Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,744)

Search Parameters:
Keywords = motor area

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1185 KiB  
Article
PredictMed-CDSS: Artificial Intelligence-Based Decision Support System Predicting the Probability to Develop Neuromuscular Hip Dysplasia
by Carlo M. Bertoncelli, Federico Solla, Michal Latalski, Sikha Bagui, Subhash C. Bagui, Stefania Costantini and Domenico Bertoncelli
Bioengineering 2025, 12(8), 846; https://doi.org/10.3390/bioengineering12080846 - 6 Aug 2025
Abstract
Neuromuscular hip dysplasia (NHD) is a common deformity in children with cerebral palsy (CP). Although some predictive factors of NHD are known, the prediction of NHD is in its infancy. We present a Clinical Decision Support System (CDSS) designed to calculate the probability [...] Read more.
Neuromuscular hip dysplasia (NHD) is a common deformity in children with cerebral palsy (CP). Although some predictive factors of NHD are known, the prediction of NHD is in its infancy. We present a Clinical Decision Support System (CDSS) designed to calculate the probability of developing NHD in children with CP. The system utilizes an ensemble of three machine learning (ML) algorithms: Neural Network (NN), Support Vector Machine (SVM), and Logistic Regression (LR). The development and evaluation of the CDSS followed the DECIDE-AI guidelines for AI-driven clinical decision support tools. The ensemble was trained on a data series from 182 subjects. Inclusion criteria were age between 12 and 18 years and diagnosis of CP from two specialized units. Clinical and functional data were collected prospectively between 2005 and 2023, and then analyzed in a cross-sectional study. Accuracy and area under the receiver operating characteristic (AUROC) were calculated for each method. Best logistic regression scores highlighted history of previous orthopedic surgery (p = 0.001), poor motor function (p = 0.004), truncal tone disorder (p = 0.008), scoliosis (p = 0.031), number of affected limbs (p = 0.05), and epilepsy (p = 0.05) as predictors of NHD. Both accuracy and AUROC were highest for NN, 83.7% and 0.92, respectively. The novelty of this study lies in the development of an efficient Clinical Decision Support System (CDSS) prototype, specifically designed to predict future outcomes of neuromuscular hip dysplasia (NHD) in patients with cerebral palsy (CP) using clinical data. The proposed system, PredictMed-CDSS, demonstrated strong predictive performance for estimating the probability of NHD development in children with CP, with the highest accuracy achieved using neural networks (NN). PredictMed-CDSS has the potential to assist clinicians in anticipating the need for early interventions and preventive strategies in the management of NHD among CP patients. Full article
Show Figures

Figure 1

16 pages, 2443 KiB  
Article
Contralateral Structure and Molecular Response to Severe Unilateral Brain Injury
by Xixian Liao, Xiaojian Xu, Ming Li, Runfa Tian, Yuan Zhuang and Guoyi Gao
Brain Sci. 2025, 15(8), 837; https://doi.org/10.3390/brainsci15080837 - 5 Aug 2025
Viewed by 167
Abstract
Background: Severe damage to one side of the brain often leads to adverse consequences and can also cause widespread changes throughout the brain, especially in the contralateral area. Studying molecular changes in the contralateral cerebral hemisphere, especially with regard to genetic regulation, [...] Read more.
Background: Severe damage to one side of the brain often leads to adverse consequences and can also cause widespread changes throughout the brain, especially in the contralateral area. Studying molecular changes in the contralateral cerebral hemisphere, especially with regard to genetic regulation, can help discover potential treatment strategies to promote recovery after severe brain trauma on one side. Methods: In our study, the right motor cortex was surgically removed to simulate severe unilateral brain injury, and changes in glial cells and synaptic structure in the contralateral cortex were subsequently assessed through immunohistological, morphological, and Western blot analyses. We conducted transcriptomic studies to explore changes in gene expression levels associated with the inflammatory response. Results: Seven days after corticotomy, levels of reactive astrocytes and hypertrophic microglia increased significantly in the experimental group, while synapsin-1 and PSD-95 levels in the contralateral motor cortex increased. These molecular changes are associated with structural changes, including destruction of dendritic structures and the encapsulation of astrocytes by synapses. Genome-wide transcriptome analysis showed a significant increase in gene pathways involved in inflammatory responses, synaptic activity, and nerve fiber regeneration in the contralateral cortex after corticorectomy. Key transcription factors such as NF-κB1, Rela, STAT3 and Jun were identified as potential regulators of these contralateral changes. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) confirmed that the mRNA expression levels of Cacna1c, Tgfb1 and Slc2a1 genes related to STAT3, JUN, and NF-κB regulation significantly increased in the contralateral cortex of the experimental group. Conclusions: After unilateral brain damage occurs, changes in the contralateral cerebral hemisphere are closely related to processes involving inflammation and synaptic function. Full article
Show Figures

Figure 1

24 pages, 4294 KiB  
Article
Post Hoc Event-Related Potential Analysis of Kinesthetic Motor Imagery-Based Brain-Computer Interface Control of Anthropomorphic Robotic Arms
by Miltiadis Spanos, Theodora Gazea, Vasileios Triantafyllidis, Konstantinos Mitsopoulos, Aristidis Vrahatis, Maria Hadjinicolaou, Panagiotis D. Bamidis and Alkinoos Athanasiou
Electronics 2025, 14(15), 3106; https://doi.org/10.3390/electronics14153106 - 4 Aug 2025
Viewed by 128
Abstract
Kinesthetic motor imagery (KMI), the mental rehearsal of a motor task without its actual performance, constitutes one of the most common techniques used for brain–computer interface (BCI) control for movement-related tasks. The effect of neural injury on motor cortical activity during execution and [...] Read more.
Kinesthetic motor imagery (KMI), the mental rehearsal of a motor task without its actual performance, constitutes one of the most common techniques used for brain–computer interface (BCI) control for movement-related tasks. The effect of neural injury on motor cortical activity during execution and imagery remains under investigation in terms of activations, processing of motor onset, and BCI control. The current work aims to conduct a post hoc investigation of the event-related potential (ERP)-based processing of KMI during BCI control of anthropomorphic robotic arms by spinal cord injury (SCI) patients and healthy control participants in a completed clinical trial. For this purpose, we analyzed 14-channel electroencephalography (EEG) data from 10 patients with cervical SCI and 8 healthy individuals, recorded through Emotiv EPOC BCI, as the participants attempted to move anthropomorphic robotic arms using KMI. EEG data were pre-processed by band-pass filtering (8–30 Hz) and independent component analysis (ICA). ERPs were calculated at the sensor space, and analysis of variance (ANOVA) was used to determine potential differences between groups. Our results showed no statistically significant differences between SCI patients and healthy control groups regarding mean amplitude and latency (p < 0.05) across the recorded channels at various time points during stimulus presentation. Notably, no significant differences were observed in ERP components, except for the P200 component at the T8 channel. These findings suggest that brain circuits associated with motor planning and sensorimotor processes are not disrupted due to anatomical damage following SCI. The temporal dynamics of motor-related areas—particularly in channels like F3, FC5, and F7—indicate that essential motor imagery (MI) circuits remain functional. Limitations include the relatively small sample size that may hamper the generalization of our findings, the sensor-space analysis that restricts anatomical specificity and neurophysiological interpretations, and the use of a low-density EEG headset, lacking coverage over key motor regions. Non-invasive EEG-based BCI systems for motor rehabilitation in SCI patients could effectively leverage intact neural circuits to promote neuroplasticity and facilitate motor recovery. Future work should include validation against larger, longitudinal, high-density, source-space EEG datasets. Full article
(This article belongs to the Special Issue EEG Analysis and Brain–Computer Interface (BCI) Technology)
Show Figures

Figure 1

19 pages, 1997 KiB  
Article
Mapping Bicycle Crash-Prone Areas in Ohio Using Exploratory Spatial Data Analysis Techniques: An Investigation into Ohio DOT’s GIS Crash Analysis Tool Data
by Modabbir Rizwan, Bhuiyan Monwar Alam and Yaw Kwarteng
Future Transp. 2025, 5(3), 103; https://doi.org/10.3390/futuretransp5030103 - 4 Aug 2025
Viewed by 79
Abstract
While there are studies on bicycle crashes, no study has investigated the spatial analysis of fatal and injury bicycle crashes in the state of Ohio. This study fills this gap in the literature by mapping and investigating the bicycle crash-prone areas in the [...] Read more.
While there are studies on bicycle crashes, no study has investigated the spatial analysis of fatal and injury bicycle crashes in the state of Ohio. This study fills this gap in the literature by mapping and investigating the bicycle crash-prone areas in the state. It analyzes fatal and injury bicycle crashes from 2014 to 2023 by utilizing four exploratory spatial data analysis techniques: nearest neighbor index, global Moran’s I index, hotspot and cold spot analysis, and local Moran’s I index at the state, county, census tract, and block group levels. Results vary slightly across techniques and spatial scales but consistently show that bicycle crash locations are clustered statewide, particularly in the state’s major metropolitan areas such as Columbus, Cincinnati, Toledo, Cleveland, and Akron. These urban centers have emerged as hotspots, indicating a higher vulnerability to bicycle crashes. While global Moran’s I analysis at the county level does not reveal significant spatial autocorrelation, a strong positive autocorrelation is observed at both the census tract (p = 0.01) and block group (p = 0.00) levels, indicating significant high clustering, signifying that finer geographical units yield more robust results. Identifying specific hotspots and vulnerable areas provides valuable insights for policymakers and urban planners to implement effective safety measures and improve conditions for non-motorized road users in Ohio. The study highlights the need for targeted mitigation strategies in high-risk areas, including comprehensive safety measures, infrastructure improvements, policy changes, and community-focused initiatives to reduce crash risk and create safer environments for cyclists throughout Ohio’s urban fabric. Full article
Show Figures

Figure 1

26 pages, 4329 KiB  
Article
Surveying the Perspectives of Parents and Professionals on Providing Upright, Hands-Free, Self-Initiated Mobility to Children with Severe Physical and Communication Disabilities
by Fei Luo, Sarah W. Blackstone, Jesse Canchola and Vicki Casella
Children 2025, 12(8), 1024; https://doi.org/10.3390/children12081024 - 4 Aug 2025
Viewed by 191
Abstract
Background/Objectives: Children with severe physical and communication disabilities face many challenges. They have very limited opportunities for upright, hands-free, self-initiated mobility. Current findings in neuroscience and theories on child development suggest that self-initiated mobility can have positive cascading effects on various developmental [...] Read more.
Background/Objectives: Children with severe physical and communication disabilities face many challenges. They have very limited opportunities for upright, hands-free, self-initiated mobility. Current findings in neuroscience and theories on child development suggest that self-initiated mobility can have positive cascading effects on various developmental areas, including language and communication. This study was conducted to examine the current use of hands-free support walkers with children who have severe physical and communication disabilities and use augmentative and alternative communication and to identify the benefits and problems perceived by their parents and professionals from different disciplines. Methods: Online surveys were utilized to collect information from 127 participants, including 31 parents and 96 professionals or paraprofessionals. Results: The participants reported that these children could perform various motor activities in the hands-free support walkers to achieve different goals. Benefits identified by both parents and professionals included providing a way to exercise and stay active, improving motor control, enhancing independence, and bringing enjoyment. Professionals also observed positive impacts on communication, vocalization, use of eye contact, and problem solving. Conclusions: Results suggest that children with severe physical and communication disabilities can benefit from the upright, hands-free, self-initiated mobility provided by hands-free support walkers. Clinical implications and needs for future research are discussed. Full article
(This article belongs to the Special Issue The Rehabilitation of Children with Disabilities: Latest Advances)
Show Figures

Figure 1

17 pages, 2487 KiB  
Article
Personalized Language Training and Bi-Hemispheric tDCS Improve Language Connectivity in Chronic Aphasia: A fMRI Case Study
by Sandra Carvalho, Augusto J. Mendes, José Miguel Soares, Adriana Sampaio and Jorge Leite
J. Pers. Med. 2025, 15(8), 352; https://doi.org/10.3390/jpm15080352 - 3 Aug 2025
Viewed by 204
Abstract
Background: Transcranial direct current stimulation (tDCS) has emerged as a promising neuromodulatory tool for language rehabilitation in chronic aphasia. However, the effects of bi-hemispheric, multisite stimulation remain largely unexplored, especially in people with chronic and treatment-resistant language impairments. The goal of this [...] Read more.
Background: Transcranial direct current stimulation (tDCS) has emerged as a promising neuromodulatory tool for language rehabilitation in chronic aphasia. However, the effects of bi-hemispheric, multisite stimulation remain largely unexplored, especially in people with chronic and treatment-resistant language impairments. The goal of this study is to look at the effects on behavior and brain activity of an individualized language training program that combines bi-hemispheric multisite anodal tDCS with personalized language training for Albert, a patient with long-standing, treatment-resistant non-fluent aphasia. Methods: Albert, a right-handed retired physician, had transcortical motor aphasia (TCMA) subsequent to a left-hemispheric ischemic stroke occurring more than six years before the operation. Even after years of traditional treatment, his expressive and receptive language deficits remained severe and persistent despite multiple rounds of traditional therapy. He had 15 sessions of bi-hemispheric multisite anodal tDCS aimed at bilateral dorsal language streams, administered simultaneously with language training customized to address his particular phonological and syntactic deficiencies. Psycholinguistic evaluations were performed at baseline, immediately following the intervention, and at 1, 2, 3, and 6 months post-intervention. Resting-state fMRI was conducted at baseline and following the intervention to evaluate alterations in functional connectivity (FC). Results: We noted statistically significant enhancements in auditory sentence comprehension and oral reading, particularly at the 1- and 3-month follow-ups. Neuroimaging showed decreased functional connectivity (FC) in the left inferior frontal and precentral regions (dorsal stream) and in maladaptive right superior temporal regions, alongside increased FC in left superior temporal areas (ventral stream). This pattern suggests that language networks may be reorganizing in a more efficient way. There was no significant improvement in phonological processing, which may indicate reduced connectivity in the left inferior frontal areas. Conclusions: This case underscores the potential of combining individualized, network-targeted language training with bi-hemispheric multisite tDCS to enhance recovery in chronic, treatment-resistant aphasia. The convergence of behavioral gains and neuroplasticity highlights the importance of precision neuromodulation approaches. However, findings are preliminary and warrant further validation through controlled studies to establish broader efficacy and sustainability of outcomes. Full article
(This article belongs to the Special Issue Personalized Medicine in Neuroscience: Molecular to Systems Approach)
Show Figures

Figure 1

24 pages, 13038 KiB  
Article
Simulation and Analysis of Electric Thermal Coupling for Corrosion Damage of Metro Traction Motor Bearings
by Haisheng Yang, Zhanwang Shi, Xuelan Wang, Jiahang Zhang, Run Zhang and Hengdi Wang
Machines 2025, 13(8), 680; https://doi.org/10.3390/machines13080680 - 1 Aug 2025
Viewed by 183
Abstract
With the electrification of generator sets, electric locomotives, new energy vehicles, and other industries, AC motors subject bearings to an electric field environment, leading to galvanic corrosion due to the use of variable frequency power supply drives. The phenomenon of bearing discharge breakdown [...] Read more.
With the electrification of generator sets, electric locomotives, new energy vehicles, and other industries, AC motors subject bearings to an electric field environment, leading to galvanic corrosion due to the use of variable frequency power supply drives. The phenomenon of bearing discharge breakdown in subway traction motors is a critical issue in understanding the relationship between shaft current strength and the extent of bearing damage. This paper analyzes the mechanism of impulse discharge that leads to galvanic corrosion damage in bearings at a microscopic level and conducts electric thermal coupling simulations of the traction motor bearing discharge breakdown process. It examines the temperature rise associated with lubricant film discharge breakdown during the dynamic operation of the bearing and investigates how breakdown channel parameters and operational conditions affect the temperature rise in the micro-region of bearing lubrication. Ultimately, the results of the electric thermal coupling simulation are validated through experimental tests. This study revealed that in an electric field environment, the load-bearing area of the outer ring experiences significantly more severe corrosion damage than the inner ring, whereas non-bearing areas remain unaffected by electrolytic corrosion. When the inner ring reaches a speed of 4500_rpm, the maximum widths of electrolytic corrosion pits for the outer and inner rings are measured at 89 um and 51 um, respectively. Additionally, the highest recorded temperatures for the breakdown channels in the outer and inner rings are 932 °C and 802 °C, respectively. Furthermore, as the inner ring speed increases, both the width of the electrolytic corrosion pits and the temperature of the breakdown channels rise. Specifically, at inner ring speeds of 2500_rpm, 3500_rpm, and 4500_rpm, the widths of the electrolytic pits in the outer ring raceway load zone were measured at 34 um, 56 um, and 89 um, respectively. The highest temperatures of the lubrication film breakdown channels were recorded as 612 °C, 788 °C, and 932 °C, respectively. This study provides a theoretical basis and data support for the protective and maintenance practices of traction motor bearings. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

21 pages, 16495 KiB  
Article
Regenerating Landscape Through Slow Tourism: Insights from a Mediterranean Case Study
by Luca Barbarossa and Viviana Pappalardo
Sustainability 2025, 17(15), 7005; https://doi.org/10.3390/su17157005 - 1 Aug 2025
Viewed by 176
Abstract
The implementation of the trans-European tourist cycle route network “EuroVelo” is fostering new strategic importance for non-motorized mobility and the associated practice of cycling tourism. Indeed, slow tourism offers a pathway for the development of inland areas. The infrastructure supporting it, such as [...] Read more.
The implementation of the trans-European tourist cycle route network “EuroVelo” is fostering new strategic importance for non-motorized mobility and the associated practice of cycling tourism. Indeed, slow tourism offers a pathway for the development of inland areas. The infrastructure supporting it, such as long-distance cycling and walking paths, can act as a vital connection, stimulating regeneration in peripheral territories by enhancing environmental and landscape assets, as well as preserving heritage, local identity, and culture. The regeneration of peri-urban landscapes through soft mobility is recognized as the cornerstone for accessibility to material and immaterial resources (including ecosystem services) for multiple categories of users, including the most vulnerable, especially following the restoration of green-area systems and non-urbanized areas with degraded ecosystems. Considering the forthcoming implementation of the Magna Grecia cycling route, the southernmost segment of the “EuroVelo” network traversing three regions in southern Italy, this contribution briefly examines the necessity of defining new development policies to effectively integrate sustainable slow tourism with the enhancement of environmental and landscape values in the coastal areas along the route. Specifically, this case study focuses on a coastal stretch characterized by significant morphological and environmental features and notable landscapes interwoven with densely built environments. In this area, environmental and landscape values face considerable threats from scattered, irregular, low-density settlements, abandoned sites, and other inappropriate constructions along the coastline. Full article
(This article belongs to the Special Issue A Systems Approach to Urban Greenspace System and Climate Change)
Show Figures

Figure 1

12 pages, 736 KiB  
Article
Visual Search Test for Residents Chronically Exposed to Methylmercury in the Minamata Area
by Shigeru Takaoka and Kenta Matsunaga
Toxics 2025, 13(8), 657; https://doi.org/10.3390/toxics13080657 - 31 Jul 2025
Viewed by 323
Abstract
In individuals exposed to relatively mild methylmercury, even if they appeared to be independent in activities of daily living (ADL), slower judgment and motor responses in daily activities were observed, suggesting potential cognitive impairment. To quantitatively assess this impairment, we measured reaction time [...] Read more.
In individuals exposed to relatively mild methylmercury, even if they appeared to be independent in activities of daily living (ADL), slower judgment and motor responses in daily activities were observed, suggesting potential cognitive impairment. To quantitatively assess this impairment, we measured reaction time (RT) in a visual search test, as a visual cognitive ability test. The study participants included 24 residents from contaminated areas with sensory impairments in the limbs but no visual field defects (E group), as well as 12 individuals from non-contaminated areas (Group C). The 24 participants from contaminated areas were further divided into two groups: 12 without hand motor coordination disorders (Group E-HA) and 12 with such disorders (Group E+HA). Participants were instructed to search for the target letter “Z” on a computer screen, and the visual stimuli consisted of two, six, or ten alphabet letters. An equal number of trials contained “Z” and did not contain “Z,” for a total of thirty trials, which were conducted twice. RT was significantly longer in Group E+HA, followed by Group E-HA, and then Group C. However, in the second test, RT decreased in all cases, with a greater reduction in the exposed groups compared to the control group. These results suggest that methylmercury exposure may cause cognitive impairment, yet it also possesses plasticity. Full article
(This article belongs to the Special Issue Health Effects of Exposure to Environmental Pollutants—2nd Edition)
Show Figures

Graphical abstract

20 pages, 10603 KiB  
Article
A Safety-Based Approach for the Design of an Innovative Microvehicle
by Michelangelo-Santo Gulino, Susanna Papini, Giovanni Zonfrillo, Thomas Unger, Peter Miklis and Dario Vangi
Designs 2025, 9(4), 90; https://doi.org/10.3390/designs9040090 - 31 Jul 2025
Viewed by 168
Abstract
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper [...] Read more.
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper presents the design and development of an innovative self-balancing microvehicle under the H2020 LEONARDO project, which aims to address these challenges through advanced engineering and user-centric design. The vehicle combines features of monowheels and e-scooters, integrating cutting-edge technologies to enhance safety, stability, and usability. The design adheres to European regulations, including Germany’s eKFV standards, and incorporates user preferences identified through representative online surveys of 1500 PLEV users. These preferences include improved handling on uneven surfaces, enhanced signaling capabilities, and reduced instability during maneuvers. The prototype features a lightweight composite structure reinforced with carbon fibers, a high-torque motorized front wheel, and multiple speed modes tailored to different conditions, such as travel in pedestrian areas, use by novice riders, and advanced users. Braking tests demonstrate deceleration values of up to 3.5 m/s2, comparable to PLEV market standards and exceeding regulatory minimums, while smooth acceleration ramps ensure rider stability and safety. Additional features, such as identification plates and weight-dependent motor control, enhance compliance with local traffic rules and prevent misuse. The vehicle’s design also addresses common safety concerns, such as curb navigation and signaling, by incorporating large-diameter wheels, increased ground clearance, and electrically operated direction indicators. Future upgrades include the addition of a second rear wheel for enhanced stability, skateboard-like rear axle modifications for improved maneuverability, and hybrid supercapacitors to minimize fire risks and extend battery life. With its focus on safety, regulatory compliance, and rider-friendly innovations, this microvehicle represents a significant advancement in promoting safe and sustainable urban mobility. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

17 pages, 876 KiB  
Article
Feasibility and Perceptions of Telerehabilitation Using Serious Games for Children with Disabilities in War-Affected Ukraine
by Anna Kushnir, Oleh Kachmar and Bruno Bonnechère
Appl. Sci. 2025, 15(15), 8526; https://doi.org/10.3390/app15158526 - 31 Jul 2025
Viewed by 148
Abstract
This study aimed to evaluate the feasibility of using serious games for the (tele)rehabilitation of children with disabilities affected by the Ukrainian war. Additionally, it provides requirements for technologies that can be used in war-affected areas. Structured interviews and Likert scale assessments were [...] Read more.
This study aimed to evaluate the feasibility of using serious games for the (tele)rehabilitation of children with disabilities affected by the Ukrainian war. Additionally, it provides requirements for technologies that can be used in war-affected areas. Structured interviews and Likert scale assessments were conducted on-site and remotely with patients of the tertiary care facility in Ukraine. All participants used the telerehabilitation platform for motor and cognitive training. Nine serious games were employed, involving trunk tilts, upper limb movements, and head control. By mid-September 2023, 186 positive user experiences were evident, with 89% expressing interest in continued engagement. The platform’s accessibility, affordability, and therapeutic benefits were highlighted. The recommendations from user feedback informed potential enhancements, showcasing the platform’s potential to provide uninterrupted rehabilitation care amid conflict-related challenges. This study suggests that serious games solutions that suit the sociopolitical and economic context offer a promising solution to rehabilitation challenges in conflict zones. The positive user experiences towards using the platform with serious games indicate its potential in emergency healthcare provision. The findings emphasize the role of technology, particularly serious gaming, in mitigating the impact of armed conflicts on children’s well-being, thereby contributing valuable insights to healthcare strategies in conflict-affected regions. Requirements for technologies tailored to the context of challenging settings were defined. Full article
(This article belongs to the Special Issue Novel Approaches of Physical Therapy-Based Rehabilitation)
Show Figures

Figure 1

25 pages, 2693 KiB  
Article
Adipokine and Hepatokines in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Current and Developing Trends
by Salvatore Pezzino, Stefano Puleo, Tonia Luca, Mariacarla Castorina and Sergio Castorina
Biomedicines 2025, 13(8), 1854; https://doi.org/10.3390/biomedicines13081854 - 30 Jul 2025
Viewed by 366
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a major global health challenge characterized by complex adipose–liver interactions mediated by adipokines and hepatokines. Despite rapid field evolution, a comprehensive understanding of research trends and translational advances remains fragmented. This study systematically maps the [...] Read more.
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a major global health challenge characterized by complex adipose–liver interactions mediated by adipokines and hepatokines. Despite rapid field evolution, a comprehensive understanding of research trends and translational advances remains fragmented. This study systematically maps the scientific landscape through bibliometric analysis, identifying emerging domains and future clinical translation directions. Methods: A comprehensive bibliometric analysis of 1002 publications from 2004 to 2025 was performed using thematic mapping, temporal trend evaluation, and network analysis. Analysis included geographical and institutional distributions, thematic cluster identification, and research paradigm evolution assessment, focusing specifically on adipokine–hepatokine signaling mechanisms and clinical implications. Results: The United States and China are at the forefront of research output, whereas European institutions significantly contribute to mechanistic discoveries. The thematic map analysis reveals the motor/basic themes residing at the heart of the field, such as insulin resistance, fatty liver, metabolic syndrome, steatosis, fetuin-A, and other related factors that drive innovation. Basic clusters include metabolic foundations (obesity, adipose tissue, FGF21) and adipokine-centered subjects (adiponectin, leptin, NASH). New themes focus on inflammation, oxidative stress, gut microbiota, lipid metabolism, and hepatic stellate cells. Niche areas show targeted fronts such as exercise therapies, pediatric/novel adipokines (chemerin, vaspin, omentin-1), and advanced molecular processes that focus on AMPK and endoplasmic-reticulum stress. Temporal analysis shows a shift from single liver studies to whole models that include the gut microbiota, mitochondrial dysfunction, and interactions between other metabolic systems. The network analysis identifies nine major clusters: cardiovascular–metabolic links, adipokine–inflammatory pathways, hepatokine control, and new therapeutic domains such as microbiome interventions and cellular stress responses. Conclusions: In summary, this study delineates current trends and emerging areas within the field and elucidates connections between mechanistic research and clinical translation to provide guidance for future research and development in this rapidly evolving area. Full article
(This article belongs to the Special Issue Advances in Hepatology)
Show Figures

Figure 1

10 pages, 714 KiB  
Article
Use of Mid-Upper Arm Circumference Band in Wasting Detection in Children with Cerebral Palsy in Türkiye
by Uğur Topçu, Çiğdem Lazoğlu, Caner Aslan, Abdurrahman Zarif Güney, Zübeyr Kavcar and Orhan Coşkun
Children 2025, 12(8), 1002; https://doi.org/10.3390/children12081002 - 30 Jul 2025
Viewed by 211
Abstract
Background/Objectives: Malnutrition is a common problem in children with cerebral palsy (CP). The aim of this study was to investigate the suitability and diagnostic performance of mid-upper arm circumference (MUAC) z-score in diagnosing wasting in children with CP, and its impact on [...] Read more.
Background/Objectives: Malnutrition is a common problem in children with cerebral palsy (CP). The aim of this study was to investigate the suitability and diagnostic performance of mid-upper arm circumference (MUAC) z-score in diagnosing wasting in children with CP, and its impact on diagnostic accuracy when evaluated concomitantly with additional clinical factors (birth weight, history of phototherapy). Methods: This single-center, cross-sectional study included 83 children with CP, aged 6 months–17 years, followed-up in our clinic. Anthropometric measurements (MUAC, Body Mass Index (BMI)) and clinical data (birth weight, history of phototherapy, Gross Motor Function Classification System (GMFCS)) were prospectively collected. Wasting was defined according to the BMI z-score ≤ −2 criteria. The diagnostic performance of MUAC z-score was evaluated by Receiver Operating Characteristic (ROC) analysis. The contribution of additional covariates was examined using logistic regression analysis and the backward elimination method. Results: MUAC z-score alone demonstrated good discrimination in diagnosing wasting with an Area Under the Curve (AUC) value between 0.805 and 0.821, but its sensitivity was limited (67.0%). No statistically significant difference was found in diagnostic performance between MUAC measurements of the right arm, left arm, and the unaffected arm (p > 0.050). In logistic regression analysis, MUAC z-score (p = 0.001), birth weight (p = 0.014), and a history of phototherapy (p = 0.046) were found to be significantly associated with wasting malnutrition. The simplified model including these variables yielded an AUC value of 0.876. Conclusions: MUAC z-score is a usable tool for wasting malnutrition screening in children with CP. Although its sensitivity is limited when used alone, its diagnostic accuracy increases when evaluated concomitantly with additional clinical factors such as birth weight and a history of phototherapy. This combined approach may offer clinicians a more robust tool for the early diagnosis and management of wasting malnutrition in children with CP. Full article
(This article belongs to the Section Pediatric Neurology & Neurodevelopmental Disorders)
Show Figures

Figure 1

20 pages, 1125 KiB  
Review
Brain-Computer Interfaces for Stroke Motor Rehabilitation
by Alessandro Tonin, Marianna Semprini, Pawel Kiper and Dante Mantini
Bioengineering 2025, 12(8), 820; https://doi.org/10.3390/bioengineering12080820 - 30 Jul 2025
Viewed by 483
Abstract
Brain–computer interface (BCI) technology holds promise for improving motor rehabilitation in stroke patients. This review explores the immediate and long-term effects of BCI training, shedding light on the potential benefits and challenges. Clinical studies have demonstrated that BCIs yield significant immediate improvements in [...] Read more.
Brain–computer interface (BCI) technology holds promise for improving motor rehabilitation in stroke patients. This review explores the immediate and long-term effects of BCI training, shedding light on the potential benefits and challenges. Clinical studies have demonstrated that BCIs yield significant immediate improvements in motor functions following stroke. Patients can engage in BCI training safely, making it a viable option for rehabilitation. Evidence from single-group studies consistently supports the effectiveness of BCIs in enhancing patients’ performance. Despite these promising findings, the evidence regarding long-term effects remains less robust. Further studies are needed to determine whether BCI-induced changes are permanent or only last for short durations. While evaluating the outcomes of BCI, one must consider that different BCI training protocols may influence functional recovery. The characteristics of some of the paradigms that we discuss are motor imagery-based BCIs, movement-attempt-based BCIs, and brain-rhythm-based BCIs. Finally, we examine studies suggesting that integrating BCIs with other devices, such as those used for functional electrical stimulation, has the potential to enhance recovery outcomes. We conclude that, while BCIs offer immediate benefits for stroke rehabilitation, addressing long-term effects and optimizing clinical implementation remain critical areas for further investigation. Full article
Show Figures

Figure 1

10 pages, 1309 KiB  
Proceeding Paper
A Sustainable Approach to Cooking: Design and Evaluation of a Sun-Tracking Concentrated Solar Stove
by Hasan Ali Khan, Malik Hassan Nawaz, Main Omair Gul and Mazhar Javed
Mater. Proc. 2025, 23(1), 4; https://doi.org/10.3390/materproc2025023004 - 29 Jul 2025
Viewed by 168
Abstract
Access to clean cooking remains a major challenge in rural and off-grid areas where traditional fuels are costly, harmful, or scarce. Solar cooking offers a sustainable solution, but many existing systems suffer from fixed positioning and low efficiency. This study presents a low-cost, [...] Read more.
Access to clean cooking remains a major challenge in rural and off-grid areas where traditional fuels are costly, harmful, or scarce. Solar cooking offers a sustainable solution, but many existing systems suffer from fixed positioning and low efficiency. This study presents a low-cost, dual-axis solar tracking parabolic dish cooker designed for such regions, featuring adjustable pot holder height and portability for ease of use. The system uses an Arduino UNO, LDR sensors, and a DC gear motor to automate sun tracking, ensuring optimal alignment throughout the day. A 0.61 m parabolic dish with ≥97% reflective silver-coated mirrors concentrates sunlight to temperatures exceeding 300 °C. Performance tests in April, June, and November showed boiling times as low as 3.37 min in high-irradiance conditions (7.66 kWh/m2/day) and 6.63 min under lower-irradiance conditions (3.86 kWh/m2/day). Compared to fixed or single-axis systems, this design achieved higher thermal efficiency and reliability, even under partially cloudy skies. Built with locally available materials, the system offers an affordable, clean, and effective cooking solution that supports energy access, health, and sustainability in underserved communities. Full article
Show Figures

Figure 1

Back to TopTop