Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (247)

Search Parameters:
Keywords = monocropping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2292 KiB  
Article
Employing Cover Crops and No-Till in Southern Great Plains Cotton Production to Manage Runoff Water Quantity and Quality
by Jack L. Edwards, Kevin L. Wagner, Lucas F. Gregory, Scott H. Stoodley, Tyson E. Ochsner and Josephus F. Borsuah
Water 2025, 17(15), 2283; https://doi.org/10.3390/w17152283 - 31 Jul 2025
Viewed by 106
Abstract
Conventional tillage and monocropping are common practices employed for cotton production in the Southern Great Plains (SGP) region, but they can be detrimental to soil health, crop yield, and water resources when improperly managed. Regenerative practices such as cover crops and conservation tillage [...] Read more.
Conventional tillage and monocropping are common practices employed for cotton production in the Southern Great Plains (SGP) region, but they can be detrimental to soil health, crop yield, and water resources when improperly managed. Regenerative practices such as cover crops and conservation tillage have been suggested as an alternative. The proposed shift in management practices originates from the need to make agriculture resilient to extreme weather events including intense rainfall and drought. The objective of this study is to test the effects of these regenerative practices in an environment with limited rainfall. Runoff volume, nutrient and sediment concentrations and loadings, and surface soil moisture levels were compared on twelve half-acre (0.2 hectare) cotton plots that employed different cotton seeding rates and variable winter wheat cover crop presence. A winter cover implemented on plots with a high cotton seeding rate significantly reduced runoff when compared to other treatments (p = 0.032). Cover cropped treatments did not show significant effects on nutrient or sediment loadings, although slight reductions were observed in the concentrations and loadings of total Kjeldahl nitrogen, total phosphorus, total solids, and Escherichia coli. The limitations of this study included a short timeframe, mechanical failures, and drought. These factors potentially reduced the statistical differences in several findings. More efficient methods of crop production must continue to be developed for agriculture in the SGP to conserve soil and water resources, improve soil health and crop yields, and enhance resiliency to climate change. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

23 pages, 1480 KiB  
Article
Intercropping Enhances Arthropod Diversity and Ecological Balance in Cowpea, Hemp, and Watermelon Systems
by Ikponmwosa N. Egbon, Beatrice N. Dingha, Gilbert N. Mukoko and Louis E. Jackai
Insects 2025, 16(7), 724; https://doi.org/10.3390/insects16070724 - 16 Jul 2025
Viewed by 450
Abstract
This study investigates arthropod assemblage in cowpea, hemp, and watermelon grown both as monocrops and intercrops using three sampling techniques: direct visual counts, sticky cards, and pan traps. A total of 31,774 arthropods were collected, spanning two classes [Arachnida (0.07%) and Insecta (99.93%)], [...] Read more.
This study investigates arthropod assemblage in cowpea, hemp, and watermelon grown both as monocrops and intercrops using three sampling techniques: direct visual counts, sticky cards, and pan traps. A total of 31,774 arthropods were collected, spanning two classes [Arachnida (0.07%) and Insecta (99.93%)], 11 orders, and 82 families representing diverse functional groups. Arachnids were represented by a single family (Araneae). Among insects, the composition included Diptera (36.81%), Thysanoptera (24.64%), Hemiptera (19.43%), Hymenoptera (11.58%), Coleoptera (6.84%), Lepidoptera (0.076%) and Blattodea, Odonata, Orthoptera, Psocodea (≤0.005%). Roughly 10% of the total arthropods were pollinators, while the remainder were primarily herbivores and predators. Apidae were abundant in all treatments except for watermelon monocrops. Intercropping supported more pollinators, particularly Apidae, Halictidae, and Sarcophagidae. However, herbivores dominated (>50%) in each system, largely due to high presence of thrips and cicadellids. Predators accounted for approximately 30%, with dolichopodids (Diptera) being the most dominant. Watermelon yield increased by 30–60% in the intercrop systems. While intercropping increases overall arthropod abundance, it also creates a more balanced community where beneficial organisms are not heavily outnumbered by pests and contributes to enhanced ecological resilience and crop performance. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

13 pages, 2110 KiB  
Article
Comparison of Rhizosphere Microbial Diversity in Soybean and Red Kidney Bean Under Continuous Monoculture and Intercropping Systems
by Huibin Qin, Aohui Li, Shuyu Zhong, Yingying Zhang, Chuhui Li, Zhixin Mu, Haiping Zhang and Jing Wu
Agronomy 2025, 15(7), 1705; https://doi.org/10.3390/agronomy15071705 - 15 Jul 2025
Viewed by 331
Abstract
The long-term monocropping of red kidney beans in agricultural fields can lead to the occurrence of soil-borne diseases. Alterations in the composition of the soil microbial community are a primary cause of soil-borne diseases and a key factor in continuous cropping obstacles. Research [...] Read more.
The long-term monocropping of red kidney beans in agricultural fields can lead to the occurrence of soil-borne diseases. Alterations in the composition of the soil microbial community are a primary cause of soil-borne diseases and a key factor in continuous cropping obstacles. Research exploring how different cultivation modes can modify the diversity and composition of the rhizosphere microbial community in red kidney beans, and thus mitigate the effects of continuous cropping obstacles, is ongoing. This study employed three cultivation modes: the continuous monocropping of red kidney beans, continuous monocropping of soybeans, and red kidney bean–soybean intercropping. To elucidate the composition and diversity of rhizosphere microbial communities, we conducted amplicon sequencing targeting the V3-V4 hypervariable regions of the bacterial 16S rRNA gene and the ITS1 region of fungal ribosomal DNA across distinct growth stages. The obtained sequencing data provide a robust basis for estimating soil microbial diversity. We observed that, under the intercropping mode, the composition of both bacteria and fungi more closely resembled that of soybean monocropping. The monocropping of red kidney beans increased the richness of rhizosphere bacteria and fungi and promoted the accumulation of pathogenic microorganisms. In contrast, intercropping cultivation and soybean monocropping favored the accumulation of beneficial bacteria such as Bacillus and Streptomyce, reduced pathogenic fungi including Alternaria and Mortierell, and exhibited less microbial variation across different growth stages. Compared to the monocropping of red kidney beans, these systems demonstrated more stable microbial structure and composition. The findings of this study will inform sustainable agricultural practices and soil management strategies. Full article
Show Figures

Figure 1

21 pages, 10550 KiB  
Article
Quinoa–Peanut Relay Intercropping Promotes Peanut Productivity Through the Temporal Optimization of Soil Physicochemical Properties and Microbial Community Composition in Saline Soil
by Xiaoyan Liang, Rao Fu, Jiajia Li, Yinyu Gu, Kuihua Yi, Meng Li, Chuanjie Chen, Haiyang Zhang, Junlin Li, Lan Ma, Yanjing Song, Xiangyu Wang, Jialei Zhang, Shubo Wan and Hongxia Zhang
Plants 2025, 14(14), 2102; https://doi.org/10.3390/plants14142102 - 8 Jul 2025
Cited by 1 | Viewed by 375
Abstract
Peanut productivity is severely restricted by soil salinization and associated nutrient deficiency in saline soil. The quinoa–peanut relay intercrop pattern (IP) is a promising planting system that utilizes the biological advantages of quinoa to improve soil ecological functions and productivity. However, the effects [...] Read more.
Peanut productivity is severely restricted by soil salinization and associated nutrient deficiency in saline soil. The quinoa–peanut relay intercrop pattern (IP) is a promising planting system that utilizes the biological advantages of quinoa to improve soil ecological functions and productivity. However, the effects of IP on soil physicochemical and biological properties and the yield formation of the combined peanut crop are still unclear. Two-year field experiments in coastal saline soil were conducted to explore the effects of IP on peanut growth and pod yield, soil physicochemical properties, and microbial community characterization at different growth stages of peanut based on the traditional monocrop pattern (MP). The results show that IP promoted peanut pod yield, although there was the disadvantage of plant growth at an early stage. Soil water content, electrical conductivity (EC), and Na+ content in the peanut rhizosphere were lower, whereas K+, NH4+, and total organic carbon (TOC) contents were higher in IP systems at both the vegetative and reproductive stages. The pod yield of peanut was significantly negatively correlated with soil EC and Na+ contents at the vegetative stage, but positively correlated with K+, NO3, NH4+, PO43−, and TOC contents at the reproductive stage. IP rebuilt the composition of the soil bacterial community in the peanut rhizosphere and increased the abundance of the beneficial bacterial community, which were positively correlated with soil TOC, K+, NH4+, NO3, and PO43− contents. These findings suggest that IP can increase peanut pod yield through optimizing soil physicochemical properties and microbial community composition, and it is a promising planting system for improving agricultural production in coastal saline lands. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

13 pages, 2462 KiB  
Communication
Species Interactions Shape Nitrogen Utilization Characteristics and Influence Soil Quality in Jujube–Alfalfa Intercropping System
by Hang Qiao, Hui Cheng, Tiantian Li, Wenxia Fan, Yaru Zhao, Zhengjun Cui, Jinbin Wang, Qingqing Yang, Chengze Jia, Wei Zhang, Guodong Chen and Sumei Wan
Plants 2025, 14(13), 2048; https://doi.org/10.3390/plants14132048 - 3 Jul 2025
Viewed by 390
Abstract
Intercropping legumes offers a sustainable approach to enhance resource efficiency and yields, yet the effects of different legume densities and nitrogen addition levels on soil quality within such systems remain unclear. We conducted a comparative analysis of crop yield, nitrogen use efficiency, and [...] Read more.
Intercropping legumes offers a sustainable approach to enhance resource efficiency and yields, yet the effects of different legume densities and nitrogen addition levels on soil quality within such systems remain unclear. We conducted a comparative analysis of crop yield, nitrogen use efficiency, and soil quality between intercropping and monoculture systems, and further examined the effects of four planting densities (D1: 210 kg ha−1, six rows; D2: 280 kg ha−1, eight rows; D3: 350 kg ha−1, ten rows) and four nitrogen application levels (N0: 0 kg ha−1; N1: 80 kg ha−1; N2: 160 kg ha−1; N3: 240 kg ha−1) within a jujube–alfalfa (Ziziphus jujuba Mill. and Medicago sativa L. respectively) intercropping system. The results showed that intercropping significantly enhanced land productivity within the agricultural system, with the highest yields (alfalfa: 13790 kg ha−1; jujube: 3825 kg ha−1) achieved at an alfalfa planting density of 280 kg ha−1. While the intercropping systems generally improved productivity, an alfalfa planting density of 350 kg ha−1 resulted in an actual yield loss due to excessive nutrient competition at higher densities. As the planting density of alfalfa increased, its competitive ratio declined, whereas the competitive ratio of jujube trees increased. Compared to monocropping systems, intercropping systems demonstrated a clear trend of enhanced nitrogen utilization efficiency and improved soil quality, particularly at an alfalfa planting density of 280 kg ha−1. At an alfalfa density of 280 kg ha−1, the intercropping system exhibited increases of 15.13% in nitrogen use efficiency (NUE), 46.60% in nitrogen partial factor productivity (NPFP), and 32.74% in nitrogen nutrition index (NNI), as well as improvements in soil quality of 19.53% at a depth of 0–20 cm and 15.59% at a depth of 20–40 cm, compared to the monoculture system. Further analysis revealed that nitrogen utilization efficiency initially increased and then decreased with a rising competitive ratio of alfalfa. Accordingly, soil quality was improved along with the enhanced nitrogen utilization efficiency. Thus, at an alfalfa planting density of 280 kg ha−1, resource use efficiency and soil quality were maximized as a result of optimal interspecific competitiveness and the highest nitrogen use efficiency, with minimal influence from the application of nitrogen fertilizer. Full article
Show Figures

Figure 1

17 pages, 4961 KiB  
Article
Maize and Pea Root Interactions Promote Symbiotic Nitrogen Fixation, Thereby Accelerating Nitrogen Assimilation and Partitioning in Intercropped Pea
by Yali Sun, Zefeng Wu, Falong Hu, Hong Fan, Wei He, Lianhao Zhao, Congcong Guo, Xiaoyuan Bao, Qiang Chai and Cai Zhao
Agronomy 2025, 15(7), 1615; https://doi.org/10.3390/agronomy15071615 - 1 Jul 2025
Viewed by 417
Abstract
Cereal/legume intercropping enhances legume nodulation and improves nitrogen use efficiency (NUE) in cereal crops. This facilitation of symbiotic nitrogen fixation (SNF) in intercropped legumes involves a complex eco-physiological mechanism driven by multiple factors. Among them, interspecific root interactions (IRIs) are a key factor [...] Read more.
Cereal/legume intercropping enhances legume nodulation and improves nitrogen use efficiency (NUE) in cereal crops. This facilitation of symbiotic nitrogen fixation (SNF) in intercropped legumes involves a complex eco-physiological mechanism driven by multiple factors. Among them, interspecific root interactions (IRIs) are a key factor influencing SNF in intercropped legumes. Currently, it remains unclear whether and how IRIs modulate SNF to affect NUE and yield formation in legume species. In this study, maize/pea intercropping with different types of root separation [no barrier (NB) and plastic barrier (PB)] and pea monocropping (IP) were simulated in a nitrogen (N)-free nutrient matrix in pots, and the SNF, N metabolism, and N partitioning were investigated. We demonstrated that IRIs optimize SNF performance. N assimilation is positively regulated following increases in enzyme activity and gene expression in intercropped roots and nodules. Furthermore, IRIs facilitate amino acid (AA) export from nodules to roots and shoots, which is followed by an increase in AA levels in leaves (source) and leaf exudates (sink). Overall, intensive SNF drives N metabolism and alters source-to-sink N partitioning, thereby increasing NUE (by 23%) and yield (by 15%) in intercropped pea. This study reveals the positive roles of IRIs to the NUE and yield and provides useful reference material for increasing N contents derived from SNF to maximize NUE and crop yields in intercropped legumes. Full article
Show Figures

Figure 1

20 pages, 420 KiB  
Article
Hybrid Cultivar and Crop Protection to Support Winter Rye Yield in Continuous Cropping
by Marta K. Kostrzewska and Magdalena Jastrzębska
Agriculture 2025, 15(13), 1368; https://doi.org/10.3390/agriculture15131368 - 25 Jun 2025
Viewed by 376
Abstract
Continuous cropping (CC) of cereals leads to reduced yields due to cumulative biotic and abiotic stresses. Winter rye, Secale cereale L., is considered relatively CC-tolerant, yet it may still suffer under prolonged monocropping. This six-year study (2017–2022) aimed to assess the effects of [...] Read more.
Continuous cropping (CC) of cereals leads to reduced yields due to cumulative biotic and abiotic stresses. Winter rye, Secale cereale L., is considered relatively CC-tolerant, yet it may still suffer under prolonged monocropping. This six-year study (2017–2022) aimed to assess the effects of cropping systems (CC vs. crop rotation, CR), cultivar type (hybrid vs. population), and chemical plant protection (control treatment, herbicide, herbicide plus fungicide) on winter rye yield and yield components. The study was conducted as part of a long-term field experiment in northeastern Poland that started in 1967. Two cultivars, KWS Binntto (hybrid) and Dańkowskie Diament (population), were evaluated across treatments. Overall, CR led to significantly higher yields and better performance of all yield components than CC. The hybrid cultivar consistently outperformed the population cultivar. Chemical plant protection improved yield under CC, but was redundant under CR. The hybrid cultivar cultivated in CC protected by rational chemical treatments produced equal or greater yields than the population cultivar grown in CR. In CC conditions, hybrid rye exhibited greater yield stability and resilience to interannual weather variation than the population cultivar. These findings support the use of hybrid rye with rational chemical protection as a practical strategy to sustain productivity in CC systems without relying solely on crop rotation. Full article
Show Figures

Figure 1

15 pages, 2301 KiB  
Article
Effects of Dissolved Organic Carbon Leaching and Soil Carbon Fractions Under Intercropping Dactylis glomerata L.–Medicago sativa L. in Response to Extreme Rainfall
by Cui Xu, Peng Zhang, Lu Chen, Wenzhi Wang, Xukun Yang, Zhenhuan Liu and Yanhua Mi
Agronomy 2025, 15(6), 1485; https://doi.org/10.3390/agronomy15061485 - 19 Jun 2025
Cited by 1 | Viewed by 591
Abstract
Climate change aggravates the frequency of extreme rainfall events, resulting in carbon (C) loss. For the special climate of the highlands, cultivating the land underneath orchards increases C reservation. Systematic research on the impact of extreme rainfall on soil organic carbon compositions and [...] Read more.
Climate change aggravates the frequency of extreme rainfall events, resulting in carbon (C) loss. For the special climate of the highlands, cultivating the land underneath orchards increases C reservation. Systematic research on the impact of extreme rainfall on soil organic carbon compositions and (dissolved organic carbon) DOC leaching is limited, especially regarding the response to different cropping patterns underneath orchards, requiring a deeper understanding. The results showed that the DOC-leaching fluxes for the cropping patterns under rainstorms and heavy rainstorms were in the order Dactylis glomerata L. monocropping (13.5, 4.4 kg/hm2) > Medicago sativa L. monocropping (11.2, 3.8 kg/hm2) ≥ D. glomerata. + M. sativa. (10.4, 3.6 kg/hm2). The DOC-leaching fluxes during heavy rainstorms were reduced with D + M, and the root morphology showed a significant correlation with DOC concentration. Compared to the D, SOC in layers 40–60 cm of the M and the D + M increased by 68.36% and 64.24%, respectively. TP and POC of the D + M increased with soil depth. Relationships between cropping pattern and rainfall intensity for particulate organic carbon (POC) and mineral-associated organic carbon (MOC) were observed. Heavy rainstorms reduced MOC, including the decomposition of substances related to the MOC, such as ROC and DOC, then POC in layers 40–60 cm increased; compared with 0–20 cm of D and M, the content of readily oxidizable carbon (ROC) in layers 40–60 cm reduced by 56.90~77.64%, and the POC increased by 38.38~87.00% in the D + M. Therefore, it was suggested that the decomposition of deeper MOC due to heavy rainstorms is the main source of soil POC and leaching DOC. This will provide a reference basis for research on assessing soil carbon-leaching fluxes and carbon stocks under extreme rainfall events. Full article
Show Figures

Figure 1

23 pages, 3361 KiB  
Article
Monocropping Degrades Soil Quality Index and Soil Multifunctionality Compared to Natural Grasslands and Restored Shrubland in China’s Qilian Mountains (Based on Single-Year Sampling)
by Longji Zhang, Shaochong Wei, Hang Xiang and Xiaojun Yu
Agronomy 2025, 15(6), 1461; https://doi.org/10.3390/agronomy15061461 - 16 Jun 2025
Viewed by 522
Abstract
As the ecological security barrier in northwestern China, understanding how natural grassland (NG) utilization pattern transformation in the northern Qilian foothills affects soil quality and ecosystem multifunctionality supports regional ecosystem management. The study compared soil chemical and biological properties, soil quality index (SQI), [...] Read more.
As the ecological security barrier in northwestern China, understanding how natural grassland (NG) utilization pattern transformation in the northern Qilian foothills affects soil quality and ecosystem multifunctionality supports regional ecosystem management. The study compared soil chemical and biological properties, soil quality index (SQI), and soil ecosystem multifunctionality (SMF) among four grassland utilization patterns in the northern foothills of the Qilian Mountains, Gansu Province, China. Soil samples were collected in early October 2024 following crop harvest from the following systems: traditionally grazed NG, monocropping Hordeum vulgare (barley; MHV), monocropping Avena sativa (oat; MAS), and Hippophae rhamnoides shrubland (sea buckthorn; HRS). The results showed that compared with NG, SQI was decreased by 52.69% (p = 0.000059) under MHV treatment and by 18.78% (p = 0.03) under MAS treatment, while HRS did not have a significant reduction in SQI. Under the three patterns of transformative utilization of NG, SMF followed the order of HRS (0.11) > MAS (−0.06) > MHV (−0.51). Overall, the establishment of restoration vegetation (sea buckthorn shrubland) retained SQI under different grassland utilization patterns in the study area, whereas long-term monocropping resulted in significant reductions in SQI and SMF due to compromised chemical and biological properties. Full article
(This article belongs to the Special Issue The Impact of Land Use Change on Soil Quality Evolution)
Show Figures

Figure 1

23 pages, 49734 KiB  
Article
Integrating Remote Sensing, Landscape Metrics, and Random Forest Algorithm to Analyze Crop Patterns, Factors, Diversity, and Fragmentation in a Kharif Agricultural Landscape
by Surajit Banerjee, Tuhina Nandi, Vishwambhar Prasad Sati, Wiem Mezlini, Wafa Saleh Alkhuraiji, Djamil Al-Halbouni and Mohamed Zhran
Land 2025, 14(6), 1203; https://doi.org/10.3390/land14061203 - 4 Jun 2025
Viewed by 1012
Abstract
Despite growing importance, agricultural landscapes face threats, like fragmentation, shrinkage, and degradation, due to climate change. Although remote sensing and GIS are widely used in monitoring croplands, integrating machine learning, remote sensing, GIS, and landscape metrics for the holistic management of this landscape [...] Read more.
Despite growing importance, agricultural landscapes face threats, like fragmentation, shrinkage, and degradation, due to climate change. Although remote sensing and GIS are widely used in monitoring croplands, integrating machine learning, remote sensing, GIS, and landscape metrics for the holistic management of this landscape remains underexplored. Thus, this study monitored crop patterns using random forest (94% accuracy), the role of geographical factors (such as elevation, aspect, slope, maximum and minimum temperature, rainfall, cation exchange capacity, NPK, soil pH, soil organic carbon, soil type, soil water content, proximity to drainage, proximity to market, proximity to road, population density, and profit per hectare production), diversity, combinations, and fragmentation using landscape metrics and a fragmentation index. Findings revealed that slope, rainfall, temperature, and profit per hectare production emerged as significant drivers in shaping crop patterns. However, anthropogenic drivers became deciding factors during spatial overlaps between crop suitability zones. Rice belts were the least fragmented and highly productive with a risk of monoculture. Croplands with a combination of soybean, black grams, and maize were highly fragmented, despite having high diversity with comparatively less production per field. These diverse fields were providing higher profits and low risks of crop failure due to the crop combinations. Equally, intercropping balanced the nutrient uptakes, making the practice sustainable. Thus, it can be suggested that productivity and diversity should be prioritized equally to achieve sustainable land use. The development of the PCA-weighted fragmentation index offers an efficient tool to measure fragmentation across similar agricultural regions, and the integrated approach provides a scalable framework for holistic management, sustainable land use planning, and precision agriculture. Full article
(This article belongs to the Special Issue Digital Earth and Remote Sensing for Land Management)
Show Figures

Figure 1

22 pages, 919 KiB  
Article
The Grain Protein Content of Polish Cereals Other than Wheat: Can It Be Increased by Combining a Crop Sequence System, Cultivar Selection, and Plant Protection?
by Marta K. Kostrzewska and Magdalena Jastrzębska
Agriculture 2025, 15(9), 1016; https://doi.org/10.3390/agriculture15091016 - 7 May 2025
Viewed by 545
Abstract
After legumes, cereals are the most important source of protein for humans and livestock worldwide. One way to meet growing nutritional demands is to increase the grain protein content (GPC) of cereals. Breeding advances in this regard should be supported by optimized agricultural [...] Read more.
After legumes, cereals are the most important source of protein for humans and livestock worldwide. One way to meet growing nutritional demands is to increase the grain protein content (GPC) of cereals. Breeding advances in this regard should be supported by optimized agricultural practices. The GPCs of winter rye, winter triticale, spring barley, and spring oats grown in 2018–2022 in northeast Poland were evaluated to determine the influence of the crop sequence system (continuous monocropping, crop rotation), cultivar (two for each species), plant protection level (control treatment, herbicide, herbicide, and fungicide), and interactions among these factors. The cultivar selection was a significant GPC determinant in all cereals. Growing triticale in crop rotation after a legume increased its GPC compared to continuous monocropping, but decreased the GPC of rye and had no effect on the GPCs of spring cereal that followed non-legume crops. Using herbicides and herbicides combined with fungicides promoted the GPC of rye and oats, but not of triticale and barley. The heterogeneity of the interaction effects of the studied agricultural practices on the GPCs of the individual cereals prevents the identification of a universal combination that would ensure the highest GPC levels. The inter-annual weather variability played a significant role in shaping the GPCs of cereals and in modifying the influence of the controlled factors. Full article
Show Figures

Figure 1

22 pages, 6282 KiB  
Article
The Effects of Stand Density on the Growth of Winter Rapeseed in an Agroforestry Intercropping System in the Red Soil Slopes of Southern China
by Xin Luo, Xianghui Lu, Haina Zhang, Haolong Wan, Yue Zhang and Xiaoying Feng
Plants 2025, 14(9), 1374; https://doi.org/10.3390/plants14091374 - 1 May 2025
Cited by 1 | Viewed by 496
Abstract
Agroforestry systems can improve land use efficiency and increase the output of agricultural and forestry products. In this study, a camphor forest–winter rapeseed composite system was used as the research object from 2023 to 2024. A randomized block experiment was used to set [...] Read more.
Agroforestry systems can improve land use efficiency and increase the output of agricultural and forestry products. In this study, a camphor forest–winter rapeseed composite system was used as the research object from 2023 to 2024. A randomized block experiment was used to set different slopes, S1, S2, and S3 (5°, 10°, and 15°), and camphor forest densities D1, D2, and D3 (row spacing of 1.5 m × 1.5 m, 1.0 m × 1.5 m, 1.0 m × 1.0 m) to compare a single crop (CK) of winter rapeseed and analyze its growth status. This study showed that slope and camphor forest density significantly affected the growth indicators of winter rapeseed. Among the intercropping treatments, S1D2 (5°, 1.0 m × 1.5 m) performed best. In the late growth period of winter rapeseed (flowering to maturity), the treatment increased leaf area index, relative chlorophyll content, root system indicators (length, surface area, volume), theoretical yield, and actual yield, and it increased the aboveground biomass per unit area. Although the actual yield of intercropping on slopes S1, S2, and S3 was 2.52%, 2.82%, and 1.72% lower than that of monocropping, respectively, the ground surface was exposed and idle in winter after the camphor trees were cut down in September. Intercropping winter rapeseed with camphor trees can improve land utilization and increase surface coverage. The results showed that the S1D2 (5°, 1.0 m × 1.5 m), S2D1 (10°, 1.5 m × 1.5 m), and S3D1 (15°, 1.5 m × 1.5 m) treatments performed well in terms of biomass accumulation and yield, and they can be used as recommended intercropping patterns for different slopes. Full article
Show Figures

Figure 1

19 pages, 3908 KiB  
Article
The Effect of Intercropping with Eucommia ulmoides on the Growth and Quality of Abelmoschus manihot and Its Rhizosphere Microbial Community
by Minghao Han, Ze Zhang, Han Yang, Jiyu Du, Xue Wu and Yujie Fu
Agronomy 2025, 15(4), 863; https://doi.org/10.3390/agronomy15040863 - 30 Mar 2025
Viewed by 564
Abstract
Intercropping is a specific agricultural practice where multiple crops are alternately planted in the same field, focusing on optimizing crop interactions and resource use. The key advantages of this approach encompass the complementary ecological niches of crops, which facilitate efficient resource utilization, promote [...] Read more.
Intercropping is a specific agricultural practice where multiple crops are alternately planted in the same field, focusing on optimizing crop interactions and resource use. The key advantages of this approach encompass the complementary ecological niches of crops, which facilitate efficient resource utilization, promote soil microbial diversity, and ultimately lead to enhanced crop yield and quality. Within this context, rhizosphere microorganisms play a pivotal role in plant growth, not only maintaining crop health but also augmenting resistance to various stressors through intricate mechanisms, such as colonizing the plant rhizosphere to produce phytohormones that stimulate plant growth, activating plant defense systems, and competitively excluding soil pathogens. Abelmoschus manihot (A. manihot) is widely distributed and possesses medicinal value; thus, it is utilized to treat a variety of diseases. When cultivating A. manihot, we hope to make rational use of limited planting space, while ensuring the yield of A. manihot and enhancing its medicinal quality. Therefore, a field experiment was conducted in which two planting patterns for A. manihot were designed. Monocropping plots featured A. manihot planted at 0.3 m intervals with a row spacing of 0.5 m. In the intercropping plots, A. manihot was also planted at 0.3 m intervals, maintaining a row spacing of 0.5 m. Furthermore, Eucommia ulmoides (E. ulmoides) was planted at 0.3 m intervals, with a row spacing of 0.25 m between A. manihot and E. ulmoides. Through the field experiment, we evaluated the effects of monocropping and intercropping with E. ulmoides on the quality and biomass of A. manihot, as well as the rhizosphere microbial community structure. The results showed that intercropping can promote the growth of A.manihot, especially by increasing the number of flowers and fruits, but the quality of the medicinal properties is not affected. Specifically, in 2024, the number of flowers in the intercropping plants was 20 ± 2, compared to 13 ± 2 in the monocropping; in 2023, the number of fruits in the intercropping plants was 19 ± 2, compared to 13 ± 2 in the monocropping; and in 2024, the number of fruits in the intercropping plants was 20 ± 2, compared to 13 ± 2 in the monocropping. This effect is due to the self-regulation of A. manihot in response to the biological stress from E. ulmoides. The composition and function of the A. manihot rhizosphere fungal community in the intercropping system changed significantly, which may be the reason for the growth and development of A. manihot. This discovery reveals the potential of intercropping as an agricultural practice in promoting plant growth and increasing yield. Intercropping with E. ulmoides significantly promoted the growth of A. manihot, increasing the number of its flowers and fruits without compromising the quality of its medicinal properties. This finding offers valuable insights for agricultural production: by employing rational intercropping configurations, crop yields can be increased without compromising crop quality. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

16 pages, 2727 KiB  
Article
Long-Term Year-Interval Effect of Continuous Maize/Soybean Intercropping on Maize Yield and Phosphorus Use Efficiency
by Munir Ahmad, Tilei Zhao, Harun Gitari, Hongmin Zhao and Li Tang
Plants 2025, 14(7), 1060; https://doi.org/10.3390/plants14071060 - 29 Mar 2025
Cited by 2 | Viewed by 601
Abstract
The increasing global food demand, the degradation of one-third of agricultural land, and climate change pose significant threats to food production. Maize and soybean intercropping can enhance yields and land use efficiency, yet the year-interval effects of continuous intercropping on yield, yield sustainability, [...] Read more.
The increasing global food demand, the degradation of one-third of agricultural land, and climate change pose significant threats to food production. Maize and soybean intercropping can enhance yields and land use efficiency, yet the year-interval effects of continuous intercropping on yield, yield sustainability, and phosphorus use efficiency (PUE) remain unclear. This study evaluates the effects of continuous maize/soybean intercropping over year intervals on yield, PUE, and sustainability. A seven-year field trial (2017–2023) was conducted on acidic soil, comparing two cropping systems: maize monocropping and maize intercropped with soybean. The results showed that continuous maize/soybean intercropping outperformed maize monocropping across all year intervals. Over the first, third, and seventh year intervals, maize yield increased by 37%, 35%, and 58%, respectively, with a 55% average increase over the seven years. Intercropping also enhanced P use efficiency, as evidenced by AE, RE, PFP, and CPF increases. In the first year, AE, PFP, RE, and CPF increased by 48%, 37%, 27%, and 16%, respectively; after the third year interval, these metrics improved by 40%, 35%, 26%, and 14%; and after the seventh year interval, they rose by 60%, 58%, 24%, and 10.5%. The average AE, RE, and PFP increases over seven years were 53%, 52%, and 27%, respectively, while CPF increased by 13%. The SEM analysis further confirmed the substantial impact of the seventh year intercropping interval on maize yield, sustainability, and PUE. This study demonstrates that continuous maize/soybean intercropping can enhance maize yield, PUE, and sustainability, with the seventh year interval offering the most pronounced benefits. These findings provide valuable insights for improving food security and nutrient management challenges. Full article
Show Figures

Figure 1

18 pages, 4543 KiB  
Article
Integrating Cover Crops and Manure to Boost Goji Berry Yield: Responses of Soil Physicochemical Properties and Microbial Communities
by Haonan Chen, Fang Wang, Yamiao Gao, Yaran Ma, Lizhen Zhu and Xiongxiong Nan
Microorganisms 2025, 13(3), 696; https://doi.org/10.3390/microorganisms13030696 - 20 Mar 2025
Viewed by 496
Abstract
A sustainable Goji berry (Lycium barbarum L.) planting system that integrates forage radish cover crops (Raphanus sativus L.) and animal manure has been established in northwestern China. This study investigated the effects of different cropping systems and manure application levels on [...] Read more.
A sustainable Goji berry (Lycium barbarum L.) planting system that integrates forage radish cover crops (Raphanus sativus L.) and animal manure has been established in northwestern China. This study investigated the effects of different cropping systems and manure application levels on soil physicochemical properties, microbial community structure, and L. barbarum yield under field conditions. A split-plot design was used, with the main-plot treatments consisting of two cropping systems and the sub-plot treatments involving three manure application levels. The results showed that compared to L. barbarum monocropping, cover cropping with R. sativus led to a decrease in soil bulk density (1.90%) and increase in soil electrical conductivity (11.5%), nutrient contents (total N and available N, P, and K: 30.3–138%), and microbial biomass (C: 79.0%; N: 184%). Cover cropping additionally enhanced the community diversity and richness of soil bacteria. Beta-diversity analysis revealed significant differences in bacterial rather than fungal community composition among various treatments. The bacterial network showed a lower ratio of positive to negative correlations and reduced complexity in response to cover cropping, which contrasted with fungal network patterns. Integration of cover cropping and medium manure application increased fruit yield by 8.71%. Cover crops and manure influenced soil microbial diversity mainly through their positive effects on soil total and available N contents. Full article
(This article belongs to the Special Issue Feature Paper in Plant–Microbe Interactions in Asia)
Show Figures

Graphical abstract

Back to TopTop