Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (152)

Search Parameters:
Keywords = moisture transport properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2649 KiB  
Article
Study on the Liquid Transport on the Twisted Profile Filament/Spun Combination Yarn in Knitted Fabric
by Yi Cui, Ruiyun Zhang and Jianyong Yu
Polymers 2025, 17(15), 2065; https://doi.org/10.3390/polym17152065 - 29 Jul 2025
Viewed by 243
Abstract
The excellent moisture transport properties of yarns play a crucial role in improving the liquid moisture transfer behavior within textiles and maintaining their thermal-wet comfort. However, the current research on the moisture management performance of fabrics made from yarns with excellent liquid transport [...] Read more.
The excellent moisture transport properties of yarns play a crucial role in improving the liquid moisture transfer behavior within textiles and maintaining their thermal-wet comfort. However, the current research on the moisture management performance of fabrics made from yarns with excellent liquid transport properties primarily compares the wicking results, without considering the varying requirements of testing conditions due to differences in human sweating rates during daily activities. Moreover, the understanding of moisture transport mechanisms in yarns within fabrics under different testing conditions remains insufficient. In this study, two types of twisted combination yarns, composed of hydrophobic profiled polyester filaments and hydrophilic spun yarns to form a hydrophobic-hydrophilic gradient along the axial direction of the yarn, were developed and compared with profiled polyester filaments to understand the liquid migration behaviors in the knitted fabrics formed by these yarns. Results showed that hydrophobic profiled polyester filament yarn demonstrated superior liquid transport performance with infinite saturated liquid supply (vertical wicking test). In contrast, the twisted combination yarns exhibited better moisture diffusion properties under limited liquid droplet supply conditions (droplet diffusion test and moisture management test). These contradictory findings indicated that the amount of liquid moisture supply in testing conditions significantly affected the moisture transport performance of yarns within fabrics. It was revealed that the liquid moisture in the twisted combination yarns migrated through capillary wicking for moisture transfer. Under an infinite saturated liquid supply condition, the higher the content of hydrophilic fibers in the spun yarns, the greater the amount of moisture transferred, demonstrating an excellent liquid transport performance. Under the limited liquid droplet supply conditions, both the volume of liquid water and the moisture absorption capacity of the yarn jointly influence internal moisture migration within the yarn. It provided a theoretical reference for testing the internal moisture wicking performance of fabrics under different states of human sweating. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

21 pages, 2152 KiB  
Article
Effect of 2000-Hour Ultraviolet Irradiation on Surface Degradation of Glass and Basalt Fiber-Reinforced Laminates
by Irina G. Lukachevskaia, Aisen Kychkin, Anatoly K. Kychkin, Elena D. Vasileva and Aital E. Markov
Polymers 2025, 17(14), 1980; https://doi.org/10.3390/polym17141980 - 18 Jul 2025
Viewed by 394
Abstract
This study focuses on the influence of prolonged ultraviolet (UV) irradiation on the mechanical properties and surface microstructure of glass fiber-reinforced plastics (GFRPs) and basalt fiber-reinforced plastics (BFRPs), which are widely used in construction and transport infrastructure. The relevance of the research lies [...] Read more.
This study focuses on the influence of prolonged ultraviolet (UV) irradiation on the mechanical properties and surface microstructure of glass fiber-reinforced plastics (GFRPs) and basalt fiber-reinforced plastics (BFRPs), which are widely used in construction and transport infrastructure. The relevance of the research lies in the need to improve the reliability of composite materials under extended exposure to harsh climatic conditions. Experimental tests were conducted in a laboratory UV chamber over 2000 h, simulating accelerated weathering. Mechanical properties were evaluated using three-point bending, while surface conditions were assessed via profilometry and microscopy. It was shown that GFRPs exhibit a significant reduction in flexural strength—down to 59–64% of their original value—accompanied by increased surface roughness and microdefect depth. The degradation mechanism of GFRPs is attributed to the photochemical breakdown of the polymer matrix, involving free radical generation, bond scission, and oxidative processes. To verify these mechanisms, FTIR spectroscopy was employed, which enabled the identification of structural changes in the polymer phase and the detection of mass loss associated with matrix decomposition. In contrast, BFRP retained up to 95% of their initial strength, demonstrating high resistance to UV-induced aging. This is attributed to the shielding effect of basalt fibers and their ability to retain moisture in microcavities, which slows the progress of photo-destructive processes. Comparison with results from natural exposure tests under extreme climatic conditions (Yakutsk) confirmed the reliability of the accelerated aging model used in the laboratory. Full article
Show Figures

Figure 1

22 pages, 2429 KiB  
Article
Integrated Physical–Mechanical Characterization of Fruits for Enhancing Post-Harvest Quality and Handling Efficiency
by Mohamed Ghonimy, Raed Alayouni, Garsa Alshehry, Hassan Barakat and Mohamed M. Ibrahim
Foods 2025, 14(14), 2521; https://doi.org/10.3390/foods14142521 - 18 Jul 2025
Viewed by 509
Abstract
Quality and mechanical resilience are crucial for reducing losses in fruit production and for supporting food chains. Indeed, integrating empirical data with rheological models bridges gaps in fruit processing equipment design. Therefore, the objective of this research is to analyze the relationship between [...] Read more.
Quality and mechanical resilience are crucial for reducing losses in fruit production and for supporting food chains. Indeed, integrating empirical data with rheological models bridges gaps in fruit processing equipment design. Therefore, the objective of this research is to analyze the relationship between the mechanical and physical properties of seven economically important fruits—nectarine, kiwi, cherry, apple, peach, pear, and apricot—to assess their mechanical behavior and post-harvest quality. Standardized compression, creep, and puncture tests were conducted to establish mechanical parameters, such as rupture force, elasticity, and deformation energy. Physical characteristics including size, weight, density, and moisture content were also measured. The results indicated significant differences among the various categories of fruits; apples and pears were most suitable for mechanical harvesting and long storage periods, whereas cherries and apricots were least resistant and susceptible to injury. Correlations were high among the physical measurements, tissue firmness, and viscoelastic properties, thereby confirming structural properties’ contribution in influencing fruit quality and handling efficiency. The originality of this research is in its holistic examination of physical and mechanical properties under standardized testing conditions, thus offering an integrated framework for enhancing post-harvest operations. These findings offer practical insights for optimizing harvesting, packaging, transportation, and quality monitoring strategies based on fruit-specific mechanical profiles. Full article
Show Figures

Figure 1

21 pages, 875 KiB  
Review
Sustainable Utilisation of Mining Waste in Road Construction: A Review
by Nuha S. Mashaan, Sammy Kibutu, Chathurika Dassanayake and Ali Ghodrati
J. Exp. Theor. Anal. 2025, 3(3), 19; https://doi.org/10.3390/jeta3030019 - 15 Jul 2025
Viewed by 342
Abstract
Mining by-products present both an environmental challenge and a resource opportunity. This review investigates their potential application in road pavement construction, focusing on materials such as fly ash, slag, sulphur, red mud, tailings, and silica fume. Drawing from laboratory and field studies, the [...] Read more.
Mining by-products present both an environmental challenge and a resource opportunity. This review investigates their potential application in road pavement construction, focusing on materials such as fly ash, slag, sulphur, red mud, tailings, and silica fume. Drawing from laboratory and field studies, the review examines their roles across pavement layers—subgrade, base, subbase, asphalt mixtures, and rigid pavements—emphasising mechanical properties, durability, moisture resistance, and ageing performance. When properly processed or stabilised, many of these wastes meet or exceed conventional performance standards, contributing to reduced use of virgin materials and greenhouse gas emissions. However, issues such as variability in composition, leaching risks, and a lack of standardised design protocols remain barriers to adoption. This review aims to consolidate current research, evaluate practical feasibility, and identify directions for future studies that would enable the responsible and effective reuse of mining waste in transportation infrastructure. Full article
Show Figures

Figure 1

18 pages, 2562 KiB  
Article
Analysis of Mechanical Durability, Hydrophobicity, Pyrolysis and Combustion Properties of Solid Biofuel Pellets Made from Mildly Torrefied Biomass
by Kanageswari Singara veloo, Anthony Lau and Shahab Sokhansanj
Energies 2025, 18(13), 3464; https://doi.org/10.3390/en18133464 - 1 Jul 2025
Cited by 1 | Viewed by 310
Abstract
The production of solid biofuels from torrefied biomass holds significant potential for renewable energy applications. Durable pellet formation from severely torrefied biomass is hindered by the loss of natural binding properties, yet studies on mild torrefaction that preserves sufficient binding capacity for pellet [...] Read more.
The production of solid biofuels from torrefied biomass holds significant potential for renewable energy applications. Durable pellet formation from severely torrefied biomass is hindered by the loss of natural binding properties, yet studies on mild torrefaction that preserves sufficient binding capacity for pellet production without external binders or changes to die conditions remain scarce. This paper investigated the production of fuel pellets from torrefied biomass without using external binders or adjusting pelletization parameters. Experiments were conducted using a mild torrefaction temperature (230 °C and 250 °C) and shorter residence time (10, 15, and 30 min). The torrefied materials were then subjected to pelletization using a single-pellet press; and the influence of torrefaction on the mechanical durability, hydrophobicity, and fuel characteristics of the pellets was examined. Results indicated that the mass loss ranging from 10 to 20% among the mild torrefaction treatments was less than the typical extent of mass loss due to severe torrefaction. Pellets made from torrefied biomass (torrefied pellets) had improvement in the hydrophobicity (moisture resistance) when compared to pellets made from untreated biomass (untreated pellets). Improved hydrophobicity is important for storage and transportation of pellets that are exposed to humid environmental conditions, as it reduces the risk of pellet degradation and spoilage. Thermogravimetric analysis of the pyrolysis and combustion behaviour of torrefied pellets indicated the improvement of fuel characteristics in terms of a much higher comprehensive pyrolysis index and greater thermal stability compared to untreated pellets, as evidenced by the prolonged burnout time and reduced combustion characteristics index. Residence time had a more significant impact on pellet durability than temperature, but the durability of the torrefied pellets was lower than that of the untreated pellets. Further research is required to explore the feasibility of producing binder-free durable pellets under mild torrefaction conditions. Overall, the study demonstrated that mild torrefaction could enhance the fuel quality and moisture resistance of biomass pellets, offering promising advantages for energy applications, despite some trade-offs in mechanical durability. Full article
Show Figures

Figure 1

18 pages, 2165 KiB  
Article
Soluble Soybean Polysaccharide Improves Quality and Shelf Life of Peanut Butter
by Liangchen Zhang, Liyou Zheng, Jian Sun, Sameh A. Korma, Fahad Al-Asmari, Mengxi Xie and Miao Yu
Foods 2025, 14(13), 2180; https://doi.org/10.3390/foods14132180 - 22 Jun 2025
Viewed by 486
Abstract
Peanut butter, a plant-based spread, has gained global prominence due to the increasing consumer demand for nutritious convenience foods and the rising adoption of plant-based diets. However, oil separation during storage and transportation accelerates the oxidative rancidity and reduces the shelf life of [...] Read more.
Peanut butter, a plant-based spread, has gained global prominence due to the increasing consumer demand for nutritious convenience foods and the rising adoption of plant-based diets. However, oil separation during storage and transportation accelerates the oxidative rancidity and reduces the shelf life of peanut butter. Enhancing peanut butter stability by minimizing oil separation is therefore essential. This study investigates the effect of soluble soybean polysaccharides (SSPSs) on the quality and shelf life of peanut butter. Optimal processing conditions were established by adding 1.7% SSPS (w/w), heating the mixture to 85 °C for 40 min, and then cooling it to 1 °C. The addition of SSPSs significantly increased the lightness of the peanut butter without altering its red-green color characteristics. Furthermore, SSPS incorporation improved its textural properties by increasing hardness and cohesiveness. Nutritional analysis showed that SSPS supplementation elevated proximate composition parameters (moisture, ash, carbohydrates, and fiber) while slightly reducing acid and peroxide values. Scanning electron microscopy revealed that SSPSs enhanced the internal network structure of peanut butter, inhibited oil migration, and reduced centrifugal emulsification rates. First-order kinetic models based on acid and peroxide values were developed to predict the effects of SSPSs on shelf life. Both the model predictions and experimental data confirmed that SSPS addition effectively extends the shelf life of peanut butter. Full article
Show Figures

Graphical abstract

50 pages, 2738 KiB  
Review
Geophysical Survey and Monitoring of Transportation Infrastructure Slopes (TISs): A Review
by Zeynab Rosa Maleki, Paul Wilkinson, Jonathan Chambers, Shane Donohue, Jessica Lauren Holmes and Ross Stirling
Geosciences 2025, 15(6), 220; https://doi.org/10.3390/geosciences15060220 - 12 Jun 2025
Viewed by 773
Abstract
This review examines the application of the geophysical methods for Transportation Infrastructure Slope Monitoring (TISM). In contrast to existing works, which address geophysical methods for natural landslide monitoring, this study focuses on their application to infrastructure assets. It addresses the key aspects regarding [...] Read more.
This review examines the application of the geophysical methods for Transportation Infrastructure Slope Monitoring (TISM). In contrast to existing works, which address geophysical methods for natural landslide monitoring, this study focuses on their application to infrastructure assets. It addresses the key aspects regarding the geophysical methods most employed, the subsurface properties revealed, and the design of monitoring systems, including sensor deployment. It evaluates the benefits and challenges associated with each geophysical approach, explores the potential for integrating geophysical techniques with other methods, and identifies the emerging technologies. Geophysical techniques such as Electrical Resistivity Tomography (ERT), Multichannel Analysis of Surface Waves (MASW), and Fiber Optic Cable (FOC) have proven effective in monitoring slope stability and detecting subsurface features, including soil moisture dynamics, slip surfaces, and material heterogeneity. Both temporary and permanent monitoring setups have been used, with increasing interest in real-time monitoring solutions. The integration of advanced technologies like Distributed Acoustic Sensing (DAS), UAV-mounted sensors, and artificial intelligence (AI) promises to enhance the resolution, accessibility, and predictive capabilities of slope monitoring systems. The review concludes with recommendations for future research, emphasizing the need for integrated monitoring frameworks that combine geophysical data with real-time analysis to improve the safety and efficiency of transportation infrastructure management. Full article
Show Figures

Figure 1

25 pages, 5223 KiB  
Article
Microstructure-Driven Hygrothermal Behavior of Mycelium-Based Composites for Bio-Based Insulation
by Sina Motamedi, Daniel R. Rousse and Geoffrey Promis
Energies 2025, 18(11), 2864; https://doi.org/10.3390/en18112864 - 30 May 2025
Viewed by 610
Abstract
This study investigates the coupled hygrothermal behavior of mycelium-based composites (MBCs) as a function of their microstructural organization, governed by fungal species, substrate type, additive incorporation, and treatment method. Eleven composite formulations were selected and characterized using a multi-scale experimental approach, combining scanning [...] Read more.
This study investigates the coupled hygrothermal behavior of mycelium-based composites (MBCs) as a function of their microstructural organization, governed by fungal species, substrate type, additive incorporation, and treatment method. Eleven composite formulations were selected and characterized using a multi-scale experimental approach, combining scanning electron microscopy, dynamic vapor sorption, vapor permeability tests, capillary uptake measurements, and transient thermal conductivity analysis. SEM analysis revealed that Ganoderma lucidum forms dense and interconnected hyphal networks, whereas Trametes versicolor generates looser, localized structures. These morphological differences directly influence water vapor transport and heat conduction. Additive-enriched composites exhibited up to 21.8% higher moisture uptake at 90% RH, while straw-based composites demonstrated higher capillary uptake and free water saturation (up to 704 kg/m3), indicating enhanced moisture sensitivity. In contrast, hemp-based formulations with Ganoderma lucidum showed reduced sorption and vapor permeability due to limited pore interconnectivity. Thermal conductivity varied nonlinearly with temperature and moisture content. Fitting the experimental data with an exponential model revealed a moisture sensitivity coefficient thirty times lower for GHOP compared to VHOP, highlighting the stabilizing effect of a compact microstructure. The distinction between total and effective porosity emerged as a key factor in explaining discrepancies between apparent and functional moisture behavior. These findings demonstrate that hygric and thermal properties in MBCs are governed not by porosity alone, but by the geometry and connectivity of the internal fungal network. Optimizing these structural features enables fine control overheat and mass transfer, laying the groundwork for the development of high-performance, bio-based insulation materials. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings: 3rd Edition)
Show Figures

Figure 1

20 pages, 2216 KiB  
Article
Assessing the Physico-Mechanical Properties of Three Date Fruit Varieties for Conserving the Keeping and Appearance Qualities
by Mohamed Ghonimy, Raed Alayouni, Garsa Alshehry, Hassan Barakat and Mohamed M. Ibrahim
Foods 2025, 14(11), 1838; https://doi.org/10.3390/foods14111838 - 22 May 2025
Cited by 1 | Viewed by 505
Abstract
The physico-mechanical properties of date fruit varieties can indicate their quality and freshness. These properties, which include firmness, moisture content, and mechanical resistance, are closely linked to the fruit’s overall quality and can be used to assess its ripeness and suitability for consumption. [...] Read more.
The physico-mechanical properties of date fruit varieties can indicate their quality and freshness. These properties, which include firmness, moisture content, and mechanical resistance, are closely linked to the fruit’s overall quality and can be used to assess its ripeness and suitability for consumption. Therefore, the current study evaluated the physico-mechanical properties of three date varieties—Sukkari, Khalas, and Saqie—across different ripening stages to enhance food quality and optimize postharvest handling. The study uniquely focused on how ripening stages affect the stress–strain behavior of dates, offering new insights into their mechanical resistance, deformability, and structural stability, all of which are critical parameters for maintaining food quality during storage, transportation, and processing. Significant changes in physical characteristics, including size, mass, moisture content, and density, were observed as the fruit progressed through ripening stages. Sukkari showed the most notable decrease in moisture content, from 61.8% at the Khalal stage to 17.3% at the Tamar stage, resulting in softening and reduced mechanical resistance, potentially impacting shelf life and consumer acceptance. Khalas exhibited a more gradual decline in mechanical properties, with moisture content dropping to 24.6%. At the same time, Saqie demonstrated minimal changes in mechanical properties and moisture content, suggesting better structural and nutritional quality retention. Additionally, the dynamic coefficient of friction increased with temperature and pressure at the Tamr stage, with Sukkari showing the highest values (up to 0.496), followed by Khalas (up to 0.451) and Saqie (up to 0.406). This study introduced the concept of variety-specific differences in frictional behavior, providing valuable insights for improving mechanical processing, reducing physical damage, and preserving date fruits’ nutritional and sensory quality. In conclusion, findings highlight the importance of variety-specific mechanical profiling in improving processing protocols, reducing postharvest losses, and maintaining the nutritional and sensory quality of date fruits for industrial-scale operations. Full article
Show Figures

Figure 1

24 pages, 2362 KiB  
Article
Analysis of the Pelletability of Vegetable Crop Foliage Using a Commercial Flat Die Pellet Mill
by Omid Gholami Banadkoki, Shahab Sokhansanj and Anthony Lau
Energies 2025, 18(9), 2284; https://doi.org/10.3390/en18092284 - 29 Apr 2025
Viewed by 519
Abstract
Agricultural residues serve as a vast yet underutilized biomass resource with significant potential for bioenergy and biomaterial applications. Converting these residues into densified biomass pellets enhances energy density, handling efficiency, and transportability, offering a sustainable alternative to conventional feedstocks. While extensive research has [...] Read more.
Agricultural residues serve as a vast yet underutilized biomass resource with significant potential for bioenergy and biomaterial applications. Converting these residues into densified biomass pellets enhances energy density, handling efficiency, and transportability, offering a sustainable alternative to conventional feedstocks. While extensive research has focused on woody biomass, studies on the pelletization of vegetable crop foliage remain limited. This study examines the pelletability of foliage from corn, soybean, tomato, eggplant, cucumber, and summer squash, assessing their physical properties, bulk durability, bulk density, and energy consumption during pelletization. Results demonstrated that variation in biomass composition significantly influences pellet quality, with lignin content improving durability and ash content affecting moisture uptake and combustion properties. Cucumber had the highest pellet density (691.2 kg/m3) and durability (97.9%), making it suitable for long-term storage and transport. Sawdust exhibited the lowest moisture absorption (16–18% db), which is attributed to its highest lignin content. Pelletization energy requirements varied significantly, with cucumber (21.8 kWh/t) and summer squash (18.7 kWh/t) requiring the lowest energy input, whereas soybean (49.6 kWh/t) and sawdust (47.3 kWh/t) exhibited the highest energy demands due to greater resistance to densification. A predictive model was developed to correlate single pellet density and durability with bulk pellet properties—yielding high predictive accuracy, with R2 = 0.936 for bulk density (BDe) and R2 = 0.861 for bulk durability (BDu)—thereby facilitating process optimization for large-scale pellet production. This study demonstrated that foliage residues from greenhouse crops, such as cucumber and summer squash, can be effectively pelletized with low energy input and high physical integrity. These outcomes suggest that such underutilized agricultural residues hold promise as a densified intermediate feedstock, supporting future applications in bioenergy systems and advancing circular resource use in controlled-environment agriculture. Full article
(This article belongs to the Special Issue Biomass and Bio-Energy—2nd Edition)
Show Figures

Figure 1

17 pages, 1687 KiB  
Article
A Comparison of the Physicochemical Properties and Sensory Attributes of Ricotta Cheeses Purchased from Retail Outlets in Poland
by Iwona Chwastowska-Siwiecka, Agnieszka Kaca and Jan Miciński
Foods 2025, 14(8), 1413; https://doi.org/10.3390/foods14081413 - 19 Apr 2025
Viewed by 650
Abstract
The aim of this study was to compare selected physicochemical properties and sensory attributes of ricotta cheeses supplied by different producers and purchased from retail outlets in Poland. The experiment was performed on 40 fresh, unripened ricotta cheeses purchased from hypermarkets in the [...] Read more.
The aim of this study was to compare selected physicochemical properties and sensory attributes of ricotta cheeses supplied by different producers and purchased from retail outlets in Poland. The experiment was performed on 40 fresh, unripened ricotta cheeses purchased from hypermarkets in the city of Olsztyn, Poland. The cheeses were supplied by four producers. To preserve the producers’ anonymity, the cheeses were divided into four experimental groups marked with the letters A, B, C, and D. Each group consisted of 10 cheeses supplied by the same producer. Immediately after purchase, the cheeses were transported to a laboratory for quantitative and qualitative analyses to determine their moisture contents, active and titratable acidity, shear force, color parameters (L*, a*, b*), chroma (C*), hue angles (h°), whiteness indexes (WIs), yellowness indexes (YIs), and sensory quality. The analyses revealed that the cheeses supplied by producers C and D were characterized by the highest moisture contents and the lowest titratable acidity and shear force values. The ricottas supplied by producer A were characterized by the highest values for lightness on the surface, whereas the group B cheeses were characterized by the highest contribution of redness and yellowness, as well as the highest color saturation (chroma). The contributions of redness and yellowness, chroma, and YI values were highest at the cross-sections of the group B cheeses. The cheeses supplied by producer D were characterized by visible spaces between grains, cracks, and a brittle, crumbly consistency, and they received the lowest scores for appearance at the cross-section for structure and consistency. Full article
Show Figures

Figure 1

19 pages, 6442 KiB  
Article
Analysis of Damage Characteristics and Fragmentation Simulation of Soybean Seeds Based on the Finite-Element Method
by Yuxuan Chen, Zhong Tang, Bin Li, Shiguo Wang, Yang Liu, Weiwei Zhou, Jianpeng Jing and Xiaoying He
Agriculture 2025, 15(7), 780; https://doi.org/10.3390/agriculture15070780 - 3 Apr 2025
Viewed by 442
Abstract
Soybeans are a crucial crop, and it is therefore necessary to make accurate predictions of their mechanical properties during harvesting to optimize the design of threshing cylinders, minimize the breakage rate during threshing, and enhance the quality of the final product. However, a [...] Read more.
Soybeans are a crucial crop, and it is therefore necessary to make accurate predictions of their mechanical properties during harvesting to optimize the design of threshing cylinders, minimize the breakage rate during threshing, and enhance the quality of the final product. However, a precise model for the mechanical response of soybean seeds under stress conditions is currently lacking. To establish an accurate finite-element model (FEM) for soybeans that can predict their mechanical behavior under various loading conditions, an ellipsoidal modeling approach tailored for soybeans is proposed. Soybeans harvested in Xinjiang were collected and processed as experimental materials; the average moisture content was 11.77%, there was an average density of 1.229 g/cm³, and the average geometric specifications (height, thickness, and width) were 8.50 mm, 7.92 mm, and 7.10 mm, respectively. Compression tests were conducted on the soybeans in vertical, horizontal, and lateral orientations at the same loading speed to analyze the load and damage stages of these soybeans harvested in Xinjiang. The experimental results indicate that as the contact area decreases, the crushing load increases, with soybeans in the horizontal orientation being able to withstand the highest ultimate pressure. When placed vertically, the soybeans are not crushed; in horizontal and lateral orientations, however, they exhibit varying degrees of breakage. The Hertz formula was simplified based on the geometric characteristics of soybeans, and the elastic moduli in the X, Y, and Z directions of the soybean seeds were calculated as 42.8821 MPa, 40.4342 MPa, and 48.7659 MPa, respectively, using this simplified Hertz formula. A model of the soybeans was created in SolidWorks Ver.2019 and imported into ANSYS WORKBENCH for simulation verification. The simulation results were consistent with the experimental findings. The research findings enhance the understanding of the mechanical behavior of soybean seeds and provide robust scientific support for the optimization of soybean processing technologies and the improvement of storage and transportation efficiency. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

25 pages, 10098 KiB  
Article
An Innovative Green Dust Suppressant for Dry Climate Mining Areas in a Copper–Nickel Mine: Integration of Moisture Retention and Erosion Resistance
by Zijun Li, Zhe Zhou, Yu Xu and Yin Chen
Atmosphere 2025, 16(4), 395; https://doi.org/10.3390/atmos16040395 - 29 Mar 2025
Viewed by 676
Abstract
Mine ramps, serving as a critical transportation hub in underground mining activities, are beset by severe issues of dust pollution and secondary dust generation. While dust suppressants are more efficient than the commonly used sprinkling methods in mines, traditional single-function dust suppressants are [...] Read more.
Mine ramps, serving as a critical transportation hub in underground mining activities, are beset by severe issues of dust pollution and secondary dust generation. While dust suppressants are more efficient than the commonly used sprinkling methods in mines, traditional single-function dust suppressants are inadequate for the complex application environment of mine ramps. Building on the development of conventional single-function dust suppressants, this research optimized the components of bonding, wetting, and moisturizing agents. Through single-factor optimization experiments, a comparison was made of the surface tension water retention property and viscosity of diverse materials, thus enabling the identification of the primary components of the dust suppressant. By means of synergistic antagonism experiments, the optimal combination of the wetting agent and bonding agent with excellent synergy was ascertained. Ultimately, the wind erosion resistance and rolling resistance were measured through three-factor orthogonal experiments, and the optimal ratio of the dust suppressant was established. Specifically, fenugreek gum (FG) was selected as the bonding agent, cane sugar (CS) as the moisturizing agent, and alkyl phenol polyoxyethylene ether (Op-10) as the wetting agent. The research findings demonstrate that the optimal ratio of dust suppressant is 0.3 wt% fenugreek gum (FG) + 0.06 wt% alkyl phenol polyoxyethylene ether (Op-10) + 3 wt% cane sugar (CS). Under these conditions, the dust fixation rate can reach up to 97~98% at a wind speed of 8 m/s. The maximum rolling resistance can reach 65~73% after grinding the samples for 1 min. The surface tension of the solution is 13.74 mN/m, and the wetting performance improved by 81% compared to pure water. This dust suppressant is of great significance for improving the working environment of workers and ensuring the sustainable development of the mining industry. Full article
Show Figures

Figure 1

31 pages, 1410 KiB  
Article
Pesticide Mobility in Surface and Subsurface Irrigation Return Flow in a Container Plant Production System
by Damon E. Abdi, James S. Owen, Jr., P. Christopher Wilson, Francisca O. Hinz, Bert M. Cregg and R. Thomas Fernandez
Water 2025, 17(7), 953; https://doi.org/10.3390/w17070953 - 25 Mar 2025
Viewed by 424
Abstract
The objectives of this study were to determine the effects of irrigation method on the movement of 10 commonly used pesticides in container nursery production. Pesticide transport under three irrigation methods at a nursery engineered to collect irrigation return flow (IRF) from the [...] Read more.
The objectives of this study were to determine the effects of irrigation method on the movement of 10 commonly used pesticides in container nursery production. Pesticide transport under three irrigation methods at a nursery engineered to collect irrigation return flow (IRF) from the production surface and subsurface was determined. Pesticide applications occurred three times throughout the study, followed by a 16-day monitoring period. The irrigation applied and surface and subsurface IRF volumes generated from single irrigation events were measured and subsamples of the IRF water were analyzed to assess pesticide presence. Overhead irrigation served as the control with two microirrigation treatments, one applying a fixed amount of water each day and the other scheduled using substrate moisture sensors. Microirrigation reduced irrigation volume by >75% and surface IRF by up to 100%. Subsurface IRF was similarly reduced by microirrigation, yielding 23–47% lower volumes. Pesticides with greater solubilities and lower adsorption coefficients were more mobile than the inversely characterized compounds, particularly in subsurface IRF. The least soluble pesticides had a reduced presence in surface and, to a larger extent, subsurface IRF. Reductions or elimination of surface IRF by using microirrigation reduced the transport of all pesticides by >90%. Pesticides that had a higher solubility were found in subsurface IRF regardless of irrigation method. This study demonstrates the importance of both the irrigation delivery method and pesticide physiochemical properties on the environmental fate of pesticides in nursery settings. Microirrigation can reduce and often eliminate surface IRF, limiting the movement of pesticides regardless of physiochemical properties; whereas, the selection of pesticides that are less soluble can be an effective way to limit the subsurface movement of pesticides, regardless of irrigation method. Full article
(This article belongs to the Special Issue Non-Point Source Pollution and Water Resource Protection)
Show Figures

Figure 1

27 pages, 3678 KiB  
Article
Collision Dynamics of Cassava Seed Stems: Analyzing Recovery Coefficients and Influential Factors for Precision Agriculture
by Xiangwei Mou, Rui Chen, Lintao Chen, Ying Lan, Elsayed M. Atwa, Mahmoud Mabrouk, Huanyu Jiang and Peng Zhang
Agronomy 2025, 15(4), 805; https://doi.org/10.3390/agronomy15040805 - 24 Mar 2025
Viewed by 393
Abstract
This study investigates the collision model of cassava seed stems in precision planters. Utilizing a physical property analyzer and a custom test platform based on collision dynamics principles, we measured and analyzed the forces and recovery coefficients of seed stem collisions. Mixed orthogonal [...] Read more.
This study investigates the collision model of cassava seed stems in precision planters. Utilizing a physical property analyzer and a custom test platform based on collision dynamics principles, we measured and analyzed the forces and recovery coefficients of seed stem collisions. Mixed orthogonal and one-way tests were conducted to identify the main factors affecting the collision recovery coefficient of seed stems, including collision contact material, drop height, seed stem mass, moisture content, drop direction, and seed stem variety. The results from the orthogonal tests indicated that the factors influencing the collision recovery coefficient were ranked as follows: collision contact material > drop height > seed stem mass > moisture content > drop direction > seed stem variety. Notably, the effects of impact contact material, drop height, stem mass, and moisture content were significant, while the effects of drop direction and seed stem variety were relatively insignificant. The one-way test results revealed that the collision recovery coefficients for cassava seed stems with structural steel Q235, rubber sheet, seed stems, and sandy loam soil decreased progressively, with values for SC205 being 0.8172, 0.6975, 0.6649, and 0.6341, respectively, and values for GR4 being 0.7796, 0.7132, 0.6913, and 0.6134, respectively. Furthermore, as drop height increased, the collision recovery coefficient of cassava seed stems decreased; similarly, higher stem mass and moisture content correlated with lower coefficients. To minimize impact during critical stages of cassava planting, transportation, and processing, materials with lower recovery coefficients should be prioritized in equipment design. Incorporating rubber coatings can effectively mitigate collision effects in components such as seed supply and planting mechanisms. These findings provide valuable insights for designing and enhancing key mechanical features in machinery used for planting, transporting, and processing cassava. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop