Quercetin, Vitisin A and Hydroxytyrosol Contents in Sangiovese Wines. World J. Microbiol. Biotechnol. 2015, 31, 1137–1145. [Google Scholar] [CrossRef]
- Tilley, A.; McHenry, M.P.; McHenry, J.A.; Solah, V.; Bayliss, K. The Role of Substrates in Polyphenol Oxidase Mediated Browning, Curr. Res. Food Sci. 2023, 7, 100623. [Google Scholar]
- Han, Z.; Zhu, M.; Wan, X.; Zhai, X.; Ho, C.-T.; Zhang, L. Food Polyphenols and Maillard Reaction: Regulation Effect and Chemical Mechanism. Crit. Rev. Food Sci. Nutr. 2024, 64, 4904–4920. [Google Scholar] [CrossRef]
Parameters | LSE Addition (g/100 mL) | ||||
---|---|---|---|---|---|
0.25 | 0.5 | 1.0 | 1.25 | 1.5 | |
Mesophilic aerobic bacterial counts | + | + | + | + | + |
Number of yeasts and moulds | + | + | + | + | + |
pH | + | + | + | + | + |
TSS | + | + | + | ||
L* | + | + | + | + | + |
a* | + | + | + | + | + |
b* | + | + | + | + | + |
Vitamin C | + | ||||
TCC | + | + | + | + | |
TPC | + | + | + | + | |
DPPH | + | + | + | + | |
ABTS | + | + | + | ||
FRAP | + | + | + |
LSE Addition (g/100 mL) | Storage Time (h) | ||
---|---|---|---|
24 | 48 | 72 | |
pH | |||
0 (control) | 6.47 ± 0.08 | 6.23 ± 0.09 | JS |
0.25 | 5.61 ± 0.00 | 5.38 ± 0.14 | JS |
0.5 | 5.14 ± 0.00 | 4.94 ± 0.05 | JS |
1.0 | 4.59 ± 0.01 | 4.37 ± 0.08 | 4.52 ± 0.04 |
1.25 | 4.43 ± 0.00 | 4.33 ± 0.05 | 4.38 ± 0.00 |
1.5 | 4.26 ± 0.01 | 4.15 ± 0.07 | 4.30 ± 0.01 |
TSS (°Brix) | |||
0 (control) | 10.03 ± 0.15 | 10.47 ± 0.15 | JS |
0.25 | 10.20 ± 0.10 | 10.80 ± 0.10 | JS |
0.5 | 10.73 ± 0.06 | 11.03 ± 0.15 | JS |
1.0 | 11.67 ± 0.21 | 12.03 ± 0.21 | 11.17 ± 0.06 |
1.25 | 11.40 ± 0.36 | 11.47 ± 0.38 | 10.77 ± 0.21 |
1.5 | 11.07 ± 0.12 | 11.50 ± 0.10 | 11.97 ± 0.15 |
LSE Addition (g/100 mL) | Storage Time (h) | Colour Index | ||
---|---|---|---|---|
L* | a* | b* | ||
0 (control) | 24 | 37.63 ± 0.10 | 11.67 ± 0.03 | 16.53 ± 0.07 |
0.25 | 39.15 ± 0.03 | 15.59 ± 0.07 | 20.70 ± 0.08 | |
0.5 | 41.04 ± 0.18 | 18.32 ± 0.06 | 23.82 ± 0.04 | |
1.0 | 41.09 ± 0.11 | 18.55 ± 0.04 | 23.41 ± 0.02 | |
1.25 | 40.23 ± 0.09 | 17.78 ± 0.02 | 21.75 ± 0.01 | |
1.5 | 40.90 ± 0.10 | 18.65 ± 0.04 | 22.91 ± 0.03 | |
0 (control) | 48 | 37.08 ± 0.13 | 11.31 ± 0.21 | 16.28 ± 0.07 |
0.25 | 38.79 ± 0.10 | 14.13 ± 0.08 | 16.08 ± 0.09 | |
0.5 | 40.44 ± 0.07 | 17.59 ± 0.24 | 22.13 ± 0.11 | |
1.0 | 40.85 ± 0.07 | 17.58 ± 0.04 | 22.61 ± 0.06 | |
1.25 | 39.27 ± 0.08 | 16.61 ± 0.14 | 20.28 ± 0.06 | |
1.5 | 39.50 ± 0.06 | 17.51 ± 0.16 | 21.13 ± 0.08 | |
0 (control) | 72 | JS | JS | JS |
0.25 | JS | JS | JS | |
0.5 | JS | JS | JS | |
1.0 | 38.91 ± 0.09 | 16.01 ± 0.10 | 20.83 ± 0.15 | |
1.25 | 39.02 ± 0,17 | 16.20 ± 0.11 | 19.12 ± 0.49 | |
1.5 | 39.09 ± 0.05 | 16.15 ± 0.04 | 19.96 ± 0.12 |
Storage Time | LSE Addition (g/100 mL) | Vitamin C (mg/100 g) | TCC (mg/100 g) | TPC (mg/100 mL) |
---|---|---|---|---|
24 h | 0 (control) | 3.34 ± 0.40 | 14.08 ± 0.08 | 20.33 ± 0.04 |
0.25 | 3.25 ± 0.19 | 13.87 ± 0.13 | 25.86 ± 0.22 | |
0.5 | 3.73 ± 0.21 | 17.71 ± 0.14 | 46.33 ± 0.09 | |
1.0 | 4.00 ± 0.36 | 17.62 ± 0.02 | 47.15 ± 0.04 | |
1.25 | 4.08 ± 0.01 | 17.77 ± 0.08 | 50.62 ± 0.17 | |
1.5 | 4.24 ± 0.45 | 17.97 ± 0.08 | 55.38 ± 0.39 | |
48 h | 0 (control) | 3.36 ± 0.16 | 13.40 ± 0.04 | 16.83 ± 0.39 |
0.25 | 3.07 ± 0.09 | 13.82 ± 0.02 | 19.50 ± 0.87 | |
0.5 | 3.44 ± 0.17 | 17.71 ± 0.09 | 22.08 ± 0.09 | |
1.0 | 3.79 ± 0.40 | 17.41 ± 0.05 | 35.25 ± 0.30 | |
1.25 | 3.80 ± 0.35 | 17.28 ± 0.09 | 49.40 ± 0.26 | |
1.5 | 4.12 ± 0.20 | 17.36 ± 0.06 | 51.33 ± 0.22 | |
72 h | 0 (control) | JS | JS | JS |
0.25 | JS | JS | JS | |
0.5 | JS | JS | JS | |
1.0 | 3.52 ± 0.37 | 18.04 ± 0.02 | 37.12 ± 0.52 | |
1.25 | 3.32 ± 0.39 | 18.06 ± 0.02 | 49.67 ± 0.04 | |
1.5 | 3.55 ± 0.06 | 18.41 ± 0.06 | 56.61 ± 0.22 |
Storage Time | LSE Addition (g/100 mL) | DPPH | ABTS | FRAP |
---|---|---|---|---|
(mmol TE/100 mL) | ||||
24 h | 0 (control) | 7.50 ± 1.15 | 30.50 ± 0.77 | 130.74 ± 3.62 |
0.25 | 11.79 ± 1.15 | 33.86 ± 0.88 | 149.49 ± 2.01 | |
0.5 | 27.07 ± 0.86 | 44.26 ± 0.55 | 344.38 ± 4.42 | |
1.0 | 53.67 ± 0.43 | 74.54 ± 0.44 | 462.84 ± 3.21 | |
1.25 | 66.72 ± 1.30 | 90.50 ± 0.44 | 751.19 ± 2.81 | |
1.5 | 77.63 ± 1.15 | 101.45 ± 1.33 | 994.66 ± 3.21 | |
48 h | 0 (control) | 9.69 ± 0.92 | 24.65 ± 0.05 | 128.75 ± 4.82 |
0.25 | 11.08 ± 0.52 | 24.81 ± 1.35 | 148.35 ± 2.01 | |
0.5 | 20.82 ± 0.13 | 34.37 ± 1.58 | 221.93 ± 4.26 | |
1.0 | 29.06 ± 1.05 | 41.14 ± 1.01 | 311.42 ± 2.81 | |
1.25 | 51.49 ± 1.05 | 68.78 ± 0.22 | 492.67 ± 2.81 | |
1.5 | 60.39 ± 1.05 | 85.75 ± 1.46 | 643.52 ± 0.80 | |
72 h | 0 (control) | JS | JS | JS |
0.25 | JS | JS | JS | |
0.5 | JS | JS | JS | |
1.0 | 32.32 ± 0.52 | 63.49 ± 1.17 | 365.11 ± 8.84 | |
1.25 | 44.71 ± 0.69 | 84.77 ± 1.05 | 529.32 ± 5.62 | |
1.5 | 53.51 ± 0.64 | 99.35 ± 1.05 | 583.58 ± 6.03 |
Vitamin C | TCC | TPC | |
---|---|---|---|
FRAP | 0.806 | 0.696 | 0.878 |
DPPH | 0.842 | 0.742 | 0.912 |
ABTS | 0.679 | 0.745 | 0.928 |
Component | LSE Addition (g/100 mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|
24 h | 72 h | ||||||||
0 | 0.25 | 0.5 | 1 | 1.25 | 1.5 | 1 | 1.25 | 1.5 | |
2,3-Dihydroybenzoic acid | + | + | + | + | + | + | + | + | |
4-Hydroxycoumarin | + | + | + | + | + | + | + | + | |
Anhydro-secoisolariciresinol | + | + | + | ||||||
Caffeic acid | + | + | + | + | + | + | + | + | + |
Catechin | + | + | + | + | + | ||||
Catechol | + | + | + | ||||||
Chlorogenic acid | + | + | + | + | + | + | + | + | + |
Coumarin | + | + | + | + | + | + | |||
Ferulic acid | + | + | + | + | + | + | + | + | + |
Gallic acid | + | + | + | + | + | + | |||
Isoferulic acid | + | + | + | + | + | + | + | + | |
Isoquercetin | + | + | + | + | + | + | + | + | + |
Myricetin | + | + | + | + | + | + | |||
Phloroglucinol | + | + | + | + | + | + | + | + | + |
Protocatechuic acid | + | + | + | + | + | + | |||
Pyrogallol | + | + | + | + | + | + | + | + | + |
Quercetin | + | + | + | + | + | + | + | + | + |
Quercetin 3′-O-glucuronide | + | + | + | + | + | ||||
Quercetin3-O-glucosylxyloside | + | + | + | + | + | + | + | ||
Rosmanol | + | + | + | ||||||
Syringic acid | + | + | + | + | + | + | |||
trans Ferulic acid | + | + | + | + | + | + | + | + | |
Tyrosol | + | + | + | ||||||
Vanillic acid | + | + | + | + | + | + | + | + | + |
Vanillin | + | + | + | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krajewska, M.; Starek-Wójcicka, A.; Sagan, A.; Sachadyn-Król, M.; Osmólska, E. Effect of Lyophilised Sumac Extract on the Microbiological, Physicochemical, and Antioxidant Properties of Fresh Carrot Juice. Sustainability 2025, 17, 6169. https://doi.org/10.3390/su17136169
Krajewska M, Starek-Wójcicka A, Sagan A, Sachadyn-Król M, Osmólska E. Effect of Lyophilised Sumac Extract on the Microbiological, Physicochemical, and Antioxidant Properties of Fresh Carrot Juice. Sustainability. 2025; 17(13):6169. https://doi.org/10.3390/su17136169
Chicago/Turabian StyleKrajewska, Marta, Agnieszka Starek-Wójcicka, Agnieszka Sagan, Monika Sachadyn-Król, and Emilia Osmólska. 2025. "Effect of Lyophilised Sumac Extract on the Microbiological, Physicochemical, and Antioxidant Properties of Fresh Carrot Juice" Sustainability 17, no. 13: 6169. https://doi.org/10.3390/su17136169
APA StyleKrajewska, M., Starek-Wójcicka, A., Sagan, A., Sachadyn-Król, M., & Osmólska, E. (2025). Effect of Lyophilised Sumac Extract on the Microbiological, Physicochemical, and Antioxidant Properties of Fresh Carrot Juice. Sustainability, 17(13), 6169. https://doi.org/10.3390/su17136169