Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,045)

Search Parameters:
Keywords = mobile machines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1584 KiB  
Article
What Determines Carbon Emissions of Multimodal Travel? Insights from Interpretable Machine Learning on Mobility Trajectory Data
by Guo Wang, Shu Wang, Wenxiang Li and Hongtai Yang
Sustainability 2025, 17(15), 6983; https://doi.org/10.3390/su17156983 (registering DOI) - 31 Jul 2025
Abstract
Understanding the carbon emissions of multimodal travel—comprising walking, metro, bus, cycling, and ride-hailing—is essential for promoting sustainable urban mobility. However, most existing studies focus on single-mode travel, while underlying spatiotemporal and behavioral determinants remain insufficiently explored due to the lack of fine-grained data [...] Read more.
Understanding the carbon emissions of multimodal travel—comprising walking, metro, bus, cycling, and ride-hailing—is essential for promoting sustainable urban mobility. However, most existing studies focus on single-mode travel, while underlying spatiotemporal and behavioral determinants remain insufficiently explored due to the lack of fine-grained data and interpretable analytical frameworks. This study proposes a novel integration of high-frequency, real-world mobility trajectory data with interpretable machine learning to systematically identify the key drivers of carbon emissions at the individual trip level. Firstly, multimodal travel chains are reconstructed using continuous GPS trajectory data collected in Beijing. Secondly, a model based on Calculate Emissions from Road Transport (COPERT) is developed to quantify trip-level CO2 emissions. Thirdly, four interpretable machine learning models based on gradient boosting—XGBoost, GBDT, LightGBM, and CatBoost—are trained using transportation and built environment features to model the relationship between CO2 emissions and a set of explanatory variables; finally, Shapley Additive exPlanations (SHAP) and partial dependence plots (PDPs) are used to interpret the model outputs, revealing key determinants and their non-linear interaction effects. The results show that transportation-related features account for 75.1% of the explained variance in emissions, with bus usage being the most influential single factor (contributing 22.6%). Built environment features explain the remaining 24.9%. The PDP analysis reveals that substantial emission reductions occur only when the shares of bus, metro, and cycling surpass threshold levels of approximately 40%, 40%, and 30%, respectively. Additionally, travel carbon emissions are minimized when trip origins and destinations are located within a 10 to 11 km radius of the central business district (CBD). This study advances the field by establishing a scalable, interpretable, and behaviorally grounded framework to assess carbon emissions from multimodal travel, providing actionable insights for low-carbon transport planning and policy design. Full article
(This article belongs to the Special Issue Sustainable Transportation Systems and Travel Behaviors)
Show Figures

Figure 1

22 pages, 14160 KiB  
Article
Commute Networks as a Signature of Urban Socioeconomic Performance: Evaluating Mobility Structures with Deep Learning Models
by Devashish Khulbe, Alexander Belyi and Stanislav Sobolevsky
Smart Cities 2025, 8(4), 125; https://doi.org/10.3390/smartcities8040125 - 29 Jul 2025
Viewed by 205
Abstract
Urban socioeconomic modeling has predominantly concentrated on extensive location and neighborhood-based features, relying on the localized population footprint. However, networks in urban systems are common, and many urban modeling methods do not account for network-based effects. Additionally, network-based research has explored a multitude [...] Read more.
Urban socioeconomic modeling has predominantly concentrated on extensive location and neighborhood-based features, relying on the localized population footprint. However, networks in urban systems are common, and many urban modeling methods do not account for network-based effects. Additionally, network-based research has explored a multitude of data from urban landscapes. However, achieving a comprehensive understanding of urban mobility proves challenging without exhaustive datasets. In this study, we propose using commute information records from the census as a reliable and comprehensive source to construct mobility networks across cities. Leveraging deep learning architectures, we employ these commute networks across U.S. metro areas for socioeconomic modeling. We show that mobility network structures provide significant predictive performance without considering any node features. Consequently, we use mobility networks to present a supervised learning framework to model a city’s socioeconomic indicator directly, combining Graph Neural Network and Vanilla Neural Network models to learn all parameters in a single learning pipeline. In experiments in 12 major U.S. cities, the proposed model achieves considerable explanatory performance and is able to outperform previous conventional machine learning models based on extensive regional-level features. Providing researchers with methods to incorporate network effects in urban modeling, this work also informs stakeholders of wider network-based effects in urban policymaking and planning. Full article
Show Figures

Figure 1

20 pages, 3170 KiB  
Article
Sensorless SPMSM Control for Heavy Handling Machines Electrification: An Innovative Proposal
by Marco Bassani, Andrea Toscani and Carlo Concari
Energies 2025, 18(15), 4021; https://doi.org/10.3390/en18154021 - 28 Jul 2025
Viewed by 233
Abstract
The electrification of road vehicles is a relatively mature sector, while other areas of mobility, such as construction machinery, are just beginning their transition to electric solutions. This work presents the design and realization of an integrated drive system specifically developed for retrofitting [...] Read more.
The electrification of road vehicles is a relatively mature sector, while other areas of mobility, such as construction machinery, are just beginning their transition to electric solutions. This work presents the design and realization of an integrated drive system specifically developed for retrofitting fan drives in heavy machinery, like bulldozers and tractors, utilizing existing 48 VDC batteries. By replacing or complementing internal combustion and hydraulic technologies with electric solutions, significant advantages in efficiency, reduced environmental impact, and versatility can be achieved. Focusing on the fan drive system addresses the critical challenge of thermal management in high ambient temperatures and harsh environments, particularly given the high current requirements for 3kW-class applications. A sensorless architecture has been selected to enhance reliability by eliminating mechanical position sensors. The developed fan drive has been extensively tested both on a braking bench and in real-world applications, demonstrating its effectiveness and robustness. Future work will extend this prototype to electrify additional onboard hydraulic motors in these machines, further advancing the electrification of heavy-duty equipment and improving overall efficiency and environmental impact. Full article
(This article belongs to the Special Issue Electronics for Energy Conversion and Renewables)
Show Figures

Figure 1

22 pages, 5960 KiB  
Article
Application of Integrated Geospatial Analysis and Machine Learning in Identifying Factors Affecting Ride-Sharing Before/After the COVID-19 Pandemic
by Afshin Allahyari and Farideddin Peiravian
ISPRS Int. J. Geo-Inf. 2025, 14(8), 291; https://doi.org/10.3390/ijgi14080291 - 28 Jul 2025
Viewed by 222
Abstract
Ride-pooling, as a sustainable mode of ride-hailing services, enables different riders to share a vehicle while traveling along similar routes. The COVID-19 pandemic led to the suspension of this service, but Transportation Network Companies (TNCs) such as Uber and Lyft resumed it after [...] Read more.
Ride-pooling, as a sustainable mode of ride-hailing services, enables different riders to share a vehicle while traveling along similar routes. The COVID-19 pandemic led to the suspension of this service, but Transportation Network Companies (TNCs) such as Uber and Lyft resumed it after a significant delay following the lockdown. This raises the question of what determinants shape ride-pooling in the post-pandemic era and how they spatially influence shared ride-hailing compared to the pre-pandemic period. To address this gap, this study employs geospatial analysis and machine learning to examine the factors affecting ride-pooling trips in pre- and post-pandemic periods. Using over 66 million trip records from 2019 and 43 million from 2023, we observe a significant decline in shared trip adoption, from 16% to 2.91%. The results of an extreme gradient boosting (XGBoost) model indicate a robust capture of non-linear relationships. The SHAP analysis reveals that the percentage of the non-white population is the dominant predictor in both years, although its influence weakened post-pandemic, with a breakpoint shift from 78% to 90%, suggesting reduced sharing in mid-range minority areas. Crime density and lower car ownership consistently correlate with higher sharing rates, while dense, transit-rich areas exhibit diminished reliance on shared trips. Our findings underscore the critical need to enhance transportation integration in underserved communities. Concurrently, they highlight the importance of encouraging shared ride adoption in well-served, high-demand areas where solo ride-hailing is prevalent. We believe these results can directly inform policies that foster more equitable, cost-effective, and sustainable shared mobility systems in the post-pandemic landscape. Full article
Show Figures

Figure 1

22 pages, 599 KiB  
Review
Pediatric Echocardiographic Nomograms: Twenty Years of Advances—Do We Now Have a Complete and Reliable Tool, or Are Gaps Still Present? An Up-to-Date Review
by Massimiliano Cantinotti, Pietro Marchese, Guglielmo Capponi, Eliana Franchi, Giuseppe Santoro, Alessandra Pizzuto, Nadia Assanta and Raffaele Giordano
J. Clin. Med. 2025, 14(15), 5215; https://doi.org/10.3390/jcm14155215 - 23 Jul 2025
Viewed by 246
Abstract
Echocardiography is the primary imaging modality for diagnosing cardiac disease in children, with quantitation largely based on nomograms. Over the past decade, significant efforts have been made to address the numerical and methodological limitations of earlier nomograms. As a result, robust and reliable [...] Read more.
Echocardiography is the primary imaging modality for diagnosing cardiac disease in children, with quantitation largely based on nomograms. Over the past decade, significant efforts have been made to address the numerical and methodological limitations of earlier nomograms. As a result, robust and reliable pediatric echocardiographic nomograms are now available for most two-dimensional anatomical measurements, three-dimensional volumes, and strain parameters. These more recent nomograms are based on adequate sample sizes, strict inclusion and exclusion criteria, and rigorous statistical methodologies. They have demonstrated good reproducibility with minimal differences across different authors, establishing them as reliable diagnostic tools. Despite these advances, some limitations persist. Certain ethnic groups remain underrepresented, and data for preterm and low-weight infants are still limited. Most existing nomograms are derived from European and North American populations, with sparse data from Asia and very limited data from Africa and South America. Nomograms for preterm and low-weight infants are few and cover only selected cardiac structures. Although diastolic parameter nomograms are available, the data remain heterogeneous due to challenges in normalizing functional parameters according to age and body size. The accessibility of current nomograms has greatly improved with the development of online calculators and mobile applications. Ideally, integration of nomograms into echocardiographic machines and reporting systems should be pursued. Future studies are needed to develop broader, more comprehensive, and multi-ethnic nomograms, with better representation of preterm and low-weight populations, and to validate new parameters derived from emerging three- and four-dimensional echocardiographic techniques. Full article
(This article belongs to the Special Issue Thoracic Imaging in Cardiovascular and Pulmonary Disease Diagnosis)
Show Figures

Figure 1

29 pages, 7403 KiB  
Article
Development of Topologically Optimized Mobile Robotic System with Machine Learning-Based Energy-Efficient Path Planning Structure
by Hilmi Saygin Sucuoglu
Machines 2025, 13(8), 638; https://doi.org/10.3390/machines13080638 - 22 Jul 2025
Viewed by 387
Abstract
This study presents the design and development of a structurally optimized mobile robotic system with a machine learning-based energy-efficient path planning framework. Topology optimization (TO) and finite element analysis (FEA) were applied to reduce structural weight while maintaining mechanical integrity. The optimized components [...] Read more.
This study presents the design and development of a structurally optimized mobile robotic system with a machine learning-based energy-efficient path planning framework. Topology optimization (TO) and finite element analysis (FEA) were applied to reduce structural weight while maintaining mechanical integrity. The optimized components were manufactured using Fused Deposition Modeling (FDM) with ABS (Acrylonitrile Butadiene Styrene) material. A custom power analysis tool was developed to compare energy consumption between the optimized and initial designs. Real-world current consumption data were collected under various terrain conditions, including inclined surfaces, vibration-inducing obstacles, gravel, and direction-altering barriers. Based on this dataset, a path planning model was developed using machine learning algorithms, capable of simultaneously optimizing both energy efficiency and path length to reach a predefined target. Unlike prior works that focus separately on structural optimization or learning-based navigation, this study integrates both domains within a single real-world robotic platform. Performance evaluations demonstrated superior results compared to traditional planning methods, which typically optimize distance or energy independently and lack real-time consumption feedback. The proposed framework reduces total energy consumption by 5.8%, cuts prototyping time by 56%, and extends mission duration by ~20%, highlighting the benefits of jointly applying TO and ML for sustainable and energy-aware robotic design. This integrated approach addresses a critical gap in the literature by demonstrating that mechanical light-weighting and intelligent path planning can be co-optimized in a deployable robotic system using empirical energy data. Full article
(This article belongs to the Special Issue Design and Manufacturing: An Industry 4.0 Perspective)
Show Figures

Figure 1

18 pages, 1587 KiB  
Article
Management of Mobile Resonant Electrical Systems for High-Voltage Generation in Non-Destructive Diagnostics of Power Equipment Insulation
by Anatolii Shcherba, Dmytro Vinnychenko, Nataliia Suprunovska, Sergy Roziskulov, Artur Dyczko and Roman Dychkovskyi
Electronics 2025, 14(15), 2923; https://doi.org/10.3390/electronics14152923 - 22 Jul 2025
Viewed by 219
Abstract
This research presents the development and management principles of mobile resonant electrical systems designed for high-voltage generation, intended for non-destructive diagnostics of insulation in high-power electrical equipment. The core of the system is a series inductive–capacitive (LC) circuit characterized by a high quality [...] Read more.
This research presents the development and management principles of mobile resonant electrical systems designed for high-voltage generation, intended for non-destructive diagnostics of insulation in high-power electrical equipment. The core of the system is a series inductive–capacitive (LC) circuit characterized by a high quality (Q) factor and operating at high frequencies, typically in the range of 40–50 kHz or higher. Practical implementations of the LC circuit with Q-factors exceeding 200 have been achieved using advanced materials and configurations. Specifically, ceramic capacitors with a capacitance of approximately 3.5 nF and Q-factors over 1000, in conjunction with custom-made coils possessing Q-factors above 280, have been employed. These coils are constructed using multi-core, insulated, and twisted copper wires of the Litzendraht type to minimize losses at high frequencies. Voltage amplification within the system is effectively controlled by adjusting the current frequency, thereby maximizing voltage across the load without increasing the system’s size or complexity. This frequency-tuning mechanism enables significant reductions in the weight and dimensional characteristics of the electrical system, facilitating the development of compact, mobile installations. These systems are particularly suitable for on-site testing and diagnostics of high-voltage insulation in power cables, large rotating machines such as turbogenerators, and other critical infrastructure components. Beyond insulation diagnostics, the proposed system architecture offers potential for broader applications, including the charging of capacitive energy storage units used in high-voltage pulse systems. Such applications extend to the synthesis of micro- and nanopowders with tailored properties and the electrohydropulse processing of materials and fluids. Overall, this research demonstrates a versatile, efficient, and portable solution for advanced electrical diagnostics and energy applications in the high-voltage domain. Full article
(This article belongs to the Special Issue Energy Harvesting and Energy Storage Systems, 3rd Edition)
Show Figures

Figure 1

4 pages, 243 KiB  
Proceeding Paper
Development of High-Speed Rail Demand Forecasting Incorporating Multi-Station Access Probabilities
by Seo-Young Hong and Ho-Chul Park
Eng. Proc. 2025, 102(1), 2; https://doi.org/10.3390/engproc2025102002 - 22 Jul 2025
Viewed by 158
Abstract
This study develops a high-speed rail demand prediction model based on access probability, which quantifies the likelihood of passengers choosing a departure station among multiple alternatives. Traditional models assign demand to the nearest station or rely on manual calibration, often failing to reflect [...] Read more.
This study develops a high-speed rail demand prediction model based on access probability, which quantifies the likelihood of passengers choosing a departure station among multiple alternatives. Traditional models assign demand to the nearest station or rely on manual calibration, often failing to reflect actual travel behavior and requiring excessive time and resources. To address these limitations, this study integrates survey data, real-world datasets, and machine learning techniques to model station choice behavior more accurately. Key influencing factors, including headway, access time, parking availability, and transit connections, were identified through passenger surveys and incorporated into the model. Machine learning algorithms improved prediction accuracy, with SHAP analysis providing interpretability. The proposed model achieved high accuracy, with an average error rate below 3% for major stations. Scenario analyses confirmed its applicability in network expansions, including GTX openings and the integration of mobility as a service. This model enhances data-driven decision-making for rail operators and offers insights for rail network planning and operations. Future research will focus on validating the model across diverse regions and refining it with updated datasets and external data sources. Full article
Show Figures

Figure 1

25 pages, 5055 KiB  
Article
FlickPose: A Hand Tracking-Based Text Input System for Mobile Users Wearing Smart Glasses
by Ryo Yuasa and Katashi Nagao
Appl. Sci. 2025, 15(15), 8122; https://doi.org/10.3390/app15158122 - 22 Jul 2025
Viewed by 331
Abstract
With the growing use of head-mounted displays (HMDs) such as smart glasses, text input remains a challenge, especially in mobile environments. Conventional methods like physical keyboards, voice recognition, and virtual keyboards each have limitations—physical keyboards lack portability, voice input has privacy concerns, and [...] Read more.
With the growing use of head-mounted displays (HMDs) such as smart glasses, text input remains a challenge, especially in mobile environments. Conventional methods like physical keyboards, voice recognition, and virtual keyboards each have limitations—physical keyboards lack portability, voice input has privacy concerns, and virtual keyboards struggle with accuracy due to a lack of tactile feedback. FlickPose is a novel text input system designed for smart glasses and mobile HMD users, integrating flick-based input and hand pose recognition. It features two key selection methods: the touch-panel method, where users tap a floating UI panel to select characters, and the raycast method, where users point a virtual ray from their wrist and confirm input via a pinch motion. FlickPose uses five left-hand poses to select characters. A machine learning model trained for hand pose recognition outperforms Random Forest and LightGBM models in accuracy and consistency. FlickPose was tested against the standard virtual keyboard of Meta Quest 3 in three tasks (hiragana, alphanumeric, and kanji input). Results showed that raycast had the lowest error rate, reducing unintended key presses; touch-panel had more deletions, likely due to misjudgments in key selection; and frequent HMD users preferred raycast, as it maintained input accuracy while allowing users to monitor their text. A key feature of FlickPose is adaptive tracking, which ensures the keyboard follows user movement. While further refinements in hand pose recognition are needed, the system provides an efficient, mobile-friendly alternative for HMD text input. Future research will explore real-world application compatibility and improve usability in dynamic environments. Full article
(This article belongs to the Special Issue Extended Reality (XR) and User Experience (UX) Technologies)
Show Figures

Figure 1

22 pages, 2015 KiB  
Article
Using Sentiment Analysis to Study the Potential for Improving Sustainable Mobility in University Campuses
by Ewerton Chaves Moreira Torres and Luís Guilherme de Picado-Santos
Sustainability 2025, 17(14), 6645; https://doi.org/10.3390/su17146645 - 21 Jul 2025
Viewed by 262
Abstract
This study investigates public perceptions of sustainable mobility within university environments, which are important trip generation hubs with the potential to influence and disseminate sustainable mobility behaviors. Using sentiment analysis on 120,236 tweets from São Paulo, Rio de Janeiro, Lisbon, and Porto, tweets [...] Read more.
This study investigates public perceptions of sustainable mobility within university environments, which are important trip generation hubs with the potential to influence and disseminate sustainable mobility behaviors. Using sentiment analysis on 120,236 tweets from São Paulo, Rio de Janeiro, Lisbon, and Porto, tweets were classified into positive, neutral, and negative sentiments to assess perceptions across transport modes. It was hypothesized that universities would exhibit more positive sentiment toward active and public transport modes compared to perceptions of these modes within the broader city environment. Results show that active modes and public transport consistently receive higher positive sentiment rates than individual motorized modes, and, considering the analyzed contexts, universities demonstrate either similar (São Paulo) or more positive perceptions compared to the overall sentiment observed in the city (Rio de Janeiro, Lisbon, and Porto). Chi-square tests confirmed significant associations between transport mode and sentiment distribution. An exploratory analysis using topic modeling revealed that perceptions around bicycle use are linked to themes of safety, cycling infrastructure, and bike sharing. The findings highlight opportunities to promote sustainable mobility in universities by leveraging user sentiment while acknowledging limitations such as demographic bias in social media data and potential misclassification. This study advances data-driven methods to support targeted strategies for increasing active and public transport in university settings. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

31 pages, 4435 KiB  
Article
A Low-Cost IoT Sensor and Preliminary Machine-Learning Feasibility Study for Monitoring In-Cabin Air Quality: A Pilot Case from Almaty
by Nurdaulet Tasmurzayev, Bibars Amangeldy, Gaukhar Smagulova, Zhanel Baigarayeva and Aigerim Imash
Sensors 2025, 25(14), 4521; https://doi.org/10.3390/s25144521 - 21 Jul 2025
Viewed by 438
Abstract
The air quality within urban public transport is a critical determinant of passenger health. In the crowded and poorly ventilated cabins of Almaty’s metro, buses, and trolleybuses, concentrations of CO2 and PM2.5 often accumulate, elevating the risk of respiratory and cardiovascular [...] Read more.
The air quality within urban public transport is a critical determinant of passenger health. In the crowded and poorly ventilated cabins of Almaty’s metro, buses, and trolleybuses, concentrations of CO2 and PM2.5 often accumulate, elevating the risk of respiratory and cardiovascular diseases. This study investigates the air quality along three of the city’s busiest transport corridors, analyzing how the concentrations of CO2, PM2.5, and PM10, as well as the temperature and relative humidity, fluctuate with the passenger density and time of day. Continuous measurements were collected using the Tynys mobile IoT device, which was bench-calibrated against a commercial reference sensor. Several machine learning models (logistic regression, decision tree, XGBoost, and random forest) were trained on synchronized environmental and occupancy data, with the XGBoost model achieving the highest predictive accuracy at 91.25%. Our analysis confirms that passenger occupancy is the primary driver of in-cabin pollution and that these machine learning models effectively capture the nonlinear relationships among environmental variables. Since the surveyed routes serve Almaty’s most densely populated districts, improving the ventilation on these lines is of immediate importance to public health. Furthermore, the high-temporal-resolution data revealed short-term pollution spikes that correspond with peak ridership, advancing the current understanding of exposure risks in transit. These findings highlight the urgent need to combine real-time monitoring with ventilation upgrades. They also demonstrate the practical value of using low-cost IoT technologies and data-driven analytics to safeguard public health in urban mobility systems. Full article
(This article belongs to the Special Issue IoT-Based Sensing Systems for Urban Air Quality Forecasting)
Show Figures

Figure 1

19 pages, 7168 KiB  
Article
MTD-YOLO: An Improved YOLOv8-Based Rice Pest Detection Model
by Feng Zhang, Chuanzhao Tian, Xuewen Li, Na Yang, Yanting Zhang and Qikai Gao
Electronics 2025, 14(14), 2912; https://doi.org/10.3390/electronics14142912 - 21 Jul 2025
Viewed by 275
Abstract
The impact of insect pests on the yield and quality of rice is extremely significant, and accurate detection of insect pests is of crucial significance to safeguard rice production. However, traditional manual inspection methods are inefficient and subjective, while existing machine learning-based approaches [...] Read more.
The impact of insect pests on the yield and quality of rice is extremely significant, and accurate detection of insect pests is of crucial significance to safeguard rice production. However, traditional manual inspection methods are inefficient and subjective, while existing machine learning-based approaches still suffer from limited generalization and suboptimal accuracy. To address these challenges, this study proposes an improved rice pest detection model, MTD-YOLO, based on the YOLOv8 framework. First, the original backbone is replaced with MobileNetV3, which leverages optimized depthwise separable convolutions and the Hard-Swish activation function through neural architecture search, effectively reducing parameters while maintaining multiscale feature extraction capabilities. Second, a Cross Stage Partial module with Triplet Attention (C2f-T) module incorporating Triplet Attention is introduced to enhance the model’s focus on infested regions via a channel-patial dual-attention mechanism. In addition, a Dynamic Head (DyHead) is introduced to adaptively focus on pest morphological features using the scale–space–task triple-attention mechanism. The experiments were conducted using two datasets, Rice Pest1 and Rice Pest2. On Rice Pest1, the model achieved a precision of 92.5%, recall of 90.1%, mAP@0.5 of 90.0%, and mAP@[0.5:0.95] of 67.8%. On Rice Pest2, these metrics improved to 95.6%, 92.8%, 96.6%, and 82.5%, respectively. The experimental results demonstrate the high accuracy and efficiency of the model in the rice pest detection task, providing strong support for practical applications. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

26 pages, 3468 KiB  
Article
A Hybrid CNN–BiLSTM Framework Optimized with Bayesian Search for Robust Android Malware Detection
by Ibrahim Mutambik
Systems 2025, 13(7), 612; https://doi.org/10.3390/systems13070612 - 19 Jul 2025
Viewed by 359
Abstract
With the rapid proliferation of Android smartphones, mobile malware threats have escalated significantly, underscoring the need for more accurate and adaptive detection solutions. This work proposes an innovative deep learning hybrid model that combines Convolutional Neural Networks (CNNs) with Bidirectional Long Short-Term Memory [...] Read more.
With the rapid proliferation of Android smartphones, mobile malware threats have escalated significantly, underscoring the need for more accurate and adaptive detection solutions. This work proposes an innovative deep learning hybrid model that combines Convolutional Neural Networks (CNNs) with Bidirectional Long Short-Term Memory (BiLSTM) networks for learning both local features and sequential behavior in Android applications. To improve the relevance and clarity of the input data, Mutual Information is applied for feature selection, while Bayesian Optimization is adopted to efficiently optimize the model’s parameters. The designed system is tested on standard Android malware datasets and achieves an impressive detection accuracy of 99.3%, clearly outperforming classical approaches such as Support Vector Machines (SVMs), Random Forest, CNN, and Naive Bayes. Moreover, it delivers strong outcomes across critical evaluation metrics like F1-score and ROC-AUC. These findings confirm the framework’s high efficiency, adaptability, and practical applicability, making it a compelling solution for Android malware detection in today’s evolving threat landscape. Full article
(This article belongs to the Special Issue Cyber Security Challenges in Complex Systems)
Show Figures

Figure 1

33 pages, 2299 KiB  
Review
Edge Intelligence in Urban Landscapes: Reviewing TinyML Applications for Connected and Sustainable Smart Cities
by Athanasios Trigkas, Dimitrios Piromalis and Panagiotis Papageorgas
Electronics 2025, 14(14), 2890; https://doi.org/10.3390/electronics14142890 - 19 Jul 2025
Viewed by 448
Abstract
Tiny Machine Learning (TinyML) extends edge AI capabilities to resource-constrained devices, offering a promising solution for real-time, low-power intelligence in smart cities. This review systematically analyzes 66 peer-reviewed studies from 2019 to 2024, covering applications across urban mobility, environmental monitoring, public safety, waste [...] Read more.
Tiny Machine Learning (TinyML) extends edge AI capabilities to resource-constrained devices, offering a promising solution for real-time, low-power intelligence in smart cities. This review systematically analyzes 66 peer-reviewed studies from 2019 to 2024, covering applications across urban mobility, environmental monitoring, public safety, waste management, and infrastructure health. We examine hardware platforms and machine learning models, with particular attention to power-efficient deployment and data privacy. We review the approaches employed in published studies for deploying machine learning models on resource-constrained hardware, emphasizing the most commonly used communication technologies—while noting the limited uptake of low-power options such as Low Power Wide Area Networks (LPWANs). We also discuss hardware–software co-design strategies that enable sustainable operation. Furthermore, we evaluate the alignment of these deployments with the United Nations Sustainable Development Goals (SDGs), highlighting both their contributions and existing gaps in current practices. This review identifies recurring technical patterns, methodological challenges, and underexplored opportunities, particularly in the areas of hardware provisioning, usage of inherent privacy benefits in relevant applications, communication technologies, and dataset practices, offering a roadmap for future TinyML research and deployment in smart urban systems. Among the 66 studies examined, 29 focused on mobility and transportation, 17 on public safety, 10 on environmental sensing, 6 on waste management, and 4 on infrastructure monitoring. TinyML was deployed on constrained microcontrollers in 32 studies, while 36 used optimized models for resource-limited environments. Energy harvesting, primarily solar, was featured in 6 studies, and low-power communication networks were used in 5. Public datasets were used in 27 studies, custom datasets in 24, and the remainder relied on hybrid or simulated data. Only one study explicitly referenced SDGs, and 13 studies considered privacy in their system design. Full article
(This article belongs to the Special Issue New Advances in Embedded Software and Applications)
Show Figures

Figure 1

27 pages, 90509 KiB  
Article
A Phishing Software Detection Approach Based on R-Tree and the Analysis of the Edge of Stability Phenomenon
by Licheng Ao, Yifeng Lin and Yuer Yang
Electronics 2025, 14(14), 2862; https://doi.org/10.3390/electronics14142862 - 17 Jul 2025
Viewed by 317
Abstract
With the rapid development of science and technology, attackers have invented more and more ways to hide malicious information. Hidden malicious information often contains a large number of malicious codes and malicious scripts, which can be hidden in legitimate software and reconstructed to [...] Read more.
With the rapid development of science and technology, attackers have invented more and more ways to hide malicious information. Hidden malicious information often contains a large number of malicious codes and malicious scripts, which can be hidden in legitimate software and reconstructed to be executed as the software is executed. In recent years, phishing software has become popular at home and abroad, causing fraud to occur frequently. Among various carriers with high redundancy, images are often used by attackers to hide malicious information because they are often used as information transmission carriers and highly redundant storage. This paper aims to explore how attackers hide malicious information in images and use a convolutional neural network (CNN) framework with acceleration based on the analysis of the Edge of Stability (EOS) phenomenon to detect mobile phishing software. To design a machine learning approach to solve the problem, we summarize the characteristics of nine presented mainstream malicious information hiding methods and present a CNN framework that maintains a high initial learning rate while preventing the gradient from exploding in EOS. R-tree is used to speed up the search for nearby pixels that contain malicious information. The CNN model generated by training under this framework can reach an accuracy of 98.53% and has been well implemented in mobile terminals. Full article
(This article belongs to the Special Issue Machine Learning Approaches for Natural Language Processing)
Show Figures

Figure 1

Back to TopTop