Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = mold sharing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1958 KiB  
Article
Comparison and Analysis of the Genomes of Three Strains of Botrytis cinerea Isolated from Pomegranate
by Alberto Patricio-Hernández, Miguel Angel Anducho-Reyes, Alejandro Téllez-Jurado, Rocío Ramírez-Vargas, Andrés Quezada-Salinas and Yuridia Mercado-Flores
Microorganisms 2025, 13(7), 1605; https://doi.org/10.3390/microorganisms13071605 - 8 Jul 2025
Viewed by 384
Abstract
Gray mold disease, caused by the fungus Botrytis cinerea, affects a wide variety of plants. In this study, we conducted several in vitro tests and genomic analyses on three strains of this fungus (BcPgIs-1, BcPgIs-3, MIC) previously isolated from diseased pomegranate fruits, [...] Read more.
Gray mold disease, caused by the fungus Botrytis cinerea, affects a wide variety of plants. In this study, we conducted several in vitro tests and genomic analyses on three strains of this fungus (BcPgIs-1, BcPgIs-3, MIC) previously isolated from diseased pomegranate fruits, collected at two geographic locations in Mexico. Our goal was to identify possible differences among these strains. The development of the three strains in distinct culture media, the production of extracellular enzymes, and their effect on the progression of infection in pomegranate fruits were evaluated. The genomes were sequenced using the Illumina platform and analyzed with various bioinformatics tools. All strains possess genetic determinants for virulence and cell wall polymer degradation, but MIC exhibited the highest pectinolytic activity in vitro. This strain also produced sclerotia in a shorter time (7 days) in PDA medium. BcPgls-3 demonstrated the highest conidia production across all the culture media used. Both BcPgls-3 and MIC damaged all the pomegranate fruits 8 days after inoculation, while the BcPgls-1 required up to 9 days. Sequencing of the three strains yielded high-quality sequences, resulting in a total of 17 scaffolds and genomes that exceed 41 million bp, with a GC content of approximately 42%. Phylogenomic analysis indicated that the MIC strain is situated in a group separate from BcPgIs-1 and BcPgIs-3. BcPgIs-3 possesses more coding sequences, but MIC has more genes for CAZymes and peptidases. The three strains share 10,174 genes, while BcPgIs-3 and MIC share 851. These findings highlight the differences among the strains studied, which may reflect their adaptive capacities to their environment. Results contribute to our understanding of the biology of gray mold in pomegranates and could assist in developing more effective control strategies. Full article
(This article belongs to the Special Issue Feature Papers in Plant–Microbe Interactions in North America)
Show Figures

Figure 1

16 pages, 1041 KiB  
Article
Isolation and Characterization of Cultivable Microbes from the Gut of Zophobas atratus (Coleoptera: Tenebrionidae) Larvae Reared on Two Types of Artificial Diets
by Vladislava Baklanova, Alexander Kuprin, Ivan Baklanov and Vadim Kumeiko
Biology 2025, 14(7), 824; https://doi.org/10.3390/biology14070824 - 7 Jul 2025
Viewed by 398
Abstract
Gut microbes are important for saproxylophagous insects, but little is known about the specific types of microbes that we can grow in the lab and how their diet affects them. We characterized aerobic culturable microbes from the superworm Zophobas atratus larvae reared on [...] Read more.
Gut microbes are important for saproxylophagous insects, but little is known about the specific types of microbes that we can grow in the lab and how their diet affects them. We characterized aerobic culturable microbes from the superworm Zophobas atratus larvae reared on a standard diet (SD) and a fungal-based diet (FD) using the selective plating and 16S rRNA sequencing of isolates. Five functional groups were cultured: amino acid autotrophs, enterobacteria, yeasts, cellulolytic bacteria, and molds. A quantitative assessment revealed distinct diet-dependent patterns: SD-fed larvae showed the dominance of enterobacteria and amino acid autotrophs, while FD-fed larvae exhibited a higher abundance of enterobacteria and yeasts. Mold populations remained minimal under both diets. A phylogenetic analysis of bacterial isolates showed four core bacterial phyla (Pseudomonadota, Actinobacteria, Bacillota, and Bacteroidota) with diet-sensitive genus-level variations. Pseudomonadota dominated both diets, but certain genera were associated with different diets: Micrococcus and Brucella in the SD versus Citrobacter and Pseudomonas in the FD. Shared genera (Klebsiella, Enterobacter, and Bacillus) may represent a core culturable community. These findings demonstrate the influence of diet on culturable gut microbes while highlighting the need for complementary molecular approaches to study unculturable taxa. The isolated strains provide resources for investigating microbial functions in insect nutrition. Full article
(This article belongs to the Special Issue Feeding Biology and Nutrition in Insects)
Show Figures

Figure 1

17 pages, 3912 KiB  
Article
A Novel Compliant Four-Bar Mechanism-Based Universal Joint Design and Production
by Raşit Karakuş
Machines 2025, 13(3), 250; https://doi.org/10.3390/machines13030250 - 20 Mar 2025
Viewed by 705
Abstract
In this study, a novel fully compliant four-bar-based universal joint is introduced. The difference between the angular positions of the input and output shafts is obtained by two equivalent fully compliant four-bar mechanisms that operate simultaneously by sharing the same input link. During [...] Read more.
In this study, a novel fully compliant four-bar-based universal joint is introduced. The difference between the angular positions of the input and output shafts is obtained by two equivalent fully compliant four-bar mechanisms that operate simultaneously by sharing the same input link. During the design phase of the mechanism an iterative method for determining the optimum angular position of the links is proposed and applied. The proposed design is a single-piece mechanism that is produced from polypropylene and compatible with both additive manufacturing and injection molding techniques. The scalability of compliant mechanisms allows for a wide range of size options during the design process. An extensive survey of the current literature reveals that the design proposed is without precedent, marking it as both novel and inventive. In this study, the design procedure of the proposed universal joint, stress analysis of the links, the torque capacity of the joint, and an experimental setup are presented. The produced prototype demonstrates the functionality of the proposed design. In addition, it should be noted that the prototype production of the proposed design was conducted using the additive manufacturing method. This production technique is a significant motivation behind the design of the mechanism as a single piece. Additionally, the proposed mechanism in its current form is also suitable for production using the injection molding method which is widely used in the industry. Full article
(This article belongs to the Special Issue Optimization and Design of Compliant Mechanisms)
Show Figures

Figure 1

35 pages, 1520 KiB  
Review
The Hidden Fortress: A Comprehensive Review of Fungal Biofilms with Emphasis on Cryptococcus neoformans
by Hope M. Pruitt, Jinyi C. Zhu, Sean P. Riley and Meiqing Shi
J. Fungi 2025, 11(3), 236; https://doi.org/10.3390/jof11030236 - 19 Mar 2025
Cited by 2 | Viewed by 4319
Abstract
Biofilms are structurally organized communities of microorganisms that adhere to a variety of surfaces. These communities produce protective matrices consisting of polymeric polysaccharides, proteins, nucleic acids, and/or lipids that promote shared resistance to various environmental threats, including chemical, antibiotic, and immune insults. While [...] Read more.
Biofilms are structurally organized communities of microorganisms that adhere to a variety of surfaces. These communities produce protective matrices consisting of polymeric polysaccharides, proteins, nucleic acids, and/or lipids that promote shared resistance to various environmental threats, including chemical, antibiotic, and immune insults. While algal and bacterial biofilms are more apparent in the scientific zeitgeist, many fungal pathogens also form biofilms. These surprisingly common biofilms are morphologically distinct from the multicellular molds and mushrooms normally associated with fungi and are instead an assemblage of single-celled organisms. As a collection of yeast and filamentous cells cloaked in an extracellular matrix, fungal biofilms are an extreme threat to public health, especially in conjunction with surgical implants. The encapsulated yeast, Cryptococcus neoformans, is an opportunistic pathogen that causes both pulmonary and disseminated infections, particularly in immunocompromised individuals. However, there is an emerging trend of cryptococcosis among otherwise healthy individuals. C. neoformans forms biofilms in diverse environments, including within human hosts. Notably, biofilm association correlates with increased expression of multiple virulence factors and increased resistance to both host defenses and antifungal treatments. Thus, it is crucial to develop novel strategies to combat fungal biofilms. In this review, we discuss the development and treatment of fungal biofilms, with a particular focus on C. neoformans. Full article
Show Figures

Figure 1

16 pages, 1359 KiB  
Article
Occurrence of Pathogenic and Allergenic Molds in the Outdoor and Indoor Environment of a Major Hospital and Molecular Epidemiology of Aspergillus fumigatus in Kuwait
by Mohammad Asadzadeh, Suhail Ahmad, Ferry Hagen, Jacques F. Meis and Ziauddin Khan
J. Fungi 2025, 11(2), 83; https://doi.org/10.3390/jof11020083 - 21 Jan 2025
Viewed by 1442
Abstract
Aspergilli and other molds are prevalent in the environment and are an important cause of opportunistic infections and seasonal allergies in susceptible patients. This study determined species distribution of various molds in outdoor/indoor air in and around a major hospital and performed antifungal [...] Read more.
Aspergilli and other molds are prevalent in the environment and are an important cause of opportunistic infections and seasonal allergies in susceptible patients. This study determined species distribution of various molds in outdoor/indoor air in and around a major hospital and performed antifungal susceptibility testing and molecular fingerprinting of environmental and clinical Aspergillus fumigatus isolates in Kuwait. Sampling for the isolation of molds was performed for a 17-month-period from the water/indoor air of medical/surgical wards/ICUs and outdoor air. Molds were identified by phenotypic characteristics and/or by the PCR-sequencing of rDNA/β-tubulin/calmodulin genes. Antifungal susceptibility testing was done by Etest. Fingerprinting was performed by nine-loci-based microsatellite analysis. A total of 6179 isolates were obtained from outdoor (n = 4406) and indoor (n = 1773) environments. These included Cladosporium spp. (n = 2311), Aspergillus spp. (n = 1327), Penicillium spp. (n = 1325), Paecilomyces spp. (n = 473), Alternaria spp. (n = 218), Bipolaris spp. (n = 133), and other molds (n = 392). Fingerprinting data revealed heterogeneity among clinical and environmental A. fumigatus and shared genotypes among outdoor air and hospital environmental isolates. Itraconazole-resistant A. fumigatus isolates with TR34/L98H mutations in Cyp51A were also recovered from outdoor air (n = 1), a hospital environment (n = 3), and clinical samples (n = 2). More than 15 fungal genera and all four Aspergillus (Nigri, Flavi, Fumigati, and Terrei) sections and nine rare aspergilli were detected. The isolation frequency was higher during the peak allergy season of October/November. The presence of shared genotypes among outdoor air and the hospital environment including triazole-resistant A. fumigatus suggests a reservoir for invasive infections among susceptible hospitalized patients. Full article
Show Figures

Figure 1

16 pages, 4443 KiB  
Article
Association and Interrelationship Among Agronomic Traits and Fungal Diseases of Sorghum, Anthracnose and Grain Mold
by Louis K. Prom, Ezekiel J. S. Ahn, Hugo E. Cuevas, Jinggao Liu, Thomas S. Isakeit and Clint W. Magill
Crops 2024, 4(4), 651-666; https://doi.org/10.3390/crops4040045 - 5 Dec 2024
Cited by 1 | Viewed by 1100
Abstract
Anthracnose and grain mold are two of the most significant diseases of sorghum, a versatile crop that plays an important part in the daily lives of millions of inhabitants, especially in the drier tropical regions. The aim of this study was to determine [...] Read more.
Anthracnose and grain mold are two of the most significant diseases of sorghum, a versatile crop that plays an important part in the daily lives of millions of inhabitants, especially in the drier tropical regions. The aim of this study was to determine the influence of four agronomic traits in selected sorghum germplasms on the two diseases using Spearman’s ρ test to identify significant pairwise correlations. Both anthracnose and grain mold scores were significantly and negatively correlated with seed weight and germination rate. The grain mold infection score also demonstrated negative correlations with plant height (Spearman ρ = −0.61 and p-value = <0.0001) and panicle length (Spearman ρ = −0.27 and p-value = 0.0022). In this investigation, principal component analysis and clustering variables analysis revealed that seed weight and germination rate exhibited a directional alignment, suggesting a positive association. Similarly, panicle length and plant height clustered together, suggesting a shared variation pattern. Additionally, a support vector machine and random forest models effectively predicted the germination rate based on the studied traits, highlighting the potential of machine learning in understanding complex trait relationships in sorghum. This work provides insights into the relationship between agronomic traits and disease resistance, thus contributing to sorghum improvement efforts. Full article
Show Figures

Figure 1

16 pages, 4805 KiB  
Article
Properties of Multiple-Processed Natural Short Fiber Polypropylene and Polylactic Acid Composites: A Comparison
by Barbara Liedl, Thomas Höftberger and Christoph Burgstaller
Macromol 2024, 4(4), 723-738; https://doi.org/10.3390/macromol4040043 - 5 Oct 2024
Cited by 3 | Viewed by 2320
Abstract
Natural fiber composites have gained increasing attention due to sustainability considerations. One often neglected aspect is the potential for the mechanical recycling of such materials. In this work, we compounded injection-molded polypropylene (PP) and polylactic acid (PLA) short cellulose fiber composites with fiber [...] Read more.
Natural fiber composites have gained increasing attention due to sustainability considerations. One often neglected aspect is the potential for the mechanical recycling of such materials. In this work, we compounded injection-molded polypropylene (PP) and polylactic acid (PLA) short cellulose fiber composites with fiber shares up to 40 percent by weight. Both matrix materials were reinforced by the addition of the fibers. We investigated a trifold full recycling process, where we subjected the materials produced in the first place to compounding, injection molding, testing, and shredding, and then repeated the process. Although the materials’ properties assigned to degradation were found to decrease with progressive recycling, attractive mechanical properties could be preserved even after the third reprocessing cycle. Full article
Show Figures

Figure 1

20 pages, 25243 KiB  
Article
The Designs and Testing of Biodegradable Energy-Absorbing Inserts for Enhanced Crashworthiness in Sports Helmets
by Paweł Kaczyński, Mateusz Skwarski, Anna Dmitruk, Piotr Makuła and Joanna Ludwiczak
Materials 2024, 17(17), 4407; https://doi.org/10.3390/ma17174407 - 6 Sep 2024
Cited by 1 | Viewed by 1188
Abstract
This article addresses manufacturing structures made via injection molding from biodegradable materials. The mentioned structures can be successfully used as energy-absorbing liners of all kinds of sports helmets, replacing the previously used expanded polystyrene. This paper is focused on injection technological tests and [...] Read more.
This article addresses manufacturing structures made via injection molding from biodegradable materials. The mentioned structures can be successfully used as energy-absorbing liners of all kinds of sports helmets, replacing the previously used expanded polystyrene. This paper is focused on injection technological tests and tensile tests (in quasi-static and dynamic conditions) of several composites based on a PLA matrix with the addition of other biodegradable softening agents, such as PBAT and TPS (the blends were prepared via melt blending using a screw extruder with mass compositions of 50:50, 30:70, and 15:85). Tensile tests showed a positive strain rate sensitivity of the mixtures and a dependence of the increase in the ratio of the dynamic to static yield stress on the increase in the share of the plastic component in the mixture. Technological tests showed that increasing the amount of the plasticizing additive by 35% (from 50% to 85%) results in a decrease in the minimal thickness of the thin-walled element that can be successfully injection molded by about 32% in the case of PLA/PBAT blends (from 0.22 mm to 0.15 mm) and by about 26% in the case of PLA/TPS blends (from 0.23 mm to 0.17 mm). Next, the thin-walled elements (dimensions of 55 × 55 × 20 mm) were manufactured and evaluated using a spring-loaded drop hammer. The 60 J impact energy was tested in accordance with the EN 1078 standard. The dynamic crushing test included checking the influence of the materials’ temperature (−20, 0, 20, and 40 °C) and the impact velocity. It was proven that the maximum deflection increases with increasing material temperature and an increase in the share of the plastic component in the mixture. The PLA15PBAT85 blend was selected as the most effective material in terms of its use as an energy-absorbing liner for sport helmets. Johnson–Cook and Cowper–Symonds material plasticizing models were constructed. Their use during dynamic FE simulation provided results that were in good agreement with those of the conducted experiment. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

26 pages, 9103 KiB  
Article
Optimizing Daylight Performance of Digital Fabricated Adobe Walls
by Dimitrios N. Gonidakis, Evangelia I. Frangedaki and Nikos D. Lagaros
Architecture 2024, 4(3), 515-540; https://doi.org/10.3390/architecture4030028 - 29 Jul 2024
Cited by 2 | Viewed by 1506
Abstract
The construction industry faces a growing challenge in reducing its environmental impact through sustainable design and practices. Buildings are responsible for a significant share of CO2 emissions and pollution, with lighting alone accounting for roughly 15% of global electricity consumption according to [...] Read more.
The construction industry faces a growing challenge in reducing its environmental impact through sustainable design and practices. Buildings are responsible for a significant share of CO2 emissions and pollution, with lighting alone accounting for roughly 15% of global electricity consumption according to the International Energy Agency (IEA). A key element in achieving sustainability is optimizing daylight penetration within buildings, reducing reliance on artificial lighting and associated energy demands. This research introduces a novel approach by optimizing the geometry of a building’s exterior skin fabricated with adobe by 3D-printed molds. This method aims to achieve a balance between structural integrity, improved daylight availability within the building, and the inherent sustainability benefits of using adobe, an earth-based material. The proposed design procedure starts with a 2D geometry and applies it to the building’s exterior. The framework then optimizes the geometry to maintain structural stability while maximizing daylight penetration into the interior. Importantly, this optimization considers the specific material properties of adobe walls created using 3D-printed metal molds. By integrating 3D-printed adobe molds and daylight optimization, a framework is offered with a potential path towards sustainable building design with improved energy efficiency and reduced environmental impact. Full article
Show Figures

Figure 1

22 pages, 4139 KiB  
Article
An Internet of Things-Based Production Scheduling for Distributed Two-Stage Assembly Manufacturing with Mold Sharing
by Yin Liu, Cunxian Ma and Yun Huang
Machines 2024, 12(5), 310; https://doi.org/10.3390/machines12050310 - 2 May 2024
Viewed by 1430
Abstract
In digital product and ion scheduling centers, order–factory allocation, factory–mold allocation, and mold routing can be performed centrally and efficiently to maximize the utilization of manufacturing resources (molds). Therefore, in this paper, a manufacturing resource (molds)-sharing mechanism based on the Internet of Things [...] Read more.
In digital product and ion scheduling centers, order–factory allocation, factory–mold allocation, and mold routing can be performed centrally and efficiently to maximize the utilization of manufacturing resources (molds). Therefore, in this paper, a manufacturing resource (molds)-sharing mechanism based on the Internet of Things (IoT) and a cyber-physical production system (CPPS) is designed to realize the coordinated allocation of molds and production scheduling. A mixed-integer mathematical model is developed to optimize the cost structure and obtain a reasonable profit solution. A heuristic algorithm based on evolutionary reversal is used to solve the problem. The numerical results show that based on the digital coordinated production scheduling method, distributed two-stage assembly manufacturing with shared molds can effectively reduce the order delay time and increase potential benefits for distributed production enterprises. Full article
Show Figures

Figure 1

33 pages, 31416 KiB  
Review
The Three-Dimensional Printing of Composites: A Review of the Finite Element/Finite Volume Modelling of the Process
by Theodor Florian Zach and Mircea Cristian Dudescu
J. Compos. Sci. 2024, 8(4), 146; https://doi.org/10.3390/jcs8040146 - 12 Apr 2024
Cited by 6 | Viewed by 4800
Abstract
Composite materials represent the evolution of material science and technology, maximizing the properties for high-end industry applications. The fields concerned include aerospace and defense, automotive, or naval industries. Additive manufacturing (AM) technologies are increasingly growing in market shares due to the elimination of [...] Read more.
Composite materials represent the evolution of material science and technology, maximizing the properties for high-end industry applications. The fields concerned include aerospace and defense, automotive, or naval industries. Additive manufacturing (AM) technologies are increasingly growing in market shares due to the elimination of shape barriers, a plethora of available materials, and the reduced costs. The AM technologies of composite materials combine the two growing trends in manufacturing, combining the advantages of both, with a specific enhancement being the elimination of the need for mold manufacturing for composites, or even post-curing treatments. The challenge of AM composites is to compete with their conventional counterparts. The aim of the current paper is to present the additive manufacturing process across different spectrums of finite element analyses (FEA). The first outcomes are building definition (support definition) and the optimization of deposition trajectories. In addition, the multi-physics of melting/solidification using computational fluid dynamics (CFD) are performed to predict the fiber orientation and extrusion profiles. The process modelling continues with the displacement/temperature distribution, which influences porosity, warping, and residual stresses that influence characteristics of the component. This leads to the tuning of the technological parameters, thus improving the manufacturing process. Full article
(This article belongs to the Special Issue Additive Manufacturing of Advanced Composites)
Show Figures

Figure 1

23 pages, 991 KiB  
Article
A Bayesian Approach for Lifetime Modeling and Prediction with Multi-Type Group-Shared Missing Covariates
by Hao Zeng, Xuxue Sun, Kuo Wang, Yuxin Wen, Wujun Si and Mingyang Li
Mathematics 2024, 12(5), 740; https://doi.org/10.3390/math12050740 - 29 Feb 2024
Viewed by 1517
Abstract
In the field of reliability engineering, covariate information shared among product units within a specific group (e.g., a manufacturing batch, an operating region), such as operating conditions and design settings, exerts substantial influence on product lifetime prediction. The covariates shared within each group [...] Read more.
In the field of reliability engineering, covariate information shared among product units within a specific group (e.g., a manufacturing batch, an operating region), such as operating conditions and design settings, exerts substantial influence on product lifetime prediction. The covariates shared within each group may be missing due to sensing limitations and data privacy issues. The missing covariates shared within the same group commonly encompass a variety of attribute types, such as discrete types, continuous types, or mixed types. Existing studies have mainly considered single-type missing covariates at the individual level, and they have failed to thoroughly investigate the influence of multi-type group-shared missing covariates. Ignoring the multi-type group-shared missing covariates may result in biased estimates and inaccurate predictions of product lifetime, subsequently leading to suboptimal maintenance decisions with increased costs. To account for the influence of the group-shared missing covariates with different structures, a new flexible lifetime model with multi-type group-shared latent heterogeneity is proposed. We further develop a Bayesian estimation algorithm with data augmentation that jointly quantifies the influence of both observed and multi-type group-shared missing covariates on lifetime prediction. A tripartite method is then developed to examine the existence, identify the correct type, and quantify the influence of group-shared missing covariates. To demonstrate the effectiveness of the proposed approach, a comprehensive simulation study is carried out. A real case study involving tensile testing of molding material units is conducted to validate the proposed approach and demonstrate its practical applicability. Full article
(This article belongs to the Special Issue System Reliability and Quality Management in Industrial Engineering)
Show Figures

Figure 1

2 pages, 130 KiB  
Abstract
Medical Health Hazards in the Production of Meat and Meat Products
by Tsvetelina Vitkova, Vanya Boycheva (Birdanova) and Rositsa Enikova
Proceedings 2023, 91(1), 365; https://doi.org/10.3390/proceedings2023091365 - 22 Feb 2024
Viewed by 1064
Abstract
Background and objective: In today’s society, meat and meat products occupy a relatively large share in terms of volume of production and have a serious epidemic potential as a source of disease. Both primary and secondary contamination with microorganisms are possible and, if [...] Read more.
Background and objective: In today’s society, meat and meat products occupy a relatively large share in terms of volume of production and have a serious epidemic potential as a source of disease. Both primary and secondary contamination with microorganisms are possible and, if any deviation in the technological process, the standardization of physico-chemical and microbiological indicators can lead to serious consequences for the health of consumers. The purpose of this study is to assess and analyze the likely medical and health hazards arising from the production, supply and consumption of meat and meat products. Methods: The object of the study is an enterprise for the production of meat and meat products in the territory of the Pleven region. For this purpose, an audit was carried out, based on an algorithm built by us, which corresponds to and is based on the Codex Alimentarius methodology, presented in the document “Food Quality and Safety Systems—A Training Manual on Food Hygiene and the Hazard Analysis and Critical Control Point (HACCP) System”. Results and discussion: Gaps and inconsistencies were found in the technological documentation, as well as in the HACCP plan in the normalization of the physico-chemical characteristics and the criteria for microbiological safety. These could lead to potential risks and health hazards for consumers of meat and meat products. Quality requirements for meat products should include added soy protein, upper limits of fat content, connective tissue proteins, as well as types and concentrations of added additives. In the developed food safety systems, it is necessary to introduce a total number of mesophilic and psychrotrophic aerobic bacteria, Enterobacteriaceae, molds and yeasts, in order to verify the elements that represent the main hazards in the food chain. The conclusions contain specific recommendations for revising the technological documentation and the HACCP system and regulations for optimizing the microbiological requirements with the inclusion of integral indicators of production process hygiene. Full article
(This article belongs to the Proceedings of The 14th European Nutrition Conference FENS 2023)
16 pages, 4964 KiB  
Article
Thermal Transmittance in Roof–Wall Structural Junction Areas Insulated with a Hemp–Lime Mixture
by Magdalena Grudzińska, Krystian Patyna, Wojciech Jabłoński and Przemysław Brzyski
Energies 2024, 17(2), 316; https://doi.org/10.3390/en17020316 - 8 Jan 2024
Viewed by 2547
Abstract
The junction between the roof and the external wall is a sensitive area within the building envelope; here, increased heat flow often takes place. In the case of partitions insulated with materials based on plant ingredients, thermal bridges are particularly dangerous due to [...] Read more.
The junction between the roof and the external wall is a sensitive area within the building envelope; here, increased heat flow often takes place. In the case of partitions insulated with materials based on plant ingredients, thermal bridges are particularly dangerous due to the possibility of condensation and, consequently, mold. The present article analyzed the connection of the roof with the knee wall made of a hemp–lime composite and the ridge in terms of the occurrence of thermal bridges. The following factors that may affect heat transfer in the junction were taken into account: the location of the load-bearing wooden frame, the roof slope, and the presence of internal plaster in the junction. Two-dimensional heat transfer analysis was performed based on the finite element method using THERM 7.4 software. All of the studied thermal bridges had ψ values below 0.10 W/(m·K). Calculations of heat losses through a roof with different slopes were also presented, taking into account the considered thermal bridges. As the roof slope decreases, the heat flow through the roof decreases, despite the increasing value of the linear thermal transmittance. The share of the considered thermal bridges in the total heat loss from the roof reached up to 15%. To verify the obtained results, in further analysis, it would be necessary to calculate the impact of the roof–knee wall bridge variants on heat losses throughout the entire building. Full article
(This article belongs to the Special Issue Advanced Building Materials for Energy Saving—2nd Edition)
Show Figures

Figure 1

16 pages, 20573 KiB  
Article
Iron Competition as an Important Mechanism of Pulcherrimin-Producing Metschnikowia sp. Strains for Controlling Postharvest Fungal Decays on Citrus Fruit
by Shupei Wang, Zhimei Tan, Chenshu Wang, Wenqing Liu, Fangxue Hang, Xuemei He, Dongqing Ye, Li Li and Jian Sun
Foods 2023, 12(23), 4249; https://doi.org/10.3390/foods12234249 - 24 Nov 2023
Cited by 7 | Viewed by 2206
Abstract
This study identified and tested fruit-isolated Metschnikowia yeasts against three major postharvest citrus pathogens, namely, Penicillium digitatum, Penicillium italicum, and Geotrichum citri-aurantii, and further evaluated the impact of FeCl3 on the biocontrol efficiency of pulcherrimin-producing M. pulcherrima strains. Based [...] Read more.
This study identified and tested fruit-isolated Metschnikowia yeasts against three major postharvest citrus pathogens, namely, Penicillium digitatum, Penicillium italicum, and Geotrichum citri-aurantii, and further evaluated the impact of FeCl3 on the biocontrol efficiency of pulcherrimin-producing M. pulcherrima strains. Based on the characterization of the pigmented halo surrounding the colonies and the analysis of the D1/D2 domain of 26S rDNA, a total of 46 Metschnikowia sp. were screened and identified. All 46 Metschnikowia strains significantly inhibited the hyphal growth of Penicillium digitatum, Penicillium italicum, and Geotrichum citri-aurantii, and effectively controlled the development of green mold, blue mold and sour rot of citrus fruit. The introduction of exogenous FeCl3 at certain concentrations did not significantly impact the pulcherriminic acid (PA) production of pigmented M. pulcherrima strains, but notably diminished the size of pigmented zones and the biocontrol efficacy against the three pathogens. Iron deficiency sensitivity experiments revealed that P. digitatum and P. italicum exhibited higher sensitivity compared to G. citri-aurantii, indicating that iron dependence varied among the three pathogens. These results suggested that M. pulcherrima strains, capable of producing high yields of PA, possessed great potential for use as biocontrol agents against postharvest citrus diseases. The biocontrol efficacy of these yeasts is mainly attributed to their ability to competitively deplete iron ions in a shared environment, with the magnitude of their pigmented halo directly correlating to their antagonistic capability. It is worth noting that the level of sensitivity of pathogens to iron deficiency might also affect the biocontrol effect of pulcherrimin-producing M. pulcherrima. Full article
Show Figures

Figure 1

Back to TopTop