Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,850)

Search Parameters:
Keywords = motion quality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5578 KiB  
Article
Adaptive Covariance Matrix for UAV-Based Visual–Inertial Navigation Systems Using Gaussian Formulas
by Yangzi Cong, Wenbin Su, Nan Jiang, Wenpeng Zong, Long Li, Yan Xu, Tianhe Xu and Paipai Wu
Sensors 2025, 25(15), 4745; https://doi.org/10.3390/s25154745 (registering DOI) - 1 Aug 2025
Abstract
In a variety of UAV applications, visual–inertial navigation systems (VINSs) play a crucial role in providing accurate positioning and navigation solutions. However, traditional VINS struggle to adapt flexibly to varying environmental conditions due to fixed covariance matrix settings. This limitation becomes especially acute [...] Read more.
In a variety of UAV applications, visual–inertial navigation systems (VINSs) play a crucial role in providing accurate positioning and navigation solutions. However, traditional VINS struggle to adapt flexibly to varying environmental conditions due to fixed covariance matrix settings. This limitation becomes especially acute during high-speed drone operations, where motion blur and fluctuating image clarity can significantly compromise navigation accuracy and system robustness. To address these issues, we propose an innovative adaptive covariance matrix estimation method for UAV-based VINS using Gaussian formulas. Our approach enhances the accuracy and robustness of the navigation system by dynamically adjusting the covariance matrix according to the quality of the images. Leveraging the advanced Laplacian operator, detailed assessments of image blur are performed, thereby achieving precise perception of image quality. Based on these assessments, a novel mechanism is introduced for dynamically adjusting the visual covariance matrix using a Gaussian model according to the clarity of images in the current environment. Extensive simulation experiments across the EuRoC and TUM VI datasets, as well as the field tests, have validated our method, demonstrating significant improvements in navigation accuracy of drones in scenarios with motion blur. Our algorithm has shown significantly higher accuracy compared to the famous VINS-Mono framework, outperforming it by 18.18% on average, as well as the optimization rate of RMS, which reaches 65.66% for the F1 dataset and 41.74% for F2 in the field tests outdoors. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

15 pages, 2400 KiB  
Article
Robust Prediction of Cardiorespiratory Signals from a Multimodal Physiological System on the Upper Arm
by Kimberly L. Branan, Rachel Kurian, Justin P. McMurray, Madhav Erraguntla, Ricardo Gutierrez-Osuna and Gerard L. Coté
Biosensors 2025, 15(8), 493; https://doi.org/10.3390/bios15080493 (registering DOI) - 1 Aug 2025
Abstract
Many commercial wearable sensor systems typically rely on a single continuous cardiorespiratory sensing modality, photoplethysmography (PPG), which suffers from inherent biases (i.e., differences in skin tone) and noise (e.g., motion and pressure artifacts). In this research, we present a wearable device that provides [...] Read more.
Many commercial wearable sensor systems typically rely on a single continuous cardiorespiratory sensing modality, photoplethysmography (PPG), which suffers from inherent biases (i.e., differences in skin tone) and noise (e.g., motion and pressure artifacts). In this research, we present a wearable device that provides robust estimates of cardiorespiratory variables by combining three physiological signals from the upper arm: multiwavelength PPG, single-sided electrocardiography (SS-ECG), and bioimpedance plethysmography (BioZ), along with an inertial measurement unit (IMU) providing 3-axis accelerometry and gyroscope information. We evaluated the multimodal device on 16 subjects by its ability to estimate heart rate (HR) and breathing rate (BR) in the presence of various static and dynamic noise sources (e.g., skin tone and motion). We proposed a hierarchical approach that considers the subject’s skin tone and signal quality to select the optimal sensing modality for estimating HR and BR. Our results indicate that, when estimating HR, there is a trade-off between accuracy and robustness, with SS-ECG providing the highest accuracy (low mean absolute error; MAE) but low reliability (higher rates of sensor failure), and PPG/BioZ having lower accuracy but higher reliability. When estimating BR, we find that fusing estimates from multiple modalities via ensemble bagged tree regression outperforms single-modality estimates. These results indicate that multimodal approaches to cardiorespiratory monitoring can overcome the accuracy–robustness trade-off that occurs when using single-modality approaches. Full article
(This article belongs to the Special Issue Wearable Biosensors for Health Monitoring)
Show Figures

Figure 1

18 pages, 3281 KiB  
Article
A Preprocessing Pipeline for Pupillometry Signal from Multimodal iMotion Data
by Jingxiang Ong, Wenjing He, Princess Maglanque, Xianta Jiang, Lawrence M. Gillman, Ashley Vergis and Krista Hardy
Sensors 2025, 25(15), 4737; https://doi.org/10.3390/s25154737 (registering DOI) - 31 Jul 2025
Abstract
Pupillometry is commonly used to evaluate cognitive effort, attention, and facial expression response, offering valuable insights into human performance. The combination of eye tracking and facial expression data under the iMotions platform provides great opportunities for multimodal research. However, there is a lack [...] Read more.
Pupillometry is commonly used to evaluate cognitive effort, attention, and facial expression response, offering valuable insights into human performance. The combination of eye tracking and facial expression data under the iMotions platform provides great opportunities for multimodal research. However, there is a lack of standardized pipelines for managing pupillometry data on a multimodal platform. Preprocessing pupil data in multimodal platforms poses challenges like timestamp misalignment, missing data, and inconsistencies across multiple data sources. To address these challenges, the authors introduced a systematic preprocessing pipeline for pupil diameter measurements collected using iMotions 10 (version 10.1.38911.4) during an endoscopy simulation task. The pipeline involves artifact removal, outlier detection using advanced methods such as the Median Absolute Deviation (MAD) and Moving Average (MA) algorithm filtering, interpolation of missing data using the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP), and mean pupil diameter calculation through linear regression, as well as normalization of mean pupil diameter and integration of the pupil diameter dataset with facial expression data. By following these steps, the pipeline enhances data quality, reduces noise, and facilitates the seamless integration of pupillometry other multimodal datasets. In conclusion, this pipeline provides a detailed and organized preprocessing method that improves data reliability while preserving important information for further analysis. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

22 pages, 1350 KiB  
Article
Optimization of Dynamic SSVEP Paradigms for Practical Application: Low-Fatigue Design with Coordinated Trajectory and Speed Modulation and Gaming Validation
by Yan Huang, Lei Cao, Yongru Chen and Ting Wang
Sensors 2025, 25(15), 4727; https://doi.org/10.3390/s25154727 (registering DOI) - 31 Jul 2025
Viewed by 34
Abstract
Steady-state visual evoked potential (SSVEP) paradigms are widely used in brain–computer interface (BCI) systems due to their reliability and fast response. However, traditional static stimuli may reduce user comfort and engagement during prolonged use. This study proposes a dynamic stimulation paradigm combining periodic [...] Read more.
Steady-state visual evoked potential (SSVEP) paradigms are widely used in brain–computer interface (BCI) systems due to their reliability and fast response. However, traditional static stimuli may reduce user comfort and engagement during prolonged use. This study proposes a dynamic stimulation paradigm combining periodic motion trajectories with speed control. Using four frequencies (6, 8.57, 10, 12 Hz) and three waveform patterns (sinusoidal, square, sawtooth), speed was modulated at 1/5, 1/10, and 1/20 of each frequency’s base rate. An offline experiment with 17 subjects showed that the low-speed sinusoidal and sawtooth trajectories matched the static accuracy (85.84% and 83.82%) while reducing cognitive workload by 22%. An online experiment with 12 subjects participating in a fruit-slicing game confirmed its practicality, achieving recognition accuracies above 82% and a System Usability Scale score of 75.96. These results indicate that coordinated trajectory and speed modulation preserves SSVEP signal quality and enhances user experience, offering a promising approach for fatigue-resistant, user-friendly BCI application. Full article
(This article belongs to the Special Issue EEG-Based Brain–Computer Interfaces: Research and Applications)
Show Figures

Figure 1

20 pages, 4809 KiB  
Article
Design of a Bidirectional Veneer Defect Repair Method Based on Parametric Modeling and Multi-Objective Optimization
by Xingchen Ding, Jiuqing Liu, Xin Sun, Hao Chang, Jie Yan, Chengwen Sun and Chunmei Yang
Technologies 2025, 13(8), 324; https://doi.org/10.3390/technologies13080324 (registering DOI) - 31 Jul 2025
Viewed by 82
Abstract
Repairing veneer defects is the key to ensuring the quality of plywood. In order to improve the maintenance quality and material utilization efficiency during the maintenance process, this paper proposes a bidirectional maintenance method based on gear rack transmission and its related equipment. [...] Read more.
Repairing veneer defects is the key to ensuring the quality of plywood. In order to improve the maintenance quality and material utilization efficiency during the maintenance process, this paper proposes a bidirectional maintenance method based on gear rack transmission and its related equipment. Based on the working principle, a geometric relationship model was established, which combines the structural parameters of the mold, punch, and gear system. Simultaneously, it solves the problem of motion attitude analysis of conjugate tooth profiles under non-standard meshing conditions, aiming to establish a constraint relationship between stamping motion and structural design parameters. On this basis, a constrained optimization model was developed by integrating multi-objective optimization theory to maximize maintenance efficiency. The NSGA-III algorithm is used to solve the model and obtain the Pareto front solution set. Subsequently, three optimal parameter configurations were selected for simulation analysis and experimental platform construction. The simulation and experimental results indicate that the veneer repair time ranges from 0.6 to 1.8 seconds, depending on the stamping speed. A reduction of 28 mm in die height decreases the repair time by approximately 0.1 seconds, resulting in an efficiency improvement of about 14%. The experimental results confirm the effectiveness of the proposed method in repairing veneer defects. Vibration measurements further verify the system’s stable operation under parametric modeling and optimization design. The main vibration response occurs during the meshing and disengagement phases between the gear and rack. Full article
Show Figures

Figure 1

20 pages, 3272 KiB  
Article
Mobile Robot Path Planning Based on Fused Multi-Strategy White Shark Optimisation Algorithm
by Dazhang You, Junjie Yu, Zhiyuan Jia, Yepeng Zhang and Zhiyuan Yang
Appl. Sci. 2025, 15(15), 8453; https://doi.org/10.3390/app15158453 - 30 Jul 2025
Viewed by 169
Abstract
Addressing the limitations of existing path planning algorithms for mobile robots in complex environments, such as poor adaptability, low convergence efficiency, and poor path quality, this study establishes a clear connection between mobile robots and real-world challenges such as unknown environments, dynamic obstacle [...] Read more.
Addressing the limitations of existing path planning algorithms for mobile robots in complex environments, such as poor adaptability, low convergence efficiency, and poor path quality, this study establishes a clear connection between mobile robots and real-world challenges such as unknown environments, dynamic obstacle avoidance, and smooth motion through innovative strategies. A novel multi-strategy fusion white shark optimization algorithm is proposed, focusing on actual scenario requirements, to provide optimal solutions for mobile robot path planning. First, the Chaotic Elite Pool strategy is employed to generate an elite population, enhancing population diversity and improving the quality of initial solutions, thereby boosting the algorithm’s global search capability. Second, adaptive weights are introduced, and the traditional simulated annealing algorithm is improved to obtain the Rapid Annealing Method. The improved simulated annealing algorithm is then combined with the White Shark algorithm to avoid getting stuck in local optima and accelerate convergence speed. Finally, third-order Bézier curves are used to smooth the path. Path length and path smoothness are used as fitness evaluation metrics, and an evaluation function is established in conjunction with a non-complete model that reflects actual motion to assess the effectiveness of path planning. Simulation results show that on the simple 20 × 20 grid map, the fusion of the Fused Multi-strategy White Shark Optimisation algorithm (FMWSO) outperforms WSO, D*, A*, and GWO by 8.43%, 7.37%, 2.08%, and 2.65%, respectively, in terms of path length. On the more complex 40 × 40 grid map, it improved by 6.48%, 26.76%, 0.95%, and 2.05%, respectively. The number of turning points was the lowest in both maps, and the path smoothness was lower. The algorithm’s runtime is optimal on the 20 × 20 map, outperforming other algorithms by 40.11%, 25.93%, 31.16%, and 9.51%, respectively. On the 40 × 40 map, it is on par with A*, and outperforms WSO, D*, and GWO by 14.01%, 157.38%, and 3.48%, respectively. The path planning performance is significantly better than other algorithms. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

22 pages, 554 KiB  
Systematic Review
Smart Homes: A Meta-Study on Sense of Security and Home Automation
by Carlos M. Torres-Hernandez, Mariano Garduño-Aparicio and Juvenal Rodriguez-Resendiz
Technologies 2025, 13(8), 320; https://doi.org/10.3390/technologies13080320 - 30 Jul 2025
Viewed by 241
Abstract
This review examines advancements in smart home security through the integration of home automation technologies. Various security systems, including surveillance cameras, smart locks, and motion sensors, are analyzed, highlighting their effectiveness in enhancing home security. These systems enable users to monitor and control [...] Read more.
This review examines advancements in smart home security through the integration of home automation technologies. Various security systems, including surveillance cameras, smart locks, and motion sensors, are analyzed, highlighting their effectiveness in enhancing home security. These systems enable users to monitor and control their homes in real-time, providing an additional layer of security. The document also examines how these security systems can enhance the quality of life for users by providing greater convenience and control over their domestic environment. The ability to receive instant alerts and access video recordings from anywhere allows users to respond quickly to unexpected situations, thereby increasing their sense of security and well-being. Additionally, the challenges and future trends in this field are addressed, emphasizing the importance of designing solutions that are intuitive and easy to use. As technology continues to evolve, it is crucial for developers and manufacturers to focus on creating products that seamlessly integrate into users’ daily lives, facilitating their adoption and use. This comprehensive state-of-the-art review, based on the Scopus database, provides a detailed overview of the current status and future potential of smart home security systems. It highlights how ongoing innovation in this field can lead to the development of more advanced and efficient solutions that not only protect homes but also enhance the overall user experience. Full article
(This article belongs to the Special Issue Smart Systems (SmaSys2024))
Show Figures

Figure 1

19 pages, 5970 KiB  
Article
Interface Material Modification to Enhance the Performance of a Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS Resonator by Localized Annealing Through Joule Heating
by Adnan Zaman, Ugur Guneroglu, Abdulrahman Alsolami, Liguan Li and Jing Wang
Micromachines 2025, 16(8), 885; https://doi.org/10.3390/mi16080885 - 29 Jul 2025
Viewed by 175
Abstract
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still [...] Read more.
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still suffer from anchor-related energy losses and limited quality factors (Qs), posing significant challenges for high-performance applications. This study investigates interface modification to boost the quality factor (Q) and reduce the motional resistance, thus improving the electromechanical coupling coefficient and reducing insertion loss. To balance the trade-off between device miniaturization and performance, this work uniquely applies DC current-induced localized annealing to TPoS MEMS resonators, facilitating metal diffusion at the interface. This process results in the formation of platinum silicide, modifying the resonator’s stiffness and density, consequently enhancing the acoustic velocity and mitigating the side-supporting anchor-related energy dissipations. Experimental results demonstrate a Q-factor enhancement of over 300% (from 916 to 3632) and a reduction in insertion loss by more than 14 dB, underscoring the efficacy of this method for reducing anchor-related dissipations due to the highest annealing temperature at the anchors. The findings not only confirm the feasibility of Joule heating for interface modifications in MEMS resonators but also set a foundation for advancements of this post-fabrication thermal treatment technology. Full article
(This article belongs to the Special Issue MEMS Nano/Micro Fabrication, 2nd Edition)
Show Figures

Figure 1

17 pages, 1603 KiB  
Perspective
A Perspective on Quality Evaluation for AI-Generated Videos
by Zhichao Zhang, Wei Sun and Guangtao Zhai
Sensors 2025, 25(15), 4668; https://doi.org/10.3390/s25154668 - 28 Jul 2025
Viewed by 188
Abstract
Recent breakthroughs in AI-generated content (AIGC) have transformed video creation, empowering systems to translate text, images, or audio into visually compelling stories. Yet reliable evaluation of these machine-crafted videos remains elusive because quality is governed not only by spatial fidelity within individual frames [...] Read more.
Recent breakthroughs in AI-generated content (AIGC) have transformed video creation, empowering systems to translate text, images, or audio into visually compelling stories. Yet reliable evaluation of these machine-crafted videos remains elusive because quality is governed not only by spatial fidelity within individual frames but also by temporal coherence across frames and precise semantic alignment with the intended message. The foundational role of sensor technologies is critical, as they determine the physical plausibility of AIGC outputs. In this perspective, we argue that multimodal large language models (MLLMs) are poised to become the cornerstone of next-generation video quality assessment (VQA). By jointly encoding cues from multiple modalities such as vision, language, sound, and even depth, the MLLM can leverage its powerful language understanding capabilities to assess the quality of scene composition, motion dynamics, and narrative consistency, overcoming the fragmentation of hand-engineered metrics and the poor generalization ability of CNN-based methods. Furthermore, we provide a comprehensive analysis of current methodologies for assessing AIGC video quality, including the evolution of generation models, dataset design, quality dimensions, and evaluation frameworks. We argue that advances in sensor fusion enable MLLMs to combine low-level physical constraints with high-level semantic interpretations, further enhancing the accuracy of visual quality assessment. Full article
(This article belongs to the Special Issue Perspectives in Intelligent Sensors and Sensing Systems)
Show Figures

Figure 1

18 pages, 16074 KiB  
Article
DGMN-MISABO: A Physics-Informed Degradation and Optimization Framework for Realistic Synthetic Droplet Image Generation in Inkjet Printing
by Jiacheng Cai, Jiankui Chen, Wei Tang, Jinliang Wu, Jingcheng Ruan and Zhouping Yin
Machines 2025, 13(8), 657; https://doi.org/10.3390/machines13080657 - 27 Jul 2025
Viewed by 126
Abstract
The Online Droplet Inspection system plays a vital role in closed-loop control for OLED inkjet printing. However, generating realistic synthetic droplet images for reliable restoration and precise measurement of droplet parameters remains challenging due to the complex, multi-factor degradation inherent to microscale droplet [...] Read more.
The Online Droplet Inspection system plays a vital role in closed-loop control for OLED inkjet printing. However, generating realistic synthetic droplet images for reliable restoration and precise measurement of droplet parameters remains challenging due to the complex, multi-factor degradation inherent to microscale droplet imaging. To address this, we propose a physics-informed degradation model, Diffraction–Gaussian–Motion–Noise (DGMN), that integrates Fraunhofer diffraction, defocus blur, motion blur, and adaptive noise to replicate real-world degradation in droplet images. To optimize the multi-parameter configuration of DGMN, we introduce the MISABO (Multi-strategy Improved Subtraction-Average-Based Optimizer), which incorporates Sobol sequence initialization for search diversity, lens opposition-based learning (LensOBL) for enhanced accuracy, and dimension learning-based hunting (DLH) for balanced global–local optimization. Benchmark function evaluations demonstrate that MISABO achieves superior convergence speed and accuracy. When applied to generate synthetic droplet images based on real droplet images captured from a self-developed OLED inkjet printer, the proposed MISABO-optimized DGMN framework significantly improves realism, enhancing synthesis quality by 37.7% over traditional manually configured models. This work lays a solid foundation for generating high-quality synthetic data to support droplet image restoration and downstream inkjet printing processes. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

25 pages, 13014 KiB  
Article
Research on Spatial Coordinate Estimation of Karst Water-Rich Pipelines Based on Strapdown Inertial Navigation System
by Zhihong Tian, Wei Meng, Xuefu Zhang and Bowen Wan
Buildings 2025, 15(15), 2644; https://doi.org/10.3390/buildings15152644 - 26 Jul 2025
Viewed by 181
Abstract
In the field of tunnel engineering, the precise determination of the spatial coordinates of karst water-rich pipelines represents a critical area of research for disaster prevention and control. Traditional detection methods often exhibit limitations, including inadequate accuracy and low efficiency, which can significantly [...] Read more.
In the field of tunnel engineering, the precise determination of the spatial coordinates of karst water-rich pipelines represents a critical area of research for disaster prevention and control. Traditional detection methods often exhibit limitations, including inadequate accuracy and low efficiency, which can significantly compromise the safety and quality of tunnel construction. To enhance the accuracy of the spatial coordinate estimation for karst water-rich pipelines, this study introduces a novel method grounded in a strapdown inertial navigation system (SINS). This approach involves the deployment of sensing equipment within the karst water-rich pipeline to gather motion state data. Consequently, it provides spatial coordinate information pertinent to the karst water-rich pipeline within the tunnel site, thereby augmenting the completeness and accuracy of the spatial coordinate estimation results compared to conventional detection methods. This study employs ESKF filtering to process the data collected by the SINS, ensuring the robustness and accuracy of the data. The research integrates theoretical analysis, model testing, and numerical simulation. It systematically examines the operational principles and error characteristics associated with the SINS, develops an error model for this technology, and employs a comparative selection method to design the spatial coordinate sensing equipment based on the SINS. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 2166 KiB  
Case Report
Tailored Rehabilitation Program and Dynamic Ultrasonography After Surgical Repair of Bilateral Simultaneous Quadriceps Tendon Rupture in a Patient Affected by Gout: A Case Report
by Emanuela Elena Mihai, Matei Teodorescu, Sergiu Iordache, Catalin Cirstoiu and Mihai Berteanu
Healthcare 2025, 13(15), 1830; https://doi.org/10.3390/healthcare13151830 - 26 Jul 2025
Viewed by 379
Abstract
Spontaneous quadriceps tendon rupture is a very rare occurrence, notably for bilateral simultaneous ruptures. Its occurrence is commonly linked to an underlying condition that may weaken the tendons leading to rupture. We report the case of a 68-year-old Caucasian male afflicted with long-term [...] Read more.
Spontaneous quadriceps tendon rupture is a very rare occurrence, notably for bilateral simultaneous ruptures. Its occurrence is commonly linked to an underlying condition that may weaken the tendons leading to rupture. We report the case of a 68-year-old Caucasian male afflicted with long-term gout who presented a bilateral simultaneous quadriceps tendon rupture (BSQTR). We showcase the clinical presentation, the surgical intervention, rehabilitation program, dynamic sonographic monitoring, and home-based rehabilitation techniques of this injury, which aimed to improve activities of daily living (ADL) and quality of life (QoL). The patient was included in a 9-week post-surgical rehabilitation program and a home-based rehabilitation program with subsequent pain management and gait reacquisition. The outcome measures included right and left knee active range of motion (AROM), pain intensity measured on Visual Analogue Scale (VAS), functioning measured through ADL score, and gait assessment on Functional Ambulation Categories (FAC). All endpoints were measured at different time points, scoring significant improvement at discharge compared to baseline (e.g., AROM increased from 0 degrees to 95 degrees, while VAS decreased from 7 to 1, ADL score increased from 6 to 10, and FAC increased from 1 to 5). Moreover, some of these outcomes continued to improve after discharge, and the effects of home-based rehabilitation program and a single hip joint manipulation were assessed at 6-month follow-up. Musculoskeletal ultrasound findings showed mature tendon structure, consistent dynamic glide, and no scarring. Full article
(This article belongs to the Special Issue Joint Manipulation for Rehabilitation of Musculoskeletal Disorders)
Show Figures

Figure 1

26 pages, 8292 KiB  
Review
Progress in the Circular Arc Source Structure and Magnetic Field Arc Control Technology for Arc Ion Plating
by Hao Du, Ke Zhang, Debin Liu and Wenchang Lang
Materials 2025, 18(15), 3498; https://doi.org/10.3390/ma18153498 - 25 Jul 2025
Viewed by 153
Abstract
Aiming at the goal of preparing high-quality coatings, this paper reviews the progress on circular arc source structure and magnetic field arc controlling technology in arc ion plating (AIP), with a focus on design characteristics of the different structures and configuration optimization of [...] Read more.
Aiming at the goal of preparing high-quality coatings, this paper reviews the progress on circular arc source structure and magnetic field arc controlling technology in arc ion plating (AIP), with a focus on design characteristics of the different structures and configuration optimization of the corresponding magnetic fields. The circular arc source, due to its simple structure, convenient installation, flexible target combination, high cooling efficiency, and high ionization rate and deposition rate, has shown significant application potential in AIP technology. In terms of magnetic field arc controlling technology, this paper delves into the design progress of various magnetic field configurations, including fixed magnetic fields generated by permanent magnets, dynamic rotating magnetic fields, axially symmetric magnetic fields, rotating transverse magnetic fields, and multi-mode alternating electromagnetic coupling fields. By designing the magnetic field distribution reasonably, the trajectory and velocity of the arc spot can be controlled precisely, thus reducing the generation of macroparticles, improving target utilization, and enhancing coating uniformity. In particular, the introduction of multi-mode magnetic field coupling technology has broken through the limitations of traditional single magnetic field structures, achieving comprehensive optimization of arc spot motion and plasma transport. Hopefully, these research advances provide an important theoretical basis and technical support for the application of AIP technology in the preparation for high-quality decorative and functional coatings. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

21 pages, 2765 KiB  
Article
Lyapunov-Based Framework for Platform Motion Control of Floating Offshore Wind Turbines
by Mandar Phadnis and Lucy Pao
Energies 2025, 18(15), 3969; https://doi.org/10.3390/en18153969 - 24 Jul 2025
Viewed by 270
Abstract
Floating offshore wind turbines (FOWTs) unlock superior wind resources and reduce operational barriers. The dynamics of FOWT platforms present added engineering challenges and opportunities. While the motion of the floating platform due to wind and wave disturbances can worsen power quality and increase [...] Read more.
Floating offshore wind turbines (FOWTs) unlock superior wind resources and reduce operational barriers. The dynamics of FOWT platforms present added engineering challenges and opportunities. While the motion of the floating platform due to wind and wave disturbances can worsen power quality and increase structural loading, certain movements of the floating platform can be exploited to improve power capture. Consequently, active FOWT platform control methods using conventional and innovative actuation systems are under investigation. This paper develops a novel framework to design nonlinear control laws for six degrees-of-freedom platform motion. The framework uses simplified rigid-body analytical models of the FOWT. Lyapunov’s direct method is used to develop actuator-agnostic unconstrained control laws for platform translational and rotational control. A model based on the NREL-5MW reference turbine on the OC3-Hywind spar-buoy platform is utilized to test the control framework for an ideal actuation scenario. Possible applications using traditional and novel turbine actuators and future research directions are presented. Full article
(This article belongs to the Special Issue Comprehensive Design and Optimization of Wind Turbine)
Show Figures

Figure 1

24 pages, 8445 KiB  
Article
DEM-Based Simulation Study on the Operational Performance of a Single Horizontal Shaft Forced-Action Mixer
by Haipeng Yang, Guanguo Ma and Wei Zhao
Buildings 2025, 15(15), 2627; https://doi.org/10.3390/buildings15152627 - 24 Jul 2025
Viewed by 273
Abstract
This study conducts a numerical simulation of the working performance of a single horizontal shaft forced mixer using the Discrete Element Method (DEM). It systematically investigates the effects of blade installation angle, feeding method, mixing speed, and coarse aggregate particle size on the [...] Read more.
This study conducts a numerical simulation of the working performance of a single horizontal shaft forced mixer using the Discrete Element Method (DEM). It systematically investigates the effects of blade installation angle, feeding method, mixing speed, and coarse aggregate particle size on the mixing uniformity. A 1:2 scale model was developed, incorporating Newton’s laws of motion and a soft-sphere contact model to simulate the particle trajectories and interactions during mixing. The results indicate that top–bottom feeding enhances mixing efficiency significantly by forming vertical convective circulation, achieving a mixing uniformity above 0.9. A moderate rotation speed of 30 rpm provides the best balance between energy consumption and mixing performance. As the coarse aggregate size increases (from 9 mm to 15 mm), the enhanced particle inertia leads to a decrease in mixing uniformity (from 0.9 to 0.6). Additionally, the discrepancy between simulation and experimental results is less than 0.1, validating the reliability of the model. This research offers theoretical guidance for the structural optimization and parameter selection of single-shaft mixers, contributing to improved mixing efficiency and concrete quality in engineering applications. Full article
Show Figures

Figure 1

Back to TopTop