Analysis of Mechanical Durability, Hydrophobicity, Pyrolysis and Combustion Properties of Solid Biofuel Pellets Made from Mildly Torrefied Biomass
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Torrefaction Experiment
2.3. Pelletization
2.4. Properties of Pellets
2.4.1. Pellet Density and Durability
2.4.2. Moisture Uptake
2.5. Thermogravimetric Analysis (Pyrolysis)
Pyrolysis Kinetic Analysis
2.6. Thermogravimetric Analysis (Combustion)
3. Results and Discussion
3.1. Analysis of Pellet Characteristics
3.2. Pyrolysis Behaviour of Torrefied Pellets
3.3. Combustion Behaviour of Torrefied Pellets
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CrI | Crystallinity index |
CPI | Comprehensive pyrolysis index |
db | Dry basis |
DTG | Derivative thermogravimetry |
df | Degrees of freedom |
EMC | Equilibrium moisture content |
FTIR | Fourier-Transform Infrared |
HHV | Higher heating value |
MC | Moisture content |
RSM | Response surface methodology |
RH | Relative humidity |
SF | Severity factor |
Sn | Combustion characteristic index |
TGA | Thermogravimetric analysis |
wb | Wet basis |
XRD | X-ray diffraction |
References
- Sarker, T.R.; Ethen, D.Z.; Nanda, S. Decarbonization of Metallurgy and Steelmaking Industries Using Biochar: A Review. Chem. Eng. Technol. 2024, 47, e202400217. [Google Scholar] [CrossRef]
- Ahmad, K.A.; Ahmad, E.; Al Mesfer, M.K.; Nigam, K. Bio-Coal and Bio-Coke Production from Agro Residues. Chem. Eng. J. 2023, 473, 145340. [Google Scholar] [CrossRef]
- Kumar, L.; Koukoulas, A.A.; Mani, S.; Satyavolu, J. Integrating Torrefaction in the Wood Pellet Industry: A Critical Review. Energy Fuels 2017, 31, 37–54. [Google Scholar] [CrossRef]
- Stelte, W.; Sanadi, A.R.; Shang, L.; Holm, J.K.; Ahrenfeldt, J.; Henriksen, U.B. Recent Developments in Biomass Pelletization—A Review. Bioresources 2012, 7, 4451–4490. [Google Scholar] [CrossRef]
- Adeleke, A.A.; Odusote, J.K.; Ikubanni, P.P.; Lasode, O.A.; Malathi, M.; Paswan, D. Essential Basics on Biomass Torrefaction, Densification and Utilization. Int. J. Energy Res. 2021, 45, 1375–1395. [Google Scholar] [CrossRef]
- Manouchehrinejad, M.; Mani, S. Torrefaction after Pelletization (TAP): Analysis of Torrefied Pellet Quality and Co-Products. Biomass Bioenergy 2018, 118, 93–104. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Ghiasi, B.; Soelberg, N.R.; Sokhansanj, S. Biomass Torrefaction Process, Product Properties, Reactor Types, and Moving Bed Reactor Design Concepts. Front. Energy Res. 2021, 9, 728140. [Google Scholar] [CrossRef]
- Thengane, S.K.; Kung, K.S.; Gomez-Barea, A.; Ghoniem, A.F. Advances in Biomass Torrefaction: Parameters, Models, Reactors, Applications, Deployment, and Market. Prog. Energy Combust. Sci. 2022, 93, 101040. [Google Scholar] [CrossRef]
- Onyenwoke, C.; Tabil, L.G.; Mupondwa, E.; Cree, D.; Adapa, P. Effect of Torrefaction on the Physiochemical Properties of White Spruce Sawdust for Biofuel Production. Fuels 2023, 4, 111–131. [Google Scholar] [CrossRef]
- Sarker, T.R.; Nanda, S.; Dalai, A.K.; Meda, V. A Review of Torrefaction Technology for Upgrading Lignocellulosic Biomass to Solid Biofuels. Bioenerg. Res. 2021, 14, 645–669. [Google Scholar] [CrossRef]
- Wang, S.; Dai, G.; Ru, B.; Zhao, Y.; Wang, X.; Zhou, J.; Luo, Z.; Cen, K. Effects of Torrefaction on Hemicellulose Structural Characteristics and Pyrolysis Behaviors. Bioresour. Technol. 2016, 218, 1106–1114. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Wang, G.; Gong, C.; Yu, Y.; Liu, W.; Wang, D. Co-Pelletizing Characteristics of Torrefied Wheat Straw with Peanut Shell. Bioresour. Technol. 2017, 233, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Strezov, V.; Weldekidan, H.; He, J.; Singh, S.; Kan, T.; Dastjerdi, B. Lignocellulose Biomass Pyrolysis for Bio-Oil Production: A Review of Biomass Pre-Treatment Methods for Production of Drop-in Fuels. Renew. Sustain. Energy Rev. 2020, 123, 109763. [Google Scholar] [CrossRef]
- Adeleke, A.A.; Ikubanni, P.P.; Emmanuel, S.S.; Fajobi, M.O.; Nwachukwu, P.; Adesibikan, A.A.; Odusote, J.K.; Adeyemi, E.O.; Abioye, O.M.; Okolie, J.A. A Comprehensive Review on the Similarity and Disparity of Torrefied Biomass and Coal Properties. Renew. Sustain. Energy Rev. 2024, 199, 114502. [Google Scholar] [CrossRef]
- Zhu, G.; Wen, C.; Liu, T.; Xu, M.; Ling, P.; Wen, W.; Li, R. Combustion and Co-Combustion of Biochar: Combustion Performance and Pollutant Emissions. Appl. Energy 2024, 376, 124292. [Google Scholar] [CrossRef]
- Panwar, N.L.; Divyangkumar, N. An Overview of Recent Advancements in Biomass Torrefaction. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Budde, P.K.; Megha, R.; Patel, R.; Pandey, J. Investigating Effects of Temperature on Fuel Properties of Torrefied Biomass for Bio-Energy Systems. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 1140–1148. [Google Scholar] [CrossRef]
- Emissions and Combustion Characteristics of Torrefied Wood Pellets: BioResources. Available online: https://bioresources.cnr.ncsu.edu/ (accessed on 9 December 2024).
- Bajwa, D.S.; Peterson, T.; Sharma, N.; Shojaeiarani, J.; Bajwa, S.G. A Review of Densified Solid Biomass for Energy Production. Renew. Sustain. Energy Rev. 2018, 96, 296–305. [Google Scholar] [CrossRef]
- Chen, W.-H.; Peng, J.; Bi, X.T. A State-of-the-Art Review of Biomass Torrefaction, Densification and Applications. Renew. Sustain. Energy Rev. 2015, 44, 847–866. [Google Scholar] [CrossRef]
- Stelte, W.; Nielsen, N.P.K.; Hansen, H.O.; Dahl, J.; Shang, L.; Sanadi, A.R. Reprint of: Pelletizing Properties of Torrefied Wheat Straw. Biomass Bioenergy 2013, 53, 105–112. [Google Scholar] [CrossRef]
- Mišljenović, N.; Bach, Q.-V.; Tran, K.-Q.; Salas-Bringas, C.; Skreiberg, Ø. Torrefaction Influence on Pelletability and Pellet Quality of Norwegian Forest Residues. Energy Fuels 2014, 28, 2554–2561. [Google Scholar] [CrossRef]
- Butler, J.W.; Skrivan, W.; Lotfi, S. Identification of Optimal Binders for Torrefied Biomass Pellets. Energies 2023, 16, 3390. [Google Scholar] [CrossRef]
- Peng, J.H.; Bi, X.T.; Sokhansanj, S.; Lim, C.J. Torrefaction and Densification of Different Species of Softwood Residues. Fuel 2013, 111, 411–421. [Google Scholar] [CrossRef]
- Peng, J.; Bi, X.T.; Lim, C.J.; Peng, H.; Kim, C.S.; Jia, D.; Zuo, H. Sawdust as an Effective Binder for Making Torrefied Pellets. Appl. Energy 2015, 157, 491–498. [Google Scholar] [CrossRef]
- García, R.; González-Vázquez, M.P.; Pevida, C.; Rubiera, F. Pelletization Properties of Raw and Torrefied Pine Sawdust: Effect of Co-Pelletization, Temperature, Moisture Content and Glycerol Addition. Fuel 2018, 215, 290–297. [Google Scholar] [CrossRef]
- Shang, L.; Nielsen, N.P.K.; Stelte, W.; Dahl, J.; Ahrenfeldt, J.; Holm, J.K.; Arnavat, M.P.; Bach, L.S.; Henriksen, U.B. Lab and Bench-Scale Pelletization of Torrefied Wood Chips—Process Optimization and Pellet Quality. Bioenerg. Res. 2014, 7, 87–94. [Google Scholar] [CrossRef]
- Manouchehrinejad, M.; Bilek, E.M.T.; Mani, S. Techno-Economic Analysis of Integrated Torrefaction and Pelletization Systems to Produce Torrefied Wood Pellets. Renew. Energy 2021, 178, 483–493. [Google Scholar] [CrossRef]
- Molinari, K.C.; Magalhães, W.L.E.; Pawlicka, A.; Machado, G.D.O. Torrefaction Effects on Pinus Taeda L. Pellets: Gravimetric Yield, Equilibrium Moisture Content, and High Heating Value. Mol. Cryst. Liq. Cryst. 2019, 693, 7–17. [Google Scholar] [CrossRef]
- Veloo, K.S.; Lau, A.K.; Sokhansanj, S. Structural and Molecular Modifications of Woody Biomass under Minimal Torrefaction Conditions toward Making Durable Pellets. GSC Adv. Res. Rev. 2024, 20, 129–138. [Google Scholar] [CrossRef]
- Na, B.-I.; Kim, Y.-H.; Lim, W.-S.; Lee, S.-M.; Lee, H.-W.; Lee, J.-W. Torrefaction of Oil Palm Mesocarp Fiber and Their Effect on Pelletizing. Biomass Bioenergy 2013, 52, 159–165. [Google Scholar] [CrossRef]
- Yu, Y.; Lee, J.S.; Lau, A.K.; Sokhansanj, S. Comparison of Measured Values from Single Pellet Durability Tester and Standard Tumbler Tester. Biosyst. Eng. 2023, 235, 131–136. [Google Scholar] [CrossRef]
- Sarker, T.R.; Nanda, S.; Dalai, A.K. Parametric Studies on Hydrothermal Gasification of Biomass Pellets Using Box-Behnken Experimental Design to Produce Fuel Gas and Hydrochar. J. Clean. Prod. 2023, 388, 135804. [Google Scholar] [CrossRef]
- Schilling, C.; Wöhler, M.; Yazdanpanah, F.; Bi, X.; Lau, A.; Lim, J.; Sokhansanj, S.; Pelz, S. Development of a Novel Wood Pellet Durability Tester for Small Samples; 2015. Available online: https://biomass.ubc.ca/wp-content/uploads/2020/03/Development-of-a-novel-wood-pellet-durability.pdf (accessed on 19 December 2024).
- Yu, Y.; Lau, A.; Sokhansanj, S. Improvement of the Pellet Quality and Fuel Characteristics of Agricultural Residues through Mild Hydrothermal Treatment. Ind. Crops Prod. 2021, 169, 113654. [Google Scholar] [CrossRef]
- Li, L.; Huang, Y.; Zhang, D.; Zheng, A.; Zhao, Z.; Xia, M.; Li, H. Uncovering Structure–Reactivity Relationships in Pyrolysis and Gasification of Biomass with Varying Severity of Torrefaction. ACS Sustain. Chem. Eng. 2018, 6, 6008–6017. [Google Scholar] [CrossRef]
- Escalante, J.; Chen, W.-H.; Tabatabaei, M.; Hoang, A.T.; Kwon, E.E.; Andrew Lin, K.-Y.; Saravanakumar, A. Pyrolysis of Lignocellulosic, Algal, Plastic, and Other Biomass Wastes for Biofuel Production and Circular Bioeconomy: A Review of Thermogravimetric Analysis (TGA) Approach. Renew. Sustain. Energy Rev. 2022, 169, 112914. [Google Scholar] [CrossRef]
- Bongomin, O.; Nzila, C.; Mwasiagi, J.I.; Maube, O. Comprehensive Thermal Properties, Kinetic, and Thermodynamic Analyses of Biomass Wastes Pyrolysis via TGA and Coats-Redfern Methodologies. Energy Convers. Manag. X 2024, 24, 100723. [Google Scholar] [CrossRef]
- Khairy, M.; Amer, M.; Ibrahim, M.; Ookawara, S.; Sekiguchi, H.; Elwardany, A. The Influence of Torrefaction on the Biochar Characteristics Produced from Sesame Stalks and Bean Husk. Biomass Conv. Bioref. 2024, 14, 17127–17148. [Google Scholar] [CrossRef]
- Coats, A.W.; Redfern, J.P. Kinetic Parameters from Thermogravimetric Data. Nature 1964, 201, 68–69. [Google Scholar] [CrossRef]
- Wang, Z. Biomass Torrefaction in Slot-Rectangular Spouted Beds. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2017. [Google Scholar]
- Nath, B.; Chen, G.; Bowtell, L.; Graham, E. An Investigation of Thermal Decomposition Behavior and Combustion Parameter of Pellets from Wheat Straw and Additive Blends by Thermogravimetric Analysis. Int. J. Thermofluids 2024, 22, 100660. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, X.; Liu, T.; Li, T.; Li, Z. Upgrading Densified Pellet via Torrefaction Pretreatment: Insight into Linkage between Components and Properties. Ind. Crops Prod. 2024, 221, 119394. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Legros, R.; Bi, X.T.; Lim, C.J.; Sokhansanj, S. Pelletization of Torrefied Sawdust and Properties of Torrefied Pellets. Appl. Energy 2012, 93, 680–685. [Google Scholar] [CrossRef]
- ISO 17225-2; Solid Biofuels—Fuel Specifications and Classes—Part 2: Graded Wood Pellets. International Standards Organization: Geneva, Switzerland, 2021.
- Larsson, S.H.; Rudolfsson, M.; Nordwaeger, M.; Olofsson, I.; Samuelsson, R. Effects of Moisture Content, Torrefaction Temperature, and Die Temperature in Pilot Scale Pelletizing of Torrefied Norway Spruce. Appl. Energy 2013, 102, 827–832. [Google Scholar] [CrossRef]
- Rudolfsson, M.; Borén, E.; Pommer, L.; Nordin, A.; Lestander, T.A. Combined Effects of Torrefaction and Pelletization Parameters on the Quality of Pellets Produced from Torrefied Biomass. Appl. Energy 2017, 191, 414–424. [Google Scholar] [CrossRef]
- Lu, K.-M.; Lee, W.-J.; Chen, W.-H.; Lin, T.-C. Thermogravimetric Analysis and Kinetics of Co-Pyrolysis of Raw/Torrefied Wood and Coal Blends. Appl. Energy 2013, 105, 57–65. [Google Scholar] [CrossRef]
- Ren, S.; Lei, H.; Wang, L.; Bu, Q.; Chen, S.; Wu, J. Thermal Behaviour and Kinetic Study for Woody Biomass Torrefaction and Torrefied Biomass Pyrolysis by TGA. Biosyst. Eng. 2013, 116, 420–426. [Google Scholar] [CrossRef]
- Wannapeera, J.; Fungtammasan, B.; Worasuwannarak, N. Effects of Temperature and Holding Time during Torrefaction on the Pyrolysis Behaviors of Woody Biomass. J. Anal. Appl. Pyrolysis 2011, 92, 99–105. [Google Scholar] [CrossRef]
- Ru, B.; Wang, S.; Dai, G.; Zhang, L. Effect of Torrefaction on Biomass Physicochemical Characteristics and the Resulting Pyrolysis Behavior. Energy Fuels 2015, 29, 5865–5874. [Google Scholar] [CrossRef]
- Yu, Y. Hydrothermal Pretreatments to Make Durable Pellets from Herbaceous Biomass. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2022. [Google Scholar]
- Wang, S.; Dai, G.; Ru, B.; Zhao, Y.; Wang, X.; Xiao, G.; Luo, Z. Influence of Torrefaction on the Characteristics and Pyrolysis Behavior of Cellulose. Energy 2017, 120, 864–871. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, M.; Jiang, E.; Wang, D.; Zhang, K.; Ren, Y.; Jiang, Y. Pyrolysis of Torrefied Biomass. Trends Biotechnol. 2018, 36, 1287–1298. [Google Scholar] [CrossRef]
- Jia, G. Combustion Characteristics and Kinetic Analysis of Biomass Pellet Fuel Using Thermogravimetric Analysis. Processes 2021, 9, 868. [Google Scholar] [CrossRef]
- Qiguo, Y.; Qi, F.; Cheng, G.; Zhang, Y.; Xiao, B.; Hu, Z.; Liu, S.; Cai, H.; Xu, S. Thermogravimetric Analysis of Co-Combustion of Biomass and Biochar. J. Therm. Anal. Calorim. 2012, 112, 1475–1479. [Google Scholar] [CrossRef]
- Bach, Q.-V.; Tran, K.-Q. Dry and Wet Torrefaction of Woody Biomass—A Comparative Studyon Combustion Kinetics. Energy Procedia 2015, 75, 150–155. [Google Scholar] [CrossRef]
- Junga, R.; Pospolita, J.; Niemiec, P. Combustion and Grindability Characteristics of Palm Kernel Shells Torrefied in a Pilot-Scale Installation. Renew. Energy 2020, 147, 1239–1250. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, Z.; Zhao, Y.; Xu, L.; Feng, S.; Wang, Z.; Zhang, L.; Shen, B. Effects of Torrefaction Pretreatment on Fuel Quality and Combustion Characteristics of Biomass: A Review. Fuel 2024, 358, 130314. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.J.; Oh, K.C.; Kim, S.Y.; Kim, H.E.; Kim, D.H. Utilising Torrefaction to Determine the Fuel Characteristics of Forestry and Agricultural Biomass for Solid Biofuel. J. Biosyst. Eng. 2024, 49, 167–185. [Google Scholar] [CrossRef]
Temperature (°C) | Time (min) | Severity Factor (SF) |
---|---|---|
230 | 10 | 4.8 |
230 | 15 | 5.0 |
230 | 30 | 5.3 |
250 | 10 | 5.4 |
250 | 15 | 5.6 |
250 | 30 | 5.9 |
270 | 30 | 6.5 |
SF | Loose Bulk Density (g/cm3) | Single-Pellet Density (g/cm3) |
---|---|---|
Untreated | 0.31 ± 0.01 | 1.25 ± 0.01 |
4.8 | 0.30 ± 0.01 | 1.23 ± 0.02 |
5.0 | 0.30 ± 0.01 | 1.21 ± 0.04 |
5.3 | 0.30 ± 0.01 | 1.21 ± 0.03 |
5.4 | 0.28 ± 0.01 | 1.22 ± 0.02 |
5.6 | 0.29 ± 0.02 | 1.22 ± 0.03 |
5.9 | 0.29 ± 0.02 | 1.19 ± 0.04 |
6.5 | 0.21 ± 0.02 | 1.18 ± 0.02 |
Source | Sum of Squares | df | Mean Squares | F-Value | p-Value |
---|---|---|---|---|---|
Equation (17) | 132.9 | 2 | 66.5 | 11.53 | 0.0391 |
X1-Temperature | 19.33 | 1 | 19.33 | 3.35 | 0.1644 |
X2-Time | 113.6 | 1 | 113.6 | 19.71 | 0.0212 |
SF | Single-Pellet Durability (%) a | Tumbler Durability (%) b |
---|---|---|
Untreated | 93.2 | 96.8 |
4.8 | 62.5 | 86.6 |
5.0 | 54.5 | 84.0 |
5.3 | 50.4 | 82.6 |
5.4 | 62.7 | 86.7 |
5.6 | 62.1 | 86.5 |
5.9 | 53.3 | 83.6 |
6.5 | 51.5 | 83.0 |
SF | Pyrolysis Parameters | Kinetics Parameters | ||||||
---|---|---|---|---|---|---|---|---|
Residue Weight % at 800 (°C) | Dmax (%/min) | Tmax (°C) | Ti (°C) | CPI (×10−4%/(min °C2) | E (kJ/mol) | A (×105/min) | R2 | |
Untreated | 15.5 | 9.8 | 315.5 | 214.3 | 1.6 | 27.0 | 0.2 | 0.9879 |
4.8 | 19.4 | 10.3 | 318.4 | 234.6 | 2.0 | 30.9 | 0.5 | 0.9902 |
5.0 | 21.0 | 10.5 | 323.5 | 247.8 | 2.3 | 36.1 | 1.6 | 0.9938 |
5.3 | 22.5 | 11.2 | 324.4 | 251.2 | 2.4 | 36.7 | 1.8 | 0.9886 |
5.4 | 22.7 | 11.0 | 325.2 | 251.3 | 2.4 | 36.4 | 1.7 | 0.9892 |
5.6 | 22.9 | 12.1 | 322.7 | 258.0 | 2.7 | 39.9 | 3.6 | 0.9892 |
5.9 | 24.6 | 11.6 | 324.3 | 254.5 | 2.8 | 39.7 | 3.3 | 0.9813 |
6.5 | 31.4 | 10.0 | 319.5 | 265.7 | 3.0 | 43.0 | 6.0 | 0.9808 |
SF | Ti (°C) | Tf (°C) | Rmean (%/min) | Rmax (%/min) | Burnout Time (min) | Sn (×10−5%2/(min2°C3) |
---|---|---|---|---|---|---|
Untreated | 262.9 | 407.2 | 12.7 | 56.7 | 26.7 | 2.6 |
4.8 | 267.5 | 411.4 | 12.7 | 52.2 | 26.5 | 2.3 |
5.0 | 267.9 | 427.8 | 8.2 | 45.9 | 30.3 | 1.1 |
5.3 | 264.0 | 446.4 | 9.8 | 44.4 | 28.8 | 1.4 |
5.4 | 266.5 | 437.9 | 10.6 | 46.8 | 28.0 | 1.6 |
5.6 | 266.0 | 454.9 | 9.7 | 48.9 | 29.0 | 1.5 |
5.9 | 259.3 | 469.7 | 8.6 | 45.2 | 29.9 | 1.2 |
6.5 | 251.6 | 498.5 | 7.4 | 56.9 | 30.8 | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singara veloo, K.; Lau, A.; Sokhansanj, S. Analysis of Mechanical Durability, Hydrophobicity, Pyrolysis and Combustion Properties of Solid Biofuel Pellets Made from Mildly Torrefied Biomass. Energies 2025, 18, 3464. https://doi.org/10.3390/en18133464
Singara veloo K, Lau A, Sokhansanj S. Analysis of Mechanical Durability, Hydrophobicity, Pyrolysis and Combustion Properties of Solid Biofuel Pellets Made from Mildly Torrefied Biomass. Energies. 2025; 18(13):3464. https://doi.org/10.3390/en18133464
Chicago/Turabian StyleSingara veloo, Kanageswari, Anthony Lau, and Shahab Sokhansanj. 2025. "Analysis of Mechanical Durability, Hydrophobicity, Pyrolysis and Combustion Properties of Solid Biofuel Pellets Made from Mildly Torrefied Biomass" Energies 18, no. 13: 3464. https://doi.org/10.3390/en18133464
APA StyleSingara veloo, K., Lau, A., & Sokhansanj, S. (2025). Analysis of Mechanical Durability, Hydrophobicity, Pyrolysis and Combustion Properties of Solid Biofuel Pellets Made from Mildly Torrefied Biomass. Energies, 18(13), 3464. https://doi.org/10.3390/en18133464