Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (20,317)

Search Parameters:
Keywords = morphology analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 6496 KB  
Article
Construction and Optimization of Ecological Network Based on SOM and XGBoost-SHAP: A Case Study of the Zhengzhou–Kaifeng–Luoyang Region
by Yunuo Chen, Pingyang Han, Pengfei Wang, Baoguo Liu and Yang Liu
Land 2026, 15(1), 173; https://doi.org/10.3390/land15010173 (registering DOI) - 16 Jan 2026
Abstract
The ecological network serves as a vital spatial strategy for addressing climate change, biodiversity loss, and habitat fragmentation. Addressing limitations in existing ecological network studies—such as strong subjectivity and insufficient accuracy in structural element identification, cross-regional integration, and resistance surface weighting—this research uses [...] Read more.
The ecological network serves as a vital spatial strategy for addressing climate change, biodiversity loss, and habitat fragmentation. Addressing limitations in existing ecological network studies—such as strong subjectivity and insufficient accuracy in structural element identification, cross-regional integration, and resistance surface weighting—this research uses the Zhengzhou–Kaifeng–Luoyang region (ZKLR) as a case study. It introduces the self-organizing map (SOM) model to identify ecological sources and employs the XGBoost-SHAP model to optimize resistance surface weights, thereby reducing subjective weighting biases. Subsequently, the Linkage Mapper tool is utilized to construct the regional ecological network. The superiority of the SOM model for identifying ecological sources was confirmed by comparison with a traditional network based on morphological spatial pattern analysis (MSPA). Further integrating complex network topology theory, nodes attack the simulations-assessed network resilience and proposed optimization strategies. The results indicate the following: (1) The area of ecological sources identified by the SOM model is three times that of the MSPA model; (2) SHAP feature importance analysis revealed that elevation (DEM) exerted the greatest influence on the composite resistance surface, contributing over 40%, followed by land use and slope, with each contributing approximately 15%. High-resistance areas were primarily distributed in western and central mountainous regions and built-up urban areas, while low-resistance areas were concentrated in the central and eastern plains; (3) topological analysis indicates that the integrated ecological network (IEN) exhibits superior robustness compared to the structural ecological network (SEN). The edge-adding strategy generated 22 additional ecological corridors, significantly enhancing the overall resilience of the integrated ecological network; and (4) based on ecological network construction and optimization results, a territorial spatial protection strategy of “one belt, two cores, two zones, and three corridors” is proposed. This study provides a novel methodological framework for ecological network construction, with findings offering reference for ecological conservation and spatial planning in the ZKLR and similar areas. Full article
Show Figures

Figure 1

19 pages, 5439 KB  
Article
Decoupling Additive and Non-Additive Genetic Effects to Optimize Breeding Strategies for Apple Phenology and Fruit Quality
by Pablo Asprelli, Guido Cipriani and Gloria De Mori
Horticulturae 2026, 12(1), 93; https://doi.org/10.3390/horticulturae12010093 (registering DOI) - 16 Jan 2026
Abstract
Apple breeding programs focus on enhancing yield, quality, and disease resistance, with a strong emphasis on evaluating phenological traits like flowering time and pomological traits such as fruit size and flavour, which are crucial for commercial success and consumer preference. Twenty-four families were [...] Read more.
Apple breeding programs focus on enhancing yield, quality, and disease resistance, with a strong emphasis on evaluating phenological traits like flowering time and pomological traits such as fruit size and flavour, which are crucial for commercial success and consumer preference. Twenty-four families were obtained by crossing six apple varieties selected as pollen receptors and four apple genotypes resistant to scab selected as pollen donors. Data related to bud burst date, flowering date, harvest date, lengths of the periods between bud burst and flowering and from flowering to harvest (developmental period), fruit equatorial and polar diameter, fruit polar/diameter ratio, soluble solid content (SSC) and flesh firmness were analysed as a genetic partial diallel design. The study’s ANOVA on 24 fruit families across two years revealed significant genotype–environment interactions affecting flowering date, harvest date, and developmental periods, with some variables like fruit weight and soluble solids showing consistent variation. During each year, temperature influenced phenological phases, with earlier budbreak and flowering in warmer, less variable conditions in 2019. Analysis of genetic effects indicated high heritability for phenological traits and moderate heritability for fruit morphology and quality, with parental genetic contributions varying over years. Principal component and Procrustes analyses identified key variable groupings and parent profiles, highlighting genotypes such as ‘Granny Smith’, ‘McIntosh’, and ‘HM100’ with consistent additive effects, and certain families with notable heterotic performance. Overall, genetic and environmental interactions significantly shape phenological and fruit quality traits, guiding breeding strategies. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

22 pages, 2522 KB  
Article
Oncological Safety of High Hydrostatic Pressure Treatment: Effects on Cancer-Associated Fibroblast-like Transdifferentiation of Adipose Stromal Cells
by Julia Kristin Brach, Vivica Freiin Grote, Anika Jonitz-Heincke, Rainer Bader, Daniel Strüder, Marco Hoffmann, Sven Gerlach, Petra Fischer, Markus Wirth, Tim Ruhl, Justus P. Beier, Agmal Scherzad and Stephan Hackenberg
Curr. Issues Mol. Biol. 2026, 48(1), 91; https://doi.org/10.3390/cimb48010091 (registering DOI) - 16 Jan 2026
Abstract
Oncological safety is essential for autologous reconstruction after resection of cartilage-infiltrating head and neck tumors. High hydrostatic pressure (HHP) enables complete devitalization of tumor-infiltrated tissue while preserving extracellular matrix integrity. However, residual soluble tumor-derived products may influence infiltrating stromal cells. This study examined [...] Read more.
Oncological safety is essential for autologous reconstruction after resection of cartilage-infiltrating head and neck tumors. High hydrostatic pressure (HHP) enables complete devitalization of tumor-infiltrated tissue while preserving extracellular matrix integrity. However, residual soluble tumor-derived products may influence infiltrating stromal cells. This study examined whether conditioned media (CM) from HHP-treated head and neck squamous cell carcinoma (HNSCC) cells induce cancer-associated fibroblast (CAF)-like transdifferentiation of human adipose stromal cells (hASCs). HASCs were exposed to CM from untreated or HHP-treated (300 MPa) HNSCC cells, tumor-CM (TCM), or TGF-β1. Morphological changes in hASCs were evaluated, and CAF marker expression was analyzed by qRT-PCR, immunofluorescence, Western blot, and ELISA. Cytokines were quantified via multiplex analysis. TGF-β1 induced a CAF-like phenotype with α-SMA upregulation, whereas TCM and 0 MPa-CM caused only modest increases in selected markers. Although 300 MPa-CM did not induce CAF-associated molecular signatures, hASCs exhibited morphological alterations, underscoring that morphology alone is insufficient to define CAF transdifferentiation. Cytokine secretion was elevated in response to all CM conditions. These findings indicate that HHP treatment at 300 MPa abolishes the paracrine CAF-inducing potential of tumor-derived mediators in vitro, supporting the oncological safety of HHP-treated tissues under these experimental condition, although further in vivo validation is warranted Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

19 pages, 2055 KB  
Article
Punica granatum L. Modulates Antioxidant Activity in Vitrified Bovine Ovarian Tissue
by Solano Dantas Martins, Maria Alice Felipe Oliveira, Venância Antônia Nunes Azevedo, Francisco das Chagas Costa, Ingrid Gracielle Martins da Silva, Selene Maia de Morais, Sônia Nair Báo, José Roberto Viana Silva, Vânia Marilande Ceccatto and Valdevane Rocha Araújo
Int. J. Mol. Sci. 2026, 27(2), 903; https://doi.org/10.3390/ijms27020903 - 16 Jan 2026
Abstract
This study aimed to evaluate the effects of an ethanolic extract from Punica granatum L. (EE-PG) on bovine ovarian tissue vitrification, focusing on follicular morphology, ultrastructure, stromal cell density, collagen distribution, redox status, and mRNA expression of antioxidant-related genes. Bovine ovarian cortex fragments [...] Read more.
This study aimed to evaluate the effects of an ethanolic extract from Punica granatum L. (EE-PG) on bovine ovarian tissue vitrification, focusing on follicular morphology, ultrastructure, stromal cell density, collagen distribution, redox status, and mRNA expression of antioxidant-related genes. Bovine ovarian cortex fragments were divided into a fresh control group for in vivo tissue evaluation or vitrified either with the base vitrification solution (αMEM) alone or supplemented with different concentrations of EE-PG (10, 50, and 100 µg/mL), and subsequently stored in liquid nitrogen for 5 days. After warming, fragments were allocated for morphological and oxidative stress analyses or incubated for 24 h to resumption of cellular metabolism. The concentrations of 10 and 100 µg/mL preserved follicular morphology immediately after warming, and were therefore selected for ultrastructural evaluation. Both concentrations mitigated vitrification-induced damage. Gene expression analysis showed decreased levels of catalase (cat), Glutathione Peroxidase 1 (gpx1), and Nuclear Factor Erythroid 2-Related Factor 2 (nrf2) compared with the fresh control, whereas Superoxide Dismutase (SOD) enzymatic activity increased after incubation with 10 µg/mL EE-PG compared with all experimental groups. Moreover, Malondialdehyde (MDA) levels in tissues treated with 10 or 100 µg/mL were comparable to fresh controls after incubation. Overall, EE-PG at 10 or 100 µg/mL in the vitrification solution supported the maintenance of tissue morphology, redox balance—despite the downregulation of essential antioxidant genes, which may be associated with a reduced demand for enzymatic antioxidant defense—and cellular metabolism, indicating potential for improving bovine ovarian tissue vitrification outcomes. Full article
(This article belongs to the Special Issue New Advances in Animal Reproduction)
Show Figures

Figure 1

24 pages, 3149 KB  
Article
Screening, Identification, and Degradation Mechanism of Polyester Fiber-Degrading Bacteria
by Zixuan Chen, Jing Tang, Shengjuan Peng, Qin Chen, Jianfeng Bai and Weihua Gu
Microorganisms 2026, 14(1), 207; https://doi.org/10.3390/microorganisms14010207 - 16 Jan 2026
Abstract
Polyester fibers are extensively used in textiles, packaging, and industrial applications due to their durability and excellent mechanical properties. However, high-crystallinity polyester fibers represent a major challenge in plastic waste management due to their resistance to biodegradation. This study evaluated the biodegradation potential [...] Read more.
Polyester fibers are extensively used in textiles, packaging, and industrial applications due to their durability and excellent mechanical properties. However, high-crystallinity polyester fibers represent a major challenge in plastic waste management due to their resistance to biodegradation. This study evaluated the biodegradation potential of environmental Bacillus isolates, obtained from mold-contaminated black bean plastic bags, toward polyethylene terephthalate (PET) and industrial-grade polyester fibers under mesophilic conditions. Among thirteen isolates, five (Bacillus altitudinis N5, Bacillus subtilis N6, and others) exhibited measurable degradation within 30 days, with mass losses up to 5–6% and corresponding rate constants of 0.04–0.05 day−1. A combination of complementary characterization techniques, including mass loss analysis, scanning electron microscopy (SEM), gel permeation chromatography (GPC), and gas chromatography/mass spectrometry (GC/MS), together with Fourier-transform infrared spectroscopy (FTIR), thermogravimetric/differential scanning calorimetry (TGA/DSC), and water contact angle (WCA) analysis, was employed to evaluate the biodegradation behavior of polyester fibers. Cross-analysis of mass loss, surface morphology, molecular weight reduction, and degradation products suggests a surface erosion-dominated degradation process, accompanied by ester-bond hydrolysis and preferential degradation of amorphous regions. FTIR, TGA/DSC, and WCA analyses further reflected chemical, thermal, and surface property changes induced by biodegradation rather than directly defining the degradation mechanism. The findings highlight the capacity of mesophilic Bacillus species to partially depolymerize polyester fibers under mild environmental conditions, providing strain resources and mechanistic insight for developing low-energy bioprocesses for polyester fiber waste management. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

21 pages, 4628 KB  
Article
Effect of Inclined Angles and Contouring Parameters on Upskin Surface Characteristics of Parts Made by Laser Powder-Bed Fusion
by Nismath Valiyakath Vadakkan Habeeb and Kevin Chou
Coatings 2026, 16(1), 119; https://doi.org/10.3390/coatings16010119 - 16 Jan 2026
Abstract
Surface finish plays a critical role in the tribological performance of additively manufactured engineering components. In exploring part characteristics in laser powder-bed fusion (L-PBF), this study investigates the effect of contouring strategies on the upskin surface of inclined specimens (30°, 45°, and 60°) [...] Read more.
Surface finish plays a critical role in the tribological performance of additively manufactured engineering components. In exploring part characteristics in laser powder-bed fusion (L-PBF), this study investigates the effect of contouring strategies on the upskin surface of inclined specimens (30°, 45°, and 60°) made with L-PBF, using post- and pre-contouring strategies with various levels of process parameters. The surface data of fabricated inclined specimens were acquired by white-light interferometry, followed by a quantitative analysis using surface images. The results show that post-contouring leads to better surface finishes, with the lowest Sa of 8.68 µm attained at the highest laser power (195 W) and the slowest scan speed (500 mm/s) on 30°-inclined specimens, likely due to increased remelting and less step-edges. In contrast, pre-contouring produces distinct surface textures on the upskin of L-PBF specimens, resulting in a rougher surface morphology, with a maximum Sa of 33.39 µm also from 30°-inclined specimens at the lowest power (100 W) and the highest speed (2000 mm/s), suggesting an insufficient remelting of surface defects. In comparative analysis, in general, post-contouring yields smoother upskin surfaces, with a 17%–30% reduction in Sa, than those from equivalent pre-contouring conditions, highlighting the potential of scan sequences for optimizing L-PBF to improve the surface finish of inclined structures. Full article
Show Figures

Figure 1

3593 KB  
Proceeding Paper
Experimental Study on the Impact of Variable Concentration of Graphite Nanoparticles on the Tribological Behaviour of 15W40 Lubricating Oil
by Sonia Dangi, Sumit Chaudhary, Shadab Ahmad, Yebing Tian, Ramesh Chandra Singh, Mohammad Yusuf and Hussameldin Ibrahim
Eng. Proc. 2024, 76(1), 112; https://doi.org/10.3390/engproc2024076112 (registering DOI) - 15 Jan 2026
Abstract
An experiment examined the impact of 0.2% to 1.0% w/w graphite nanoparticles in 15W40 lubricating oil on tribological and rheological behaviour. Analysis, conducted with a pin-on-disc machine and four-ball tester, revealed improved tribological properties and a 30% reduction in friction coefficient [...] Read more.
An experiment examined the impact of 0.2% to 1.0% w/w graphite nanoparticles in 15W40 lubricating oil on tribological and rheological behaviour. Analysis, conducted with a pin-on-disc machine and four-ball tester, revealed improved tribological properties and a 30% reduction in friction coefficient compared to fresh 15W40. Wear was negligible, and extreme-pressure performance increased by approximately 20%. SEM morphology confirmed the presence of graphite nanoparticles on the tribo-pair surface, indicating enhanced lubricant performance. Full article
Show Figures

Figure 1

22 pages, 6124 KB  
Article
High-Resolution Monitoring of Badland Erosion Dynamics: Spatiotemporal Changes and Topographic Controls via UAV Structure-from-Motion
by Yi-Chin Chen
Water 2026, 18(2), 234; https://doi.org/10.3390/w18020234 - 15 Jan 2026
Abstract
Mudstone badlands are critical hotspots of erosion and sediment yield, and their rapid morphological changes serve as an ideal site for studying erosion processes. This study used high-resolution Unmanned Aerial Vehicle (UAV) photogrammetry to monitor erosion patterns on a mudstone badland platform in [...] Read more.
Mudstone badlands are critical hotspots of erosion and sediment yield, and their rapid morphological changes serve as an ideal site for studying erosion processes. This study used high-resolution Unmanned Aerial Vehicle (UAV) photogrammetry to monitor erosion patterns on a mudstone badland platform in southwestern Taiwan over a 22-month period. Five UAV surveys conducted between 2017 and 2018 were processed using Structure-from-Motion photogrammetry to generate time-series digital surface models (DSMs). Topographic changes were quantified using DSMs of Difference (DoD). The results reveal intense surface lowering, with a mean erosion depth of 34.2 cm, equivalent to an average erosion rate of 18.7 cm yr−1. Erosion is governed by a synergistic regime in which diffuse rain splash acts as the dominant background process, accounting for approximately 53% of total erosion, while concentrated flow drives localized gully incision. Morphometric analysis shows that erosion depth increases nonlinearly with slope, consistent with threshold hillslope behavior, but exhibits little dependence on the contributing area. Plan and profile curvature further influence the spatial distribution of erosion, with enhanced erosion on both strongly concave and convex surfaces relative to near-linear slopes. The gully network also exhibits rapid channel adjustment, including downstream meander migration and associated lateral bank erosion. These findings highlight the complex interactions among hillslope processes, gully dynamics, and base-level controls that govern badland landscape evolution and have important implications for erosion modeling and watershed management in high-intensity rainfall environments. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

19 pages, 4865 KB  
Article
Targeting AKT via SC79 for Photoreceptor Preservation in Retinitis Pigmentosa Mouse Models
by Alicia A. Brunet, Kate Gilbert, Annie L. Miller, Rebekah E. James, Xin Ru Lim, Alan R. Harvey and Livia S. Carvalho
Biomedicines 2026, 14(1), 195; https://doi.org/10.3390/biomedicines14010195 - 15 Jan 2026
Abstract
Background/Objectives: Retinitis pigmentosa is a degenerative retinal disease and a major cause of inherited blindness globally. The pro-survival kinase AKT is downregulated in degenerating photoreceptors in retinitis pigmentosa, and its activation has shown neuroprotective effects in retinitis pigmentosa and other neurodegenerative disorders. [...] Read more.
Background/Objectives: Retinitis pigmentosa is a degenerative retinal disease and a major cause of inherited blindness globally. The pro-survival kinase AKT is downregulated in degenerating photoreceptors in retinitis pigmentosa, and its activation has shown neuroprotective effects in retinitis pigmentosa and other neurodegenerative disorders. In this study, we evaluated the therapeutic potential of SC79, a pharmaceutical AKT activator, in two mouse models of retinitis pigmentosa, rd1.GFP and RhoP23H.GFP. Methods: SC79 was administered intravitreally at postnatal day 12 (P12) and analysis was conducted at P16. Results: SC79 at 10 µM was well tolerated in wildtype mice, with no reduction in retinal function or thickness. In rd1.GFP mice, SC79 partially preserved peripheral outer nuclear layer (ONL) thickness, improved rod photoreceptor-driven optomotor contrast sensitivity responses, and improved cone photoreceptor morphology. Immunohistochemistry of retinal sections indicated AKT-related protein expression changes in both sham and SC79-treated rd1.GFP retinas, with sham injections leading to decreases in this pathway and SC79 injections restoring this back to uninjected protein levels or higher, indicating the damage from intravitreal injections can induce AKT-related protein expression changes. In RhoP23H.GFP mice, changes to the visual response from the therapeutic effects of SC79 were not detectable. An increased dosage of SC79 at 100 µM was evaluated in wildtype mice and showed no major toxic effects, although it did not confer neuroprotective benefits in either disease model. Conclusions: These results demonstrate the potential therapeutic effect of AKT pathway modulation for preserving photoreceptors in recessive retinitis pigmentosa, with further optimisation of treatment delivery required. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

23 pages, 5085 KB  
Article
Carbon Reduction Benefits and Economic Performance Analysis of Lattice Structural Systems Utilizing Small-Diameter Round Timber as the Primary Material
by Ying Wu, Jianmei Wu, Hongpeng Xu, Jiayi Li and Yuncheng Ji
Buildings 2026, 16(2), 372; https://doi.org/10.3390/buildings16020372 - 15 Jan 2026
Abstract
To address the imbalance between the “ecological advantage” and “economic benefit” of wooden structure buildings, this study examines two structural construction methods utilizing inexpensive and readily available small-diameter round timber as the primary material. It demonstrates the advantages of these two structural systems [...] Read more.
To address the imbalance between the “ecological advantage” and “economic benefit” of wooden structure buildings, this study examines two structural construction methods utilizing inexpensive and readily available small-diameter round timber as the primary material. It demonstrates the advantages of these two structural systems in terms of material consumption, life cycle carbon emissions, and economic efficiency. Through the research methods and processes of “Preliminary analysis–Proposing the construction system–The feasibility analysis of structural technology–Efficiency assessment”, the sustainable wood structure technical system suitable for the development of China is explored. The main conclusions are as follows: (1) Employing the preliminary analysis method, this paper examines and analyzes construction cases that primarily utilize small-diameter round timber as the main material. It delineates specific construction types based on the characteristics of small-diameter round timber. Additionally, it technically reconstructs the methodology for utilizing small-diameter round timber. (2) Two lattice structural systems are proposed, leveraging the mechanical properties and fundamental morphological characteristics of inexpensive and readily available small-diameter round timber of fast-growing Northeast larch. The technical feasibility of these two small-diameter log structure systems is validated through simulation analysis of their spatial threshold suitability. (3) This study conducted a comprehensive comparison between the two small-diameter round timber structural systems and the conventional grain-parallel glued laminated timber (Cross-Laminated Timber) frame structural systems. The analysis was performed from three perspectives. As the primary structural material, grain-parallel glued laminated timber frame structural systems exhibits significant advantages in terms of timber utilization per unit area of the structural system. From a life cycle carbon emission analysis perspective, compared to grain-parallel glued laminated timber frame structures, small-diameter round timber structures can achieve carbon emission reductions ranging from 79.19% to 97.74%. Additionally, the unit area cost of small-diameter round timber structures is reduced by 21.02% to 40.42% relative to grain-parallel glued laminated timber frame structures. Consequently, it can be concluded that small-diameter round timber structural systems possess technical feasibility and construction advantages for small and medium-sized buildings, offering practical value in optimizing technical systems to meet the objective needs of ecological construction. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
24 pages, 14068 KB  
Article
Influence of Wire Arc Additive Manufacturing Parameters on the Morphology, Microstructure, and Hardness of DSS2209 Single-Bead Deposited Layers
by Jian Sun, Liang Liu, Long Zhang, Feihong Liu, Dongsheng Wang and Youwen Yang
Materials 2026, 19(2), 353; https://doi.org/10.3390/ma19020353 - 15 Jan 2026
Abstract
This study systematically investigates the effects of key process parameters in wire arc additive manufacturing (WAAM) on the surface morphology, geometric dimensions, microstructure, and microhardness of single-bead single-layer deposits fabricated from 2209 duplex stainless steel. Using a controlled variable approach, the influences of [...] Read more.
This study systematically investigates the effects of key process parameters in wire arc additive manufacturing (WAAM) on the surface morphology, geometric dimensions, microstructure, and microhardness of single-bead single-layer deposits fabricated from 2209 duplex stainless steel. Using a controlled variable approach, the influences of wire feed speed, travel speed, oscillation pattern, oscillation frequency, and oscillation amplitude on the deposition quality were examined. Experimental results indicate that wire feed speed and travel speed significantly affect the bead width, height, and fusion zone morphology, with optimal ranges identified as 4.5–6.5 m/min and 5–6 mm/s, respectively. Among the oscillation patterns, sinusoidal and figure-eight trajectories resulted in uniform deposition distribution and a refined microstructure, whereas the circular pattern led to fish-scale surface features and coarse grains. The optimal oscillation frequency and amplitude were determined to be 4 Hz and 4 mm, respectively, under which the deposits exhibited high surface quality, no defects other than the depression in the arc extinction zone, and the microhardness remains stable in the range of 280–290 HV. Comprehensive analysis indicates that investigating the influence of these process parameters on the morphology, microstructure, and hardness of DSS2209 single-bead deposits can effectively enhance the overall performance of WAAM-fabricated 2209 duplex stainless steel components, thereby providing a reliable foundation for subsequent multi-layer and multi-bead deposition. Full article
(This article belongs to the Special Issue Progress and Challenges of Advanced Metallic Materials and Composites)
Show Figures

Figure 1

30 pages, 7257 KB  
Article
Water Surface Ratio and Inflow Rate of Paddy Polder Under the Stella Nitrogen Cycle Model
by Yushan Jiang, Junyu Hou, Fanyu Zeng, Jilin Cheng and Liang Wang
Sustainability 2026, 18(2), 897; https://doi.org/10.3390/su18020897 - 15 Jan 2026
Abstract
To address the challenge of optimizing hydrological parameters for nitrogen pollution control in paddy polders, this study coupled the Stella eco-dynamics model with an external optimization algorithm and developed a nonlinear programming framework using the water surface ratio and inflow rate as decision [...] Read more.
To address the challenge of optimizing hydrological parameters for nitrogen pollution control in paddy polders, this study coupled the Stella eco-dynamics model with an external optimization algorithm and developed a nonlinear programming framework using the water surface ratio and inflow rate as decision variables and the maximum nitrogen removal rate as the objective function. The simulation and optimization conducted for the Hongze Lake polder area indicated that the model exhibited strong robustness, as verified through Monte Carlo uncertainty analysis, with coefficients of variation (CV) of nitrogen outlet concentrations all below 3%. Under the optimal regulation scheme, the maximum nitrogen removal rates (η1, η2, and η4) during the soaking, tillering, and grain-filling periods reached 98.86%, 98.74%, and 96.26%, respectively. The corresponding optimal inflow rates (Q*) were aligned with the lower threshold limits of each growth period (1.20, 0.80, and 0.50 m3/s). The optimal channel water surface ratios (A1*) were 3.81%, 3.51%, and 3.34%, respectively, while the optimal pond water surface ratios (A2*) were 19.94%, 16.30%, and 17.54%, respectively. Owing to the agronomic conflict between “water retention without drainage” and concentrated fertilization during the heading period, the maximum nitrogen removal rate (η3) during this stage was only 37.34%. The optimal channel water surface ratio (A1*) was 2.37%, the pond water surface ratio (A2*) was 19.04%, and the outlet total nitrogen load increased to 8.39 mg/L. Morphological analysis demonstrated that nitrate nitrogen and organic nitrogen dominated the outlet water body. The “simulation–optimization” coupled framework established in this study can provides quantifiable decision-making tools and methodological support for the precise control and sustainable management of agricultural non-point source pollution in the floodplain area. Full article
17 pages, 1294 KB  
Article
Monitoring Morphological and Muscular Asymmetries in Elite Basketball: Field and Lab Measures of Neuromuscular Health
by Pablo López-Sierra, Julio Calleja-González, Jorge Arede and Sergio J. Ibáñez
Symmetry 2026, 18(1), 159; https://doi.org/10.3390/sym18010159 - 15 Jan 2026
Abstract
Background and Objectives: Asymmetries in body composition and movement patterns are common in professional basketball due to the sport’s repetitive and unilateral demands. While both structural and functional asymmetries have been independently studied, little is known about their interaction under real training conditions. [...] Read more.
Background and Objectives: Asymmetries in body composition and movement patterns are common in professional basketball due to the sport’s repetitive and unilateral demands. While both structural and functional asymmetries have been independently studied, little is known about their interaction under real training conditions. The aim of this study was to compare structural asymmetries, obtained from bioelectrical impedance analysis, with functional asymmetries, measured through inertial devices in professional basketball players. Methods: Twenty-five male professional basketball players from two Spanish teams were monitored over a two-month period. Structural asymmetries were assessed via the TANITA MC-780MA multi-frequency analyzer, while functional asymmetries were quantified using WIMU Pro™ inertial units during 43 training sessions. Descriptive, correlational, and cluster analyses were performed, followed by linear mixed-effects models adjusted for individual random effects, with statistical significance set at p < 0.05. Results: Descriptive results revealed low overall fat mass and no relevant group-level asymmetries in muscle mass or functional variables, although fat mass asymmetry showed greater variability across players. Correlation analyses indicated weak and non-significant relationships between structural and functional asymmetries. Cluster analysis grouped muscle mass and functional asymmetries together, while fat mass asymmetry formed a distinct cluster. Linear mixed-effects models confirmed significant differences for muscle mass asymmetry and demonstrated high inter-individual variability. Conclusions: Structural and functional asymmetries behave independently, with muscle mass asymmetry showing greater variability and functional relevance. These findings highlight the need for individualized monitoring approaches integrating morphological and functional assessments to optimize performance and reduce injury risk in elite basketball players. Full article
Show Figures

Figure 1

21 pages, 42248 KB  
Article
DAH-YOLO: An Accurate and Efficient Model for Crack Detection in Complex Scenarios
by Yawen Fan, Qinxin Li, Ye Chen, Zhiqiang Yao, Yang Sun and Wentao Zhang
Appl. Sci. 2026, 16(2), 900; https://doi.org/10.3390/app16020900 - 15 Jan 2026
Abstract
Crack detection plays a pivotal role in ensuring the safety and stability of infrastructure. Despite advancements in deep learning-based image analysis, accurately capturing multiscale crack features in complex environments remains challenging. These challenges arise from several factors, including the presence of cracks with [...] Read more.
Crack detection plays a pivotal role in ensuring the safety and stability of infrastructure. Despite advancements in deep learning-based image analysis, accurately capturing multiscale crack features in complex environments remains challenging. These challenges arise from several factors, including the presence of cracks with varying sizes, shapes, and orientations, as well as the influence of environmental conditions such as lighting variations, surface textures, and noise. This study introduces DAH-YOLO (Dynamic-Attention-Haar-YOLO), an innovative model that integrates dynamic convolution, an attention-enhanced dynamic detection head, and Haar wavelet down-sampling to address these challenges. First, dynamic convolution is integrated into the YOLOv8 framework to adaptively capture complex crack features while simultaneously reducing computational complexity. Second, an attention-enhanced dynamic detection head is introduced to refine the model’s ability to focus on crack regions, facilitating the detection of cracks with varying scales and morphologies. Third, a Haar wavelet down-sampling layer is employed to preserve fine-grained crack details, enhancing the recognition of subtle and intricate cracks. Experimental results on three public datasets demonstrate that DAH-YOLO outperforms baseline models and state-of-the-art crack detection methods in terms of precision, recall, and mean average precision, while maintaining low computational complexity. Our findings provide a robust, efficient solution for automated crack detection, which has been successfully applied in real-world engineering scenarios with favorable outcomes, advancing the development of intelligent structural health monitoring. Full article
(This article belongs to the Special Issue AI in Object Detection)
Show Figures

Figure 1

18 pages, 2588 KB  
Article
Phylogenetic Position of the Morphologically Ambiguous Genus Leiochrides (Annelida: Capitellidae) Revealed by Its First Complete Mitogenome
by Dae-Hun Kim, Junsang Youn, Junil Ko, Hyeryeong Oh, Haelim Kil, Seong-il Eyun and Man-Ki Jeong
J. Mar. Sci. Eng. 2026, 14(2), 185; https://doi.org/10.3390/jmse14020185 - 15 Jan 2026
Abstract
The family Capitellidae performs critical roles in bioturbation and sediment remediation within global marine benthic ecosystems. However, they are a taxonomically challenging group due to their simple morphology and a ‘morphological mosaic’, where traditional classificatory traits, such as thoracic chaetiger counts, appear convergently [...] Read more.
The family Capitellidae performs critical roles in bioturbation and sediment remediation within global marine benthic ecosystems. However, they are a taxonomically challenging group due to their simple morphology and a ‘morphological mosaic’, where traditional classificatory traits, such as thoracic chaetiger counts, appear convergently across genera. Previous multi-locus studies (using 18S, 28S, H3, and COI) first highlighted this conflict, revealing the polyphyly of major genera like Notomastus and even Leiochrides itself (based on unidentified specimens). More recently, mitogenomic studies uncovered massive gene order rearrangements and a conflicting topology but did not include Leiochrides. Critically, with no complete mitogenome reported for a formally identified Leiochrides species, its true phylogenetic position and the validity of its polyphyly remain unresolved. To address this critical gap, we sequenced and characterized the first complete mitochondrial genome from a formally identified species, Leiochrides yokjidoensis, recently described from Korean waters. The complete mitogenome was 17,933 bp in length and included the typical 13 protein-coding genes (PCGs), 2 ribosomal RNAs (rRNAs), and 22 transfer RNAs (tRNAs). Gene order (GO) analysis revealed the occurrence of gene rearrangements in Capitellidae and in its sister clade, Opheliidae. A phylogenomic analysis using the amino acid sequences of 13 PCGs from 30 species established the first robust systematic position for the genus Leiochrides (based on this formally identified species). Phylogenetic results recovered Leiochrides as a sister group to the clade comprising Mediomastus, Barantolla, Heteromastus, and Notomastus hemipodus (BS 99%). This distinct placement confirms that Leiochrides represents an independent evolutionary lineage, phylogenetically separate from the polyphyletic Notomastus complex, despite their morphological similarities. Furthermore, our analysis confirmed the polyphyly of Notomastus, with N. hemipodus clustering distinctly from other Notomastus species. Additionally, signatures of positive selection were detected in ND4, and ND5 genes, suggesting potential adaptive evolution to the subtidal environment. This placement provides a critical, high-confidence anchor point for the genus Leiochrides. It provides a reliable reference to investigate the unresolved polyphyly suggested by previous multi-locus studies and provides compelling evidence for the hypothesis that thoracic chaetiger counts are of limited value for inferring phylogenetic relationships. This study provides the foundational genomic cornerstone for Leiochrides, representing an essential first step toward resolving the systematics of this taxonomically challenging family. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

Back to TopTop