Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (497)

Search Parameters:
Keywords = modal separation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5699 KiB  
Article
Multi-Modal Excavator Activity Recognition Using Two-Stream CNN-LSTM with RGB and Point Cloud Inputs
by Hyuk Soo Cho, Kamran Latif, Abubakar Sharafat and Jongwon Seo
Appl. Sci. 2025, 15(15), 8505; https://doi.org/10.3390/app15158505 (registering DOI) - 31 Jul 2025
Abstract
Recently, deep learning algorithms have been increasingly applied in construction for activity recognition, particularly for excavators, to automate processes and enhance safety and productivity through continuous monitoring of earthmoving activities. These deep learning algorithms analyze construction videos to classify excavator activities for earthmoving [...] Read more.
Recently, deep learning algorithms have been increasingly applied in construction for activity recognition, particularly for excavators, to automate processes and enhance safety and productivity through continuous monitoring of earthmoving activities. These deep learning algorithms analyze construction videos to classify excavator activities for earthmoving purposes. However, previous studies have solely focused on single-source external videos, which limits the activity recognition capabilities of the deep learning algorithm. This paper introduces a novel multi-modal deep learning-based methodology for recognizing excavator activities, utilizing multi-stream input data. It processes point clouds and RGB images using the two-stream long short-term memory convolutional neural network (CNN-LSTM) method to extract spatiotemporal features, enabling the recognition of excavator activities. A comprehensive dataset comprising 495,000 video frames of synchronized RGB and point cloud data was collected across multiple construction sites under varying conditions. The dataset encompasses five key excavator activities: Approach, Digging, Dumping, Idle, and Leveling. To assess the effectiveness of the proposed method, the performance of the two-stream CNN-LSTM architecture is compared with that of single-stream CNN-LSTM models on the same RGB and point cloud datasets, separately. The results demonstrate that the proposed multi-stream approach achieved an accuracy of 94.67%, outperforming existing state-of-the-art single-stream models, which achieved 90.67% accuracy for the RGB-based model and 92.00% for the point cloud-based model. These findings underscore the potential of the proposed activity recognition method, making it highly effective for automatic real-time monitoring of excavator activities, thereby laying the groundwork for future integration into digital twin systems for proactive maintenance and intelligent equipment management. Full article
(This article belongs to the Special Issue AI-Based Machinery Health Monitoring)
Show Figures

Figure 1

23 pages, 20436 KiB  
Article
An Adaptive Decomposition Method with Low Parameter Sensitivity for Non-Stationary Noise Suppression in Magnetotelluric Data
by Zhenyu Guo, Cheng Huang, Wen Jiang, Tao Hong and Jiangtao Han
Minerals 2025, 15(8), 808; https://doi.org/10.3390/min15080808 - 30 Jul 2025
Abstract
Magnetotelluric (MT) sounding is a crucial technique in mineral exploration. However, MT data are highly susceptible to various types of noise. Traditional data processing methods, which rely on the assumption of signal stationarity, often result in severe distortion when suppressing non-stationary noise. In [...] Read more.
Magnetotelluric (MT) sounding is a crucial technique in mineral exploration. However, MT data are highly susceptible to various types of noise. Traditional data processing methods, which rely on the assumption of signal stationarity, often result in severe distortion when suppressing non-stationary noise. In this study, we propose a novel, adaptive, and less parameter-dependent signal decomposition method for MT signal denoising, based on time–frequency domain analysis and the application of modal decomposition. The method uses Variational Mode Decomposition (VMD) to adaptively decompose the MT signal into several intrinsic mode functions (IMFs), obtaining the instantaneous time–frequency energy distribution of the signal. Subsequently, robust statistical methods are introduced to extract the independent components of each IMF, thereby identifying signal and noise components within the decomposition results. Synthetic data experiments show that our method accurately separates high-amplitude non-stationary interference. Furthermore, it maintains stable decomposition results under various parameter settings, exhibiting strong robustness and low parameter dependency. When applied to field MT data, the method effectively filters out non-stationary noise, leading to significant improvements in both apparent resistivity and phase curves, indicating its practical value in mineral exploration. Full article
(This article belongs to the Special Issue Novel Methods and Applications for Mineral Exploration, Volume III)
Show Figures

Figure 1

24 pages, 3953 KiB  
Article
A New Signal Separation and Sampling Duration Estimation Method for ISRJ Based on FRFT and Hybrid Modality Fusion Network
by Siyu Wang, Chang Zhu, Zhiyong Song, Zhanling Wang and Fulai Wang
Remote Sens. 2025, 17(15), 2648; https://doi.org/10.3390/rs17152648 - 30 Jul 2025
Abstract
Accurate estimation of Interrupted Sampling Repeater Jamming (ISRJ) sampling duration is essential for effective radar anti-jamming. However, in complex electromagnetic environments, the simultaneous presence of suppressive and deceptive jamming, coupled with significant signal overlap in the time–frequency domain, renders ISRJ separation and parameter [...] Read more.
Accurate estimation of Interrupted Sampling Repeater Jamming (ISRJ) sampling duration is essential for effective radar anti-jamming. However, in complex electromagnetic environments, the simultaneous presence of suppressive and deceptive jamming, coupled with significant signal overlap in the time–frequency domain, renders ISRJ separation and parameter estimation considerably challenging. To address this challenge, this paper proposes a method utilizing the Fractional Fourier Transform (FRFT) and a Hybrid Modality Fusion Network (HMFN) for ISRJ signal separation and sampling-duration estimation. The proposed method first employs FRFT and a time–frequency mask to separate the ISRJ and target echo from the mixed signal. This process effectively suppresses interference and extracts the ISRJ signal. Subsequently, an HMFN is employed for high-precision estimation of the ISRJ sampling duration, offering crucial parameter support for active electromagnetic countermeasures. Simulation results validate the performance of the proposed method. Specifically, even under strong interference conditions with a Signal-to-Jamming Ratio (SJR) of −5 dB for deceptive jamming and as low as −10 dB for suppressive jamming, the regression model’s coefficient of determination still reaches 0.91. This result clearly demonstrates the method’s robustness and effectiveness in complex electromagnetic environments. Full article
Show Figures

Figure 1

30 pages, 5307 KiB  
Article
Self-Normalizing Multi-Omics Neural Network for Pan-Cancer Prognostication
by Asim Waqas, Aakash Tripathi, Sabeen Ahmed, Ashwin Mukund, Hamza Farooq, Joseph O. Johnson, Paul A. Stewart, Mia Naeini, Matthew B. Schabath and Ghulam Rasool
Int. J. Mol. Sci. 2025, 26(15), 7358; https://doi.org/10.3390/ijms26157358 - 30 Jul 2025
Viewed by 124
Abstract
Prognostic markers such as overall survival (OS) and tertiary lymphoid structure (TLS) ratios, alongside diagnostic signatures like primary cancer-type classification, provide critical information for treatment selection, risk stratification, and longitudinal care planning across the oncology continuum. However, extracting these signals solely from sparse, [...] Read more.
Prognostic markers such as overall survival (OS) and tertiary lymphoid structure (TLS) ratios, alongside diagnostic signatures like primary cancer-type classification, provide critical information for treatment selection, risk stratification, and longitudinal care planning across the oncology continuum. However, extracting these signals solely from sparse, high-dimensional multi-omics data remains a major challenge due to heterogeneity and frequent missingness in patient profiles. To address this challenge, we present SeNMo, a self-normalizing deep neural network trained on five heterogeneous omics layers—gene expression, DNA methylation, miRNA abundance, somatic mutations, and protein expression—along with the clinical variables, that learns a unified representation robust to missing modalities. Trained on more than 10,000 patient profiles across 32 tumor types from The Cancer Genome Atlas (TCGA), SeNMo provides a baseline that can be readily fine-tuned for diverse downstream tasks. On a held-out TCGA test set, the model achieved a concordance index of 0.758 for OS prediction, while external evaluation yielded 0.73 on the CPTAC lung squamous cell carcinoma cohort and 0.66 on an independent 108-patient Moffitt Cancer Center cohort. Furthermore, on Moffitt’s cohort, baseline SeNMo fine-tuned for TLS ratio prediction aligned with expert annotations (p < 0.05) and sharply separated high- versus low-TLS groups, reflecting distinct survival outcomes. Without altering the backbone, a single linear head classified primary cancer type with 99.8% accuracy across the 33 classes. By unifying diagnostic and prognostic predictions in a modality-robust architecture, SeNMo demonstrated strong performance across multiple clinically relevant tasks, including survival estimation, cancer classification, and TLS ratio prediction, highlighting its translational potential for multi-omics oncology applications. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

22 pages, 2525 KiB  
Article
mmHSE: A Two-Stage Framework for Human Skeleton Estimation Using mmWave FMCW Radar Signals
by Jiake Tian, Yi Zou and Jiale Lai
Appl. Sci. 2025, 15(15), 8410; https://doi.org/10.3390/app15158410 - 29 Jul 2025
Viewed by 92
Abstract
We present mmHSE, a two-stage framework for human skeleton estimation using dual millimeter-Wave (mmWave) Frequency-Modulated Continuous-Wave (FMCW) radar signals. To enable data-driven model design and evaluation, we collect and process over 30,000 range–angle maps from 12 users across three representative indoor environments using [...] Read more.
We present mmHSE, a two-stage framework for human skeleton estimation using dual millimeter-Wave (mmWave) Frequency-Modulated Continuous-Wave (FMCW) radar signals. To enable data-driven model design and evaluation, we collect and process over 30,000 range–angle maps from 12 users across three representative indoor environments using a dual-node radar acquisition platform. Leveraging the collected data, we develop a two-stage neural architecture for human skeleton estimation. The first stage employs a dual-branch network with depthwise separable convolutions and self-attention to extract multi-scale spatiotemporal features from dual-view radar inputs. A cross-modal attention fusion module is then used to generate initial estimates of 21 skeletal keypoints. The second stage refines these estimates using a skeletal topology module based on graph convolutional networks, which captures spatial dependencies among joints to enhance localization accuracy. Experiments show that mmHSE achieves a Mean Absolute Error (MAE) of 2.78 cm. In cross-domain evaluations, the MAE remains at 3.14 cm, demonstrating the method’s generalization ability and robustness for non-intrusive human pose estimation from mmWave FMCW radar signals. Full article
Show Figures

Figure 1

15 pages, 1638 KiB  
Article
MFEAM: Multi-View Feature Enhanced Attention Model for Image Captioning
by Yang Cui and Juan Zhang
Appl. Sci. 2025, 15(15), 8368; https://doi.org/10.3390/app15158368 - 28 Jul 2025
Viewed by 181
Abstract
Image captioning plays a crucial role in aligning visual content with natural language, serving as a key step toward effective cross-modal understanding. Transformer has become the dominant language model in image captioning. Existing Transformer-based models seldom highlight important features from multiple views in [...] Read more.
Image captioning plays a crucial role in aligning visual content with natural language, serving as a key step toward effective cross-modal understanding. Transformer has become the dominant language model in image captioning. Existing Transformer-based models seldom highlight important features from multiple views in the use of self-attention. In this paper, we propose MFEAM, an innovative network that leverages the multi-view feature enhanced attention. To accurately represent the entangled features of vision and text, the teacher model employs the multi-view feature enhanced attention to guide the student model training through knowledge distillation and model averaging from both visual and textual views. To mitigate the impact of excessive feature enhancement, the student model divides the decoding layer into two groups, which separately process instance features and the relationships between instances. Experimental results demonstrate that MFEAM attains competitive performance on the MSCOCO (Microsoft Common Objects in Context) when trained without leveraging external data. Full article
Show Figures

Figure 1

20 pages, 3386 KiB  
Article
Design of Realistic and Artistically Expressive 3D Facial Models for Film AIGC: A Cross-Modal Framework Integrating Audience Perception Evaluation
by Yihuan Tian, Xinyang Li, Zuling Cheng, Yang Huang and Tao Yu
Sensors 2025, 25(15), 4646; https://doi.org/10.3390/s25154646 - 26 Jul 2025
Viewed by 317
Abstract
The rise of virtual production has created an urgent need for both efficient and high-fidelity 3D face generation schemes for cinema and immersive media, but existing methods are often limited by lighting–geometry coupling, multi-view dependency, and insufficient artistic quality. To address this, this [...] Read more.
The rise of virtual production has created an urgent need for both efficient and high-fidelity 3D face generation schemes for cinema and immersive media, but existing methods are often limited by lighting–geometry coupling, multi-view dependency, and insufficient artistic quality. To address this, this study proposes a cross-modal 3D face generation framework based on single-view semantic masks. It utilizes Swin Transformer for multi-level feature extraction and combines with NeRF for illumination decoupled rendering. We utilize physical rendering equations to explicitly separate surface reflectance from ambient lighting to achieve robust adaptation to complex lighting variations. In addition, to address geometric errors across illumination scenes, we construct geometric a priori constraint networks by mapping 2D facial features to 3D parameter space as regular terms with the help of semantic masks. On the CelebAMask-HQ dataset, this method achieves a leading score of SSIM = 0.892 (37.6% improvement from baseline) with FID = 40.6. The generated faces excel in symmetry and detail fidelity with realism and aesthetic scores of 8/10 and 7/10, respectively, in a perceptual evaluation with 1000 viewers. By combining physical-level illumination decoupling with semantic geometry a priori, this paper establishes a quantifiable feedback mechanism between objective metrics and human aesthetic evaluation, providing a new paradigm for aesthetic quality assessment of AI-generated content. Full article
(This article belongs to the Special Issue Convolutional Neural Network Technology for 3D Imaging and Sensing)
Show Figures

Figure 1

22 pages, 7542 KiB  
Article
Flow-Induced Vibration Stability in Pilot-Operated Control Valves with Nonlinear Fluid–Structure Interaction Analysis
by Lingxia Yang, Shuxun Li and Jianjun Hou
Actuators 2025, 14(8), 372; https://doi.org/10.3390/act14080372 - 25 Jul 2025
Viewed by 113
Abstract
Control valves in nuclear systems operate under high-pressure differentials generating intense transient fluid forces that induce destructive structural vibrations, risking resonance and the valve stem fracture. In this study, computational fluid dynamics (CFD) was employed to characterize the internal flow dynamics of the [...] Read more.
Control valves in nuclear systems operate under high-pressure differentials generating intense transient fluid forces that induce destructive structural vibrations, risking resonance and the valve stem fracture. In this study, computational fluid dynamics (CFD) was employed to characterize the internal flow dynamics of the valve, supported by experiment validation of the fluid model. To account for nonlinear structural effects such as contact and damping, a coupled fluid–structure interaction approach incorporating nonlinear perturbation analysis was applied to evaluate the dynamic response of the valve core assembly under fluid excitation. The results indicate that flow separation, re-circulation, and vortex shedding within the throttling region are primary contributors to structural vibrations. A comparative analysis of stability coefficients, modal damping ratios, and logarithmic decrements under different valve openings revealed that the valve core assembly remains relatively stable overall. However, critical stability risks were identified in the lower-order modal frequency range at 50% and 70% openings. Notably, at a 70% opening, the first-order modal frequency of the valve core assembly closely aligns with the frequency of fluid excitation, indicating a potential for critical resonance. This research provides important insights for evaluating and enhancing the vibration stability and operational safety of control valves under complex flow conditions. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

30 pages, 10277 KiB  
Article
A Finite Element Formulation for True Coupled Modal Analysis and Nonlinear Seismic Modeling of Dam–Reservoir–Foundation Systems: Application to an Arch Dam and Validation
by André Alegre, Sérgio Oliveira, Jorge Proença, Paulo Mendes and Ezequiel Carvalho
Infrastructures 2025, 10(8), 193; https://doi.org/10.3390/infrastructures10080193 - 22 Jul 2025
Viewed by 162
Abstract
This paper presents a formulation for the dynamic analysis of dam–reservoir–foundation systems, employing a coupled finite element model that integrates displacements and reservoir pressures. An innovative coupled approach, without separating the solid and fluid equations, is proposed to directly solve the single non-symmetrical [...] Read more.
This paper presents a formulation for the dynamic analysis of dam–reservoir–foundation systems, employing a coupled finite element model that integrates displacements and reservoir pressures. An innovative coupled approach, without separating the solid and fluid equations, is proposed to directly solve the single non-symmetrical governing equation for the whole system with non-proportional damping. For the modal analysis, a state–space method is adopted to solve the coupled eigenproblem, and complex eigenvalues and eigenvectors are computed, corresponding to non-stationary vibration modes. For the seismic analysis, a time-stepping method is applied to the coupled dynamic equation, and the stress–transfer method is introduced to simulate the nonlinear behavior, innovatively combining a constitutive joint model and a concrete damage model with softening and two independent scalar damage variables (tension and compression). This formulation is implemented in the computer program DamDySSA5.0, developed by the authors. To validate the formulation, this paper provides the experimental and numerical results in the case of the Cahora Bassa dam, instrumented in 2010 with a continuous vibration monitoring system designed by the authors. The good comparison achieved between the monitoring data and the dam–reservoir–foundation model shows that the formulation is suitable for simulating the modal response (natural frequencies and mode shapes) for different reservoir water levels and the seismic response under low-intensity earthquakes, using accelerograms measured at the dam base as input. Additionally, the dam’s nonlinear seismic response is simulated under an artificial accelerogram of increasing intensity, showing the structural effects due to vertical joint movements (release of arch tensions near the crest) and the concrete damage evolution. Full article
(This article belongs to the Special Issue Advances in Dam Engineering of the 21st Century)
Show Figures

Figure 1

22 pages, 2514 KiB  
Article
High-Accuracy Recognition Method for Diseased Chicken Feces Based on Image and Text Information Fusion
by Duanli Yang, Zishang Tian, Jianzhong Xi, Hui Chen, Erdong Sun and Lianzeng Wang
Animals 2025, 15(15), 2158; https://doi.org/10.3390/ani15152158 - 22 Jul 2025
Viewed by 283
Abstract
Poultry feces, a critical biomarker for health assessment, requires timely and accurate pathological identification for food safety. Conventional visual-only methods face limitations due to environmental sensitivity and high visual similarity among feces from different diseases. To address this, we propose MMCD (Multimodal Chicken-feces [...] Read more.
Poultry feces, a critical biomarker for health assessment, requires timely and accurate pathological identification for food safety. Conventional visual-only methods face limitations due to environmental sensitivity and high visual similarity among feces from different diseases. To address this, we propose MMCD (Multimodal Chicken-feces Diagnosis), a ResNet50-based multimodal fusion model leveraging semantic complementarity between images and descriptive text to enhance diagnostic precision. Key innovations include the following: (1) Integrating MASA(Manhattan self-attention)and DSconv (Depthwise Separable convolution) into the backbone network to mitigate feature confusion. (2) Utilizing a pre-trained BERT to extract textual semantic features, reducing annotation dependency and cost. (3) Designing a lightweight Gated Cross-Attention (GCA) module for dynamic multimodal fusion, achieving a 41% parameter reduction versus cross-modal transformers. Experiments demonstrate that MMCD significantly outperforms single-modal baselines in Accuracy (+8.69%), Recall (+8.72%), Precision (+8.67%), and F1 score (+8.72%). It surpasses simple feature concatenation by 2.51–2.82% and reduces parameters by 7.5M and computations by 1.62 GFLOPs versus the base ResNet50. This work validates multimodal fusion’s efficacy in pathological fecal detection, providing a theoretical and technical foundation for agricultural health monitoring systems. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

43 pages, 6462 KiB  
Article
An Integrated Mechanical Fault Diagnosis Framework Using Improved GOOSE-VMD, RobustICA, and CYCBD
by Jingzong Yang and Xuefeng Li
Machines 2025, 13(7), 631; https://doi.org/10.3390/machines13070631 - 21 Jul 2025
Viewed by 242
Abstract
Rolling element bearings serve as critical transmission components in industrial automation systems, yet their fault signatures are susceptible to interference from strong background noise, complex operating conditions, and nonlinear impact characteristics. Addressing the limitations of conventional methods in adaptive parameter optimization and weak [...] Read more.
Rolling element bearings serve as critical transmission components in industrial automation systems, yet their fault signatures are susceptible to interference from strong background noise, complex operating conditions, and nonlinear impact characteristics. Addressing the limitations of conventional methods in adaptive parameter optimization and weak feature enhancement, this paper proposes an innovative diagnostic framework integrating Improved Goose optimized Variational Mode Decomposition (IGOOSE-VMD), RobustICA, and CYCBD. First, to mitigate modal aliasing issues caused by empirical parameter dependency in VMD, we fuse a refraction-guided reverse learning mechanism with a dynamic mutation strategy to develop the IGOOSE. By employing an energy-feature-driven fitness function, this approach achieves synergistic optimization of the mode number and penalty factor. Subsequently, a multi-channel observation model is constructed based on optimal component selection. Noise interference is suppressed through the robust separation capabilities of RobustICA, while CYCBD introduces cyclostationarity-based prior constraints to formulate a blind deconvolution operator with periodic impact enhancement properties. This significantly improves the temporal sparsity of fault-induced impact components. Experimental results demonstrate that, compared to traditional time–frequency analysis techniques (e.g., EMD, EEMD, LMD, ITD) and deconvolution methods (including MCKD, MED, OMEDA), the proposed approach exhibits superior noise immunity and higher fault feature extraction accuracy under high background noise conditions. Full article
Show Figures

Figure 1

16 pages, 1045 KiB  
Article
Effects of Pulsed Radiofrequency Current and Thermal Condition on the Expression of β-Endorphin in Human Monocytic Cells
by Akira Nishioka, Toshiharu Azma, Tsutomu Mieda and Yasushi Mio
NeuroSci 2025, 6(3), 67; https://doi.org/10.3390/neurosci6030067 - 21 Jul 2025
Viewed by 198
Abstract
Pulsed radiofrequency (PRF) current applied to peripheral nerves is a modality used in interventional pain medicine, but its underlying mechanisms remain unclear. This study aimed to investigate whether ex vivo exposure of human monocytic THP-1 cells to PRF current or to heat induces [...] Read more.
Pulsed radiofrequency (PRF) current applied to peripheral nerves is a modality used in interventional pain medicine, but its underlying mechanisms remain unclear. This study aimed to investigate whether ex vivo exposure of human monocytic THP-1 cells to PRF current or to heat induces β-endorphin production. Methods: THP-1 cells were exposed to PRF current for 15 min or incubated at elevated temperatures (42 °C to 50 °C) for 3 or 15 min. Flow cytometry was used to assess cell viability, and β-endorphin concentrations in culture supernatants were quantified by ELISA. In a separate experiment, cells were stimulated with lipopolysaccharide (LPS) to compare its effects on β-endorphin release. Results: A 3 min exposure to temperatures ≥ 46 °C reduced THP-1 cell viability, whereas a 15 min exposure to PRF current or to heat at 42 °C did not impair viability. Both PRF current and mild heat significantly enhanced β-endorphin release. β-Endorphin levels in the supernatant of LPS-stimulated cells were comparable to those of cells exposed to PRF current. Conclusions: Ex vivo application of PRF current or mild heat enhanced β-endorphin production from THP-1 cells without significant cytotoxicity. These preliminary findings warrant further investigation using primary human monocytes and in vivo models to assess therapeutic potential. Full article
Show Figures

Figure 1

33 pages, 15612 KiB  
Article
A Personalized Multimodal Federated Learning Framework for Skin Cancer Diagnosis
by Shuhuan Fan, Awais Ahmed, Xiaoyang Zeng, Rui Xi and Mengshu Hou
Electronics 2025, 14(14), 2880; https://doi.org/10.3390/electronics14142880 - 18 Jul 2025
Viewed by 294
Abstract
Skin cancer is one of the most prevalent forms of cancer worldwide, and early and accurate diagnosis critically impacts patient outcomes. Given the sensitive nature of medical data and its fragmented distribution across institutions (data silos), privacy-preserving collaborative learning is essential to enable [...] Read more.
Skin cancer is one of the most prevalent forms of cancer worldwide, and early and accurate diagnosis critically impacts patient outcomes. Given the sensitive nature of medical data and its fragmented distribution across institutions (data silos), privacy-preserving collaborative learning is essential to enable knowledge-sharing without compromising patient confidentiality. While federated learning (FL) offers a promising solution, existing methods struggle with heterogeneous and missing modalities across institutions, which reduce the diagnostic accuracy. To address these challenges, we propose an effective and flexible Personalized Multimodal Federated Learning framework (PMM-FL), which enables efficient cross-client knowledge transfer while maintaining personalized performance under heterogeneous and incomplete modality conditions. Our study contains three key contributions: (1) A hierarchical aggregation strategy that decouples multi-module aggregation from local deployment via global modular-separated aggregation and local client fine-tuning. Unlike conventional FL (which synchronizes all parameters in each round), our method adopts a frequency-adaptive synchronization mechanism, updating parameters based on their stability and functional roles. (2) A multimodal fusion approach based on multitask learning, integrating learnable modality imputation and attention-based feature fusion to handle missing modalities. (3) A custom dataset combining multi-year International Skin Imaging Collaboration(ISIC) challenge data (2018–2024) to ensure comprehensive coverage of diverse skin cancer types. We evaluate PMM-FL through diverse experiment settings, demonstrating its effectiveness in heterogeneous and incomplete modality federated learning settings, achieving 92.32% diagnostic accuracy with only a 2% drop in accuracy under 30% modality missingness, with a 32.9% communication overhead decline compared with baseline FL methods. Full article
(This article belongs to the Special Issue Multimodal Learning and Transfer Learning)
Show Figures

Figure 1

15 pages, 1629 KiB  
Article
Exploring the Proteomic Landscape of Cochlear Implant Trauma: An iTRAQ-Based Quantitative Analysis Utilizing an Ex Vivo Model
by Jake Langlie, Rahul Mittal, David H. Elisha, Jaimee Cooper, Hannah Marwede, Julian Purrinos, Maria-Pia Tuset, Keelin McKenna, Max Zalta, Jeenu Mittal and Adrien A. Eshraghi
J. Clin. Med. 2025, 14(14), 5115; https://doi.org/10.3390/jcm14145115 - 18 Jul 2025
Viewed by 290
Abstract
Background: Cochlear implantation is widely used to provide auditory rehabilitation to individuals with severe-to-profound sensorineural hearing loss. However, electrode insertion during cochlear implantation leads to inner ear trauma, damage to sensory structures, and consequently, loss of residual hearing. There is very limited information [...] Read more.
Background: Cochlear implantation is widely used to provide auditory rehabilitation to individuals with severe-to-profound sensorineural hearing loss. However, electrode insertion during cochlear implantation leads to inner ear trauma, damage to sensory structures, and consequently, loss of residual hearing. There is very limited information regarding the target proteins involved in electrode insertion trauma (EIT) following cochlear implantation. Methods: The aim of our study was to identify target proteins and host molecular pathways involved in cochlear damage following EIT utilizing the iTRAQ™ (isobaric tags for relative and absolute quantification) technique using our ex vivo model. The organ of Corti (OC) explants were dissected from postnatal day 3 rats and subjected to EIT or left untreated (control). The proteins were extracted, labelled, and subjected to ultra-high performance liquid chromatography–tandem mass spectrometry. Results: We identified distinct molecular pathways involved in EIT-induced cochlear damage. Confocal microscopy confirmed the expression of these identified proteins in OC explants subjected to EIT. By separating the apical, middle, and basal cochlear turns, we deciphered a topographic array of host molecular pathways that extend from the base to the apex of the cochlea, which are activated post-trauma following cochlear implantation. Conclusions: The identification of target proteins involved in cochlear damage will provide novel therapeutic targets for the development of effective treatment modalities for the preservation of residual hearing in implanted individuals. Full article
(This article belongs to the Section Otolaryngology)
Show Figures

Figure 1

26 pages, 2215 KiB  
Article
Smart Routing for Sustainable Supply Chain Networks: An AI and Knowledge Graph Driven Approach
by Manuel Felder, Matteo De Marchi, Patrick Dallasega and Erwin Rauch
Appl. Sci. 2025, 15(14), 8001; https://doi.org/10.3390/app15148001 - 18 Jul 2025
Viewed by 368
Abstract
Small and medium-sized enterprises (SMEs) face growing challenges in optimizing their sustainable supply chains because of fragmented logistics data and changing regulatory requirements. In particular, globally operating manufacturing SMEs often lack suitable tools, resulting in manual data collection and making reliable accounting and [...] Read more.
Small and medium-sized enterprises (SMEs) face growing challenges in optimizing their sustainable supply chains because of fragmented logistics data and changing regulatory requirements. In particular, globally operating manufacturing SMEs often lack suitable tools, resulting in manual data collection and making reliable accounting and benchmarking of transport emissions in lifecycle assessments (LCAs) time-consuming and difficult to scale. This paper introduces a novel hybrid AI-supported knowledge graph (KG) which combines large language models (LLMs) with graph-based optimization to automate industrial supply chain route enrichment, completion, and emissions analysis. The proposed solution automatically resolves transportation gaps through generative AI and programming interfaces to create optimal routes for cost, time, and emission determination. The application merges separate routes into a single multi-modal network which allows users to evaluate sustainability against operational performance. A case study shows the capabilities in simplifying data collection for emissions reporting, therefore reducing manual effort and empowering SMEs to align logistics decisions with Industry 5.0 sustainability goals. Full article
Show Figures

Figure 1

Back to TopTop