Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,921)

Search Parameters:
Keywords = mixture distributions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1728 KB  
Article
Co-Spray-Dried Macitentan–Tadalafil with Leucine Microparticles for Inhalable Delivery in Pulmonary Arterial Hypertension
by Chang-Soo Han, Jin-Hyuk Jeong, Hyeon Woo Moon, Yechan Song and Chun-Woong Park
Pharmaceutics 2026, 18(2), 155; https://doi.org/10.3390/pharmaceutics18020155 (registering DOI) - 25 Jan 2026
Abstract
Background/Objectives: This study developed a macitentan (MAC)–tadalafil (TAD) dry powder inhalation preparation using suspension-based spray drying to enhance pulmonary delivery and reduce systemic exposure to oral combination therapy in patients with pulmonary arterial hypertension (PAH). Methods: MAC–TAD composite powders were prepared [...] Read more.
Background/Objectives: This study developed a macitentan (MAC)–tadalafil (TAD) dry powder inhalation preparation using suspension-based spray drying to enhance pulmonary delivery and reduce systemic exposure to oral combination therapy in patients with pulmonary arterial hypertension (PAH). Methods: MAC–TAD composite powders were prepared by physically mixing or spray-drying aqueous ethanol suspensions at various MAC:TAD ratios. The lead M2-T8 was co-spray-dried with 5, 25, or 50% (w/w) L-leucine. Results: Spray-dried formulations exhibited narrower and more uniform particle size distributions (Dv50 2–6 µm; Dv90~10 µm) and higher emitted dose values than the physical mixtures. In the M2-T8 spray-dried formulation, TAD exhibited an elevated fine particle dose (FPD) (3073.45 ± 1312.30 μg), demonstrating improved aerosolization relative to the physical mixture, even outperforming the TAD-higher M1-T9 formulation (2896.83 ± 531.38 μg), suggesting that favorable interparticle adhesive interactions were developed during co-drying. The incorporation of 25% L-leucine produced the greatest improvement in dispersibility, increasing the FPD by ~31% for MAC and 17% for TAD, whereas excessive L-leucine (50%) reduced the aerosol performance. Powder X-ray diffraction and differential scanning calorimetry confirmed the retention of the MAC and TAD crystallinities, with L-leucine remaining either amorphous or partially crystalline. Conclusions: Suspension-based spray drying yielded MAC–TAD composite formulations with improved uniformity and aerosol performance. The optimized 2:8 formulation containing 25% L-leucine demonstrated the most efficient pulmonary deposition, supporting its potential as an inhaled combination therapy for the treatment of PAH. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

30 pages, 12207 KB  
Article
Automatic Identification and Segmentation of Diffuse Aurora from Untrimmed All-Sky Auroral Videos
by Qian Wang, Peiqi Hao and Han Pan
Remote Sens. 2026, 18(3), 402; https://doi.org/10.3390/rs18030402 (registering DOI) - 25 Jan 2026
Abstract
Diffuse aurora is a widespread and long-lasting auroral emission that plays an important role in diagnosing magnetosphere-ionosphere coupling and magnetospheric plasma transport. Despite its scientific significance, diffuse aurora remains challenging to identify automatically in all-sky imager (ASI) observations due to its weak optical [...] Read more.
Diffuse aurora is a widespread and long-lasting auroral emission that plays an important role in diagnosing magnetosphere-ionosphere coupling and magnetospheric plasma transport. Despite its scientific significance, diffuse aurora remains challenging to identify automatically in all-sky imager (ASI) observations due to its weak optical intensity, indistinct boundaries, and gradual temporal evolution. These characteristics, together with frequent cloud contamination, limit the effectiveness of conventional keogram-based or morphology-driven detection approaches and hinder large-scale statistical analyses based on long-term optical datasets. In this study, we propose an automated framework for the identification and temporal segmentation of diffuse aurora from untrimmed all-sky auroral videos. The framework consists of a frame-level coarse identification module that combines weak morphological information with inter-frame temporal dynamics to detect candidate diffuse-auroral intervals, and a snippet-level segmentation module that dynamically aggregates temporal information to capture the characteristic gradual onset-plateau-decay evolution of diffuse aurora. Bidirectional temporal modeling is employed to improve boundary localization, while an adaptive mixture-of-experts mechanism reduces redundant temporal variations and enhances discriminative features relevant to diffuse emission. The proposed method is evaluated using multi-year 557.7 nm ASI observations acquired at the Arctic Yellow River Station. Quantitative experiments demonstrate state-of-the-art performance, achieving 96.3% frame-wise accuracy and an Edit score of 87.7%. Case studies show that the method effectively distinguishes diffuse aurora from cloud-induced pseudo-diffuse structures and accurately resolves gradual transition boundaries that are ambiguous in keograms. Based on the automated identification results, statistical distributions of diffuse aurora occurrence, duration, and diurnal variation are derived from continuous observations spanning 2003–2009. The proposed framework enables robust and fully automated processing of large-scale all-sky auroral images, providing a practical tool for remote sensing-based auroral monitoring and supporting objective statistical studies of diffuse aurora and related magnetospheric processes. Full article
Show Figures

Figure 1

27 pages, 4135 KB  
Article
The Model and Burner Development for Crude Glycerol and Used Vegetable Mixing: Cube Mushroom Steaming Oven
by Anumut Siricharoenpanich, Paramust Juntarakod and Paisarn Naphon
Eng 2026, 7(2), 56; https://doi.org/10.3390/eng7020056 (registering DOI) - 25 Jan 2026
Abstract
Reducing fuel costs, maximizing waste utilization, and improving energy efficiency are critical challenges in agricultural thermal processes. This study addresses these issues by developing and evaluating a mixed-fuel burner and furnace system for steaming mushroom substrate cubes using crude glycerol and recycled vegetable [...] Read more.
Reducing fuel costs, maximizing waste utilization, and improving energy efficiency are critical challenges in agricultural thermal processes. This study addresses these issues by developing and evaluating a mixed-fuel burner and furnace system for steaming mushroom substrate cubes using crude glycerol and recycled vegetable oil as low-cost alternative energy sources. The experimental investigation assessed boiler thermal efficiency, combustion efficiency, exhaust-gas composition, temperature distribution, steam generation, and combustion-gas dispersion within the furnace. In parallel, analytical modeling of pressure, temperature, and gas-flow behavior was performed to validate the experimental observations. Five fuel compositions were examined, including 100% used vegetable oil, 100% crude glycerol, and blended ratios of 50/50, 25/75, and 10/90 (glycerol/vegetable oil), with all tests conducted in accordance with DIN EN 203-1 standards. The results demonstrate that blending used vegetable oil with glycerol significantly improves flame stability, increases peak combustion temperatures, and suppresses incomplete-combustion byproducts compared with pure glycerol operation. Combustion efficiencies of 90–99% and boiler thermal efficiencies of 72–73% were achieved. Among the tested fuels, the optimal balance between combustion stability, efficiency, and cost was achieved with a 25% glycerol and 75% used vegetable oil mixture. Economic analysis revealed that the proposed mixed-fuel system offers superior viability compared with LPG, reducing annual fuel costs by approximately 50%, shortening steaming time by 2 h per batch, and achieving a payback period of only 3.26 months. These findings confirm the feasibility of the proposed waste-to-energy system for small- and medium-scale agricultural applications. To further enhance sustainability and renewable fuel utilization, future work should focus on improving air–fuel mixing for higher glycerol fractions, scaling the system for larger farms, and extending its application to other agricultural thermal processes. Full article
45 pages, 12136 KB  
Article
GUMM-HMRF: A Fine Point Cloud Segmentation Method for Junction Regions of Hull Structures
by Yuchao Han, Fei Peng, Zhong Wang and Qingxu Meng
J. Mar. Sci. Eng. 2026, 14(3), 246; https://doi.org/10.3390/jmse14030246 (registering DOI) - 24 Jan 2026
Abstract
Fine segmentation of point clouds in hull structure junction regions is a key technology for achieving high-precision digital inspection. Conventional hard-segmentation methods frequently yield over- or under-segmentation in junction regions such as welds, compromising the reliability of subsequent inspections. This study presents a [...] Read more.
Fine segmentation of point clouds in hull structure junction regions is a key technology for achieving high-precision digital inspection. Conventional hard-segmentation methods frequently yield over- or under-segmentation in junction regions such as welds, compromising the reliability of subsequent inspections. This study presents a computational framework that combines the Gaussian-Uniform Mixture Model (GUMM) with the Hidden Markov Random Field (HMRF) and follows a “coarse segmentation–model construction–fine segmentation” pipeline. The framework jointly optimizes the sampling model, the probabilistic model, and the expectation–maximization (EM) inference procedure. By leveraging model simplification and dimensionality reduction, the algorithm simultaneously addresses initial value estimation, spatial distribution characterization, and continuity constraints. Experiments on representative structures, including wall corner, T-joint weld, groove, and flange, show that the proposed framework outperforms the conventional GMM-EM method by approximately 2.5% in precision and 1.5% in both accuracy and F1 score. In local segmentation tasks of complex hull structures, the method achieves a deviation of less than 0.2 mm relative to manual measurements, validating its practical utility in engineering contexts. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

28 pages, 12747 KB  
Article
Full-Scale Pore Structure and Multi-Scale Fractal Characteristics of the Wufeng–Longmaxi Formations Shales in Sichuan Basin, China
by Taotao Cao, Wenqing Yuan, Jiacheng Zeng, Anyang Pan, Wenquan Xie, Jing Liao, Gaofei Ning and Ye Chen
Fractal Fract. 2026, 10(2), 75; https://doi.org/10.3390/fractalfract10020075 (registering DOI) - 23 Jan 2026
Viewed by 23
Abstract
Unique fractal characteristics are significantly controlled by shale lithofacies, mineralogical characteristics, and OM features, which in turn determine reservoir properties and gas-bearing capacity. However, a comprehensive understanding of fractal features has remained insufficient. This study presents a systematic investigation into the full-scale pore [...] Read more.
Unique fractal characteristics are significantly controlled by shale lithofacies, mineralogical characteristics, and OM features, which in turn determine reservoir properties and gas-bearing capacity. However, a comprehensive understanding of fractal features has remained insufficient. This study presents a systematic investigation into the full-scale pore size distribution for the Wufeng–Longmaxi shales in Sichuan Basin which employed low-pressure CO2 adsorption (CO2GA), N2 adsorption (N2GA), and mercury injection capillary pressure (MICP), as well as field emission scanning electron microscope (FE-SEM) techniques. The fractal dimensions of pores across different pressure ranges were revealed by different fractal models. The results demonstrate that the shale pores are dominated by micro- to mesopores and partial extremely larger pores, contributed primarily by organic matter (OM) pores and microcracks, respectively. Fractal dimensions follow a consistent increasing order: DC < DN1 < DN2 < DM or DC < DN1 < DM < DN2, suggesting that larger pores with diameters lager than 5 nm are more heterogeneous and complex compared to the pores less than 5 nm (smaller pores). This is because smaller pores are predominantly composed of OM pores, while larger pores comprise a mixture of OM pores, mineral-related pores, and microcracks. Different fractal dimensions, in turn, are influenced by distinct factors. The DC value exhibits a positive correlation with micropore volume. DN1 and DN2 values are positively correlated with the content of brittle minerals and TOC, while they show negative correlations with the content of clay minerals. Notably, DM values do not demonstrate a significant correlation with shale compositions, primarily owing to the development of microcracks. Fractal dimensions, particularly DN1 and DN2, are significantly controlled by the lithofacies of shale. The highest DN1 and DN2 values occur in the siliceous shale lithofacies, and the mixed shale lithofacies exhibit moderate DN1 and DN2 values, whereas the lowest DN1 and DN2 values primarily occur in clay-rich shale lithofacies. Different fractal dimensions show various correlations with shale gas content. The Langmuir volume as well as total gas content exhibit significant correlations with DN1 and DN2 values, while they exhibit no obvious correlations with DC and DM values. This implies that pores with diameters of 1.8–55 nm serve as primary storage sites for both adsorbed and free gas. The findings can significantly improve the cognition of adsorbed gas and free gas behavior in shale reservoirs. Full article
(This article belongs to the Special Issue Analysis of Geological Pore Structure Based on Fractal Theory)
Show Figures

Figure 1

13 pages, 1671 KB  
Article
Experimental Study of Hydrogen Combustion and Emissions for a Self-Developed Microturbine
by István Péter Kondor
Energies 2026, 19(3), 577; https://doi.org/10.3390/en19030577 - 23 Jan 2026
Viewed by 60
Abstract
This paper presents an experimental investigation of hydrogen enrichment effects on combustion behavior and exhaust emissions in a self-developed micro gas turbine fueled with a propane–butane mixture. Hydrogen was blended with the base fuel in volume fractions of 0–30%, and combustion was examined [...] Read more.
This paper presents an experimental investigation of hydrogen enrichment effects on combustion behavior and exhaust emissions in a self-developed micro gas turbine fueled with a propane–butane mixture. Hydrogen was blended with the base fuel in volume fractions of 0–30%, and combustion was examined under unloaded operating conditions at three global equivalence ratios (ϕ = 0.7, 1.1, and 1.3). The global equivalence ratio (ϕ) is defined as the ratio of the actual fuel–air ratio to the corresponding stoichiometric fuel–air ratio, with ϕ < 1 representing lean, ϕ = 1 stoichiometric, and ϕ > 1 fuel-rich operating conditions. The micro gas turbine is based on an automotive turbocharger coupled with a custom-designed counterflow combustion chamber developed specifically for alternative gaseous fuel research. Exhaust gas emissions of CO, CO2, and NOx were measured using a laboratory-grade FTIR analyzer (Horiba Mexa FTIR Horiba Ltd., Kyoto, Japan), while combustion chamber temperature was monitored with thermocouples. The results show that hydrogen addition significantly influences flame stability, combustion temperature, and emission characteristics. Increasing the hydrogen fraction led to a pronounced reduction in CO emissions across all equivalence ratios, indicating enhanced oxidation kinetics and improved combustion completeness. CO2 concentrations decreased monotonically with hydrogen enrichment due to the reduced carbon content of the blended fuel and the shift of combustion products toward higher H2O fractions. In contrast, NOx emissions increased with increasing hydrogen content for all tested equivalence ratios, which is attributed to elevated local flame temperatures, enhanced reaction rates, and the formation of locally near-stoichiometric zones in the compact combustor. A slight reduction in NOx at low hydrogen fractions was observed under near-stoichiometric conditions, suggesting a temporary shift toward a more distributed combustion regime. Overall, the findings demonstrate that hydrogen–propane–butane blends can be stably combusted in a micro gas turbine without major operational issues under unloaded conditions. While hydrogen addition offers clear benefits in terms of CO reduction and carbon-related emissions, effective NOx mitigation strategies will be essential for future high-hydrogen microturbine applications. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

28 pages, 3944 KB  
Article
A Distributed Energy Storage-Based Planning Method for Enhancing Distribution Network Resilience
by Yitong Chen, Qinlin Shi, Bo Tang, Yu Zhang and Haojing Wang
Energies 2026, 19(2), 574; https://doi.org/10.3390/en19020574 - 22 Jan 2026
Viewed by 26
Abstract
With the widespread adoption of renewable energy, distribution grids face increasing challenges in efficiency, safety, and economic performance due to stochastic generation and fluctuating load demand. Traditional operational models often exhibit limited adaptability, weak coordination, and insufficient holistic optimization, particularly in early-/mid-stage distribution [...] Read more.
With the widespread adoption of renewable energy, distribution grids face increasing challenges in efficiency, safety, and economic performance due to stochastic generation and fluctuating load demand. Traditional operational models often exhibit limited adaptability, weak coordination, and insufficient holistic optimization, particularly in early-/mid-stage distribution planning where feeder-level network information may be incomplete. Accordingly, this study adopts a planning-oriented formulation and proposes a distributed energy storage system (DESS) planning strategy to enhance distribution network resilience under high uncertainty. First, representative wind and photovoltaic (PV) scenarios are generated using an improved Gaussian Mixture Model (GMM) to characterize source-side uncertainty. Based on a grid-based network partition, a priority index model is developed to quantify regional storage demand using quality- and efficiency-oriented indicators, enabling the screening and ranking of candidate DESS locations. A mixed-integer linear multi-objective optimization model is then formulated to coordinate lifecycle economics, operational benefits, and technical constraints, and a sequential connection strategy is employed to align storage deployment with load-balancing requirements. Furthermore, a node–block–grid multi-dimensional evaluation framework is introduced to assess resilience enhancement from node-, block-, and grid-level perspectives. A case study on a Zhejiang Province distribution grid—selected for its diversified load characteristics and the availability of detailed historical wind/PV and load-category data—validates the proposed method. The planning and optimization process is implemented in Python and solved using the Gurobi optimizer. Results demonstrate that, with only a 4% increase in investment cost, the proposed strategy improves critical-node stability by 27%, enhances block-level matching by 88%, increases quality-demand satisfaction by 68%, and improves grid-wide coordination uniformity by 324%. The proposed framework provides a practical and systematic approach to strengthening resilient operation in distribution networks. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

18 pages, 1605 KB  
Article
Towards Carbon-Negative Concrete Using Low-Carbon Binders and Carbonated Recycled Aggregates: MAA-Based Mix Design Optimization, Carbon Emission and Cost Assessment
by Wen Lin, Gaoyu Liao, Lixiang Xu, Guanghui Wang, Chucai Peng, Yueran Zhang and Dianchao Wang
Buildings 2026, 16(2), 462; https://doi.org/10.3390/buildings16020462 - 22 Jan 2026
Viewed by 21
Abstract
Developing low-carbon building materials is essential for achieving sustainability in the construction sector. This study proposes a carbon-negative concrete (CNC) system that combines low-carbon binders derived from industrial by-products with carbonated recycled aggregates capable of CO2 absorption. To enhance particle packing and [...] Read more.
Developing low-carbon building materials is essential for achieving sustainability in the construction sector. This study proposes a carbon-negative concrete (CNC) system that combines low-carbon binders derived from industrial by-products with carbonated recycled aggregates capable of CO2 absorption. To enhance particle packing and mechanical performance, the Modified Andreasen–Andersen (MAA) model was adopted for mix design optimization and experimentally validated. The optimized CNC mixture containing 22% coarse aggregate achieved the minimum residual sum of squares between the graded particle distribution and the theoretical MAA curve, as well as the highest strength performance. Compared with a 14% coarse aggregate mixture, the 22% mix exhibited 13.5% and 19.8% increases in compressive strength at 7 and 28 days, confirming the applicability of the MAA model for CNC proportioning. Carbon emission assessment, limited to raw material production, demonstrated significant environmental benefits. CNC incorporating both low-carbon binders and carbonated recycled aggregates reduced total emissions and CO2 intensity by 87.1% and 86.2%, respectively, compared with ordinary concrete of the same strength grade. Economic evaluation further showed that CNC reduced material cost by 48.1% relative to ordinary concrete. It should be emphasized that the reported CO2 reduction and negative emission effects are limited to the defined raw material production boundary and do not represent a fully net-negative life cycle. Overall, these results confirm the technical, environmental, and economic feasibility of CNC as a sustainable alternative to traditional concrete. Full article
(This article belongs to the Special Issue Low-Carbon and Sustainable Building Structures)
22 pages, 5497 KB  
Article
Numerical Study of Combustion in a Methane–Hydrogen Co-Fired W-Shaped Radiant Tube Burner
by Daun Jeong, Seongbong Ha, Jeongwon Seo, Jinyeol Ahn, Dongkyu Lee, Byeongyun Bae, Jongseo Kwon and Gwang G. Lee
Energies 2026, 19(2), 557; https://doi.org/10.3390/en19020557 - 22 Jan 2026
Viewed by 20
Abstract
Three-dimensional computational fluid dynamics (CFD) simulation was performed using the eddy-dissipation concept coupled with detailed hydrogen oxidation kinetics and a reduced two-step methane mechanism for a newly proposed W-shaped radiant tube burner (RTB). The effects of the hydrogen volume fraction (0–100%) and excess [...] Read more.
Three-dimensional computational fluid dynamics (CFD) simulation was performed using the eddy-dissipation concept coupled with detailed hydrogen oxidation kinetics and a reduced two-step methane mechanism for a newly proposed W-shaped radiant tube burner (RTB). The effects of the hydrogen volume fraction (0–100%) and excess air ratio (0%, 10%, 20%) on the flame morphology, temperature distribution, and NOX emissions are systematically analyzed. The results deliver three main points. First, a flame-shape transformation was identified in which the near-injector flame changes from a triangular attached mode to a splitting mode as the mixture reactivity increases with the transition occurring at a characteristic laminar flame speed window of about 0.33 to 0.36 m/s. Second, NOX shows non-monotonic behavior with dilution, and 10% excess air can produce higher NOX than 0% or 20% because OH radical enhancement locally promotes thermal NO pathways despite partial cooling. Third, a multi-parameter coupling strategy was established showing that hydrogen enrichment raises the maximum gas temperature by roughly 100 to 200 K from 0% to 100% H2, while higher excess air improves axial temperature uniformity and can suppress NOX if over-dilution is avoided. These findings provide a quantitative operating map for balancing stability, uniform heating, and NOX–CO trade-offs in hydrogen-enriched industrial RTBs. Full article
Show Figures

Figure 1

30 pages, 47854 KB  
Article
Genesis and Reservoir Implications of Multi-Stage Siliceous Rocks in the Middle–Lower Ordovician, Northwestern Tarim Basin
by Jinyu Luo, Tingshan Zhang, Pingzhou Shi, Zhou Xie, Jianli Zeng, Lubiao Gao, Zhiheng Ma and Xi Zhang
Minerals 2026, 16(1), 107; https://doi.org/10.3390/min16010107 - 21 Jan 2026
Viewed by 36
Abstract
Siliceous rocks of various colors and types are extensively developed within the Middle–Lower Ordovician carbonate along the Northwest Tarim Basin. Their genesis provides important insights into the evolution of basinal fluids and the associated diagenetic alterations of the carbonates. Based on petrographic, geochemical, [...] Read more.
Siliceous rocks of various colors and types are extensively developed within the Middle–Lower Ordovician carbonate along the Northwest Tarim Basin. Their genesis provides important insights into the evolution of basinal fluids and the associated diagenetic alterations of the carbonates. Based on petrographic, geochemical, fluid inclusion, and petrophysical analyses, this study investigates the origin of siliceous rocks within the Middle–Lower Ordovician carbonate formations (Penglaiba, Yingshan, and Dawangou formations) in the Kalpin area, Tarim Basin, and investigates the impact on hydrothermal reservoirs. The results reveal two distinct episodes of siliceous diagenetic fluids: The first during the Late Ordovician involved mixed hydrothermal fluids derived from deep magmatic–metamorphic sources, formation brines, and seawater. Characterized by high temperature and moderate salinity, it generated black chert dominated by cryptocrystalline to microcrystalline quartz through replacement processes. The second episode developed in the Middle–Late Devonian as a mixture of silicon-rich fluids from deep heat sources and basinal brines. In conditions of low temperature and high salinity, it generated gray-white siliceous rocks composed of micro- to fine crystalline quartz, spherulitic-fibrous chalcedony, and quartz cements via a combination of hydrothermal replacement and precipitation. A reservoir analysis reveals that the multi-layered black siliceous rocks possess significant reservoir potential amplified by the syndiagenetic tectonic fracturing. In contrast, the white siliceous rocks, despite superior petrophysical properties, are limited in scale as they predominantly infill late-stage fractures and vugs, mainly enhancing local flow conduits. Hydrothermal alteration in black siliceous rocks is more intense in dolostone host rocks than in limestone. Thus, thick (10–20 m), continuous black siliceous layers in dolostone and the surrounding medium-crystalline dolostone alteration zones, are promising exploration targets. This study elucidates the origins of Ordovician siliceous rocks and their implications for carbonate reservoir properties. The findings may offer valuable clues for deciphering the evolution and predicting the distribution of hydrothermal reservoirs, both within the basin and in other analogous regions worldwide. Full article
(This article belongs to the Special Issue Element Enrichment and Gas Accumulation in Black Rock Series)
Show Figures

Figure 1

19 pages, 8644 KB  
Article
U-Pb Dating and Geochemical Characteristics of Zircon and Apatite from Ore-Bearing Porphyry of Huxu Au-Dominated Polymetallic Deposit in Dongxiang Volcanic Basin, South China
by Hongze Gao, Jiajie Chen, Lei Mo, Genqiang Wei, Kaixuan Li, Yijuan Wu and Lili Wang
Minerals 2026, 16(1), 103; https://doi.org/10.3390/min16010103 - 21 Jan 2026
Viewed by 60
Abstract
The Huxu Au-dominated deposit is a representative intermediate sulfidation epithermal deposit in the middle section of the Gan-Hang belt. The formation of such deposits is commonly closely related to deep magmatism. However, the specific relationship between the formation of the Huxu deposit and [...] Read more.
The Huxu Au-dominated deposit is a representative intermediate sulfidation epithermal deposit in the middle section of the Gan-Hang belt. The formation of such deposits is commonly closely related to deep magmatism. However, the specific relationship between the formation of the Huxu deposit and the magmatic rocks, and the tectonic setting of the related magmatism and mineralization in this deposit still remains unclear. In this study, we present the results of U-Pb dating, major and trace element analysis, and Nd isotope analysis of the magmatic zircon and apatite from the ore-bearing quartz diorite porphyry in the Huxu deposit. The results show that the U-Pb ages of zircon and apatite from the quartz diorite porphyry are 137.9 ± 1.3 Ma and 130 ± 16 Ma, respectively; the total content of rare earth elements (ΣREEs) in the zircons ranges from 446.66 to 2752.92 ppm, exhibiting enrichment in heavy REE and depletion in light REE, with a slightly negative Eu anomaly and a slightly positive Ce anomaly; the ΣREEs in the apatite is relatively high, ranging from 3252.02 to 13,155.92 ppm, averaged 5604.16 ppm, and exhibits a right-leaning mode with light REE enrichment and heavy REE depletion, with a moderate degree of negative Eu anomaly; the distribution of 143Nd/144Nd ratios of the apatite is rather concentrated (0.512145–0.512271), and the εNd(t) value calculated based on the U-Pb age of apatite ranges from −8.31 to 5.79. By combining the geological characteristics and the geochemical data of the deposit and the ore-bearing magmatic rocks, we propose that the ore-bearing quartz diorite porphyry of the Huxu Au-dominated polymetallic deposit belongs to I-type granite; the parental magma is the mixture of juvenile and ancient crustal melts; the tectonic setting of the intrusion and mineralization is the continental margin arc related to the subduction of the ancient Pacific Ocean Plate in the Early Cretaceous Epoch; and the ore-forming fluids and metals are provided by deep magma. Full article
(This article belongs to the Special Issue Igneous Rocks and Related Mineral Deposits)
Show Figures

Figure 1

29 pages, 2904 KB  
Article
Design Framework for Porous Mixture Containing 100% Sustainable Binder
by Genhe Zhang, Bo Ning, Feng Cao, Taotao Li, Siyuan Guo, Teng Gao, Biao Ma and Rui Wu
Sustainability 2026, 18(2), 1020; https://doi.org/10.3390/su18021020 - 19 Jan 2026
Viewed by 114
Abstract
This study developed a design framework for porous mixtures using a 100% sustainable non-bituminous epoxy–polyurethane binder system. Conventional design protocols for porous asphalt mixtures exhibit limitations in accurately controlling void content and mixture composition. This study proposed a novel design framework for porous [...] Read more.
This study developed a design framework for porous mixtures using a 100% sustainable non-bituminous epoxy–polyurethane binder system. Conventional design protocols for porous asphalt mixtures exhibit limitations in accurately controlling void content and mixture composition. This study proposed a novel design framework for porous mixtures containing 100% sustainable binder based on statistical analysis and theoretical calculations. The relationships among target air voids, binder content, and aggregate gradation were systematically analyzed, and calculation formulas for coarse aggregate, fine aggregate, and mineral filler contents were derived. A mix design framework was further established by applying the void-filling theory, where the combined volume of binder, fine aggregate, and filler equals the void volume of the coarse aggregate skeleton, thereby ensuring precise control of the target void ratio. Additionally, mixing procedures were investigated with emphasis on feeding sequence, compaction method, and mixing temperature. Results indicated that the optimized feeding sequence significantly improved binder distribution; specimens compacted using the Marshall double-sided compaction method achieved a density of 89.60%. Rheological analysis revealed that at 30 °C, the viscosities of sustainable binder and polyurethane filler were 1280 mPa·s and 6825 mPa·s, respectively, suggesting optimal mixture uniformity. The proposed methodology and process parameters provide essential technical guidance for engineering applications of porous mixtures containing 100% sustainable binder. Full article
(This article belongs to the Special Issue Sustainable Pavement Engineering: Design, Materials, and Performance)
Show Figures

Figure 1

18 pages, 9896 KB  
Article
Experimental Investigation of Temperature Distribution and Evolution in Hot Recycled Asphalt Mixtures with Different Reclaimed Asphalt Pavement Contents
by Quan Liu, Huanting Lei, Jiangyu Liu, Yuting Han and Jiantao Wu
Recycling 2026, 11(1), 21; https://doi.org/10.3390/recycling11010021 - 19 Jan 2026
Viewed by 111
Abstract
Temperature homogeneity assumes a crucial role in the manufacture of asphalt mixtures due to its impact on mechanical formation and mixing homogeneity. The existence of reclaimed asphalt pavement (RAP) exacerbates its impact on temperature inhomogeneity. To address this, the RAP contents of 20%, [...] Read more.
Temperature homogeneity assumes a crucial role in the manufacture of asphalt mixtures due to its impact on mechanical formation and mixing homogeneity. The existence of reclaimed asphalt pavement (RAP) exacerbates its impact on temperature inhomogeneity. To address this, the RAP contents of 20%, 40%, and 60%, combined with RAP preheated temperatures of 353 K, 373 K, and 393 K, were taken into consideration to examine the thermal transition and evolution of temperature for the recycled asphalt mixtures in the mixing. Thermal images captured within the range of 30 s to 120 s were used to monitor the temperature evolution of the recycled asphalt mixtures during the mixing. To quantitatively assess the level of thermal non-uniformity, a Relative Thermal Equilibrium Temperature Index (RETI) was introduced. This index reflects the degree of deviation from ideal thermal equilibrium within the recycled mixtures. Based on the RETI calculation, complete temperature homogeneity cannot be attained until the end of the mixing of hot recycled asphalt mixtures. However, a prolongation of the mixing time or an elevation in the RAP preheated temperature can expedite the thermal equilibrium process of recycled asphalt mixtures. Additionally, the RAP contents also exerted a crucial influence on the thermal equilibrium process of the recycled asphalt mixtures. Full article
(This article belongs to the Special Issue Recycled Materials in Sustainable Pavement Innovation)
Show Figures

Graphical abstract

26 pages, 3357 KB  
Article
Novel Bioinspired Quercetin-Based Polymers for the Sustained Release of Donepezil in Alzheimer’s Disease Therapy
by Elisabete P. Carreiro, Pedro Múria, Diogo Velez, Manuela R. Carrott, Anthony J. Burke and Ana R. Costa
Polymers 2026, 18(2), 234; https://doi.org/10.3390/polym18020234 - 16 Jan 2026
Viewed by 555
Abstract
This work was inspired by quercetin, a natural bioflavonoid with well-known neuroprotective properties. We synthesized a new functional monomer, 3-acryloxy-3′,4′,5,7-tetramethylquercetin 1, and used it to prepare, for the first time, a molecularly imprinted polymer (MIP) selective for donepezil, the main drug used [...] Read more.
This work was inspired by quercetin, a natural bioflavonoid with well-known neuroprotective properties. We synthesized a new functional monomer, 3-acryloxy-3′,4′,5,7-tetramethylquercetin 1, and used it to prepare, for the first time, a molecularly imprinted polymer (MIP) selective for donepezil, the main drug used in Alzheimer’s disease therapy. The polymer was designed to be fluorescent and responsive to pH changes, aiming for controlled drug release. The optimized MIP-4, produced from a 1:1 mixture of the monomer 1 and acrylic acid, was characterized by FTIR-ATR, fluorescence spectroscopy, SEM, and DLS, confirming its chemical composition, morphology, particle size distribution and zeta potential. Adsorption studies showed higher donepezil binding capacity for MIP than for NIP, highlighting the polymer’s selective recognition. In vitro release experiments at pH 3, 5.5, and 7 revealed a pH-dependent behaviour, with nearly 98% cumulative donepezil release at pH 7. The polymer was non-cytotoxic and successfully released donepezil in in vitro assays, enabling effective inhibition of eeAChE. These results provide a proof of concept supporting the potential of quercetin-derived fluorescent molecularly imprinted polymers as selective and stimuli-responsive platforms for donepezil delivery. Full article
(This article belongs to the Special Issue Polymers and Their Role in Drug Delivery, 3rd Edition)
Show Figures

Graphical abstract

19 pages, 2419 KB  
Article
Reusing of Crushed Tempered Glass Waste as a Partial Replacement for Natural Fine Aggregate in the Sustainable Concrete
by Giedrius Girskas and Modestas Kligys
Sustainability 2026, 18(2), 817; https://doi.org/10.3390/su18020817 - 13 Jan 2026
Viewed by 124
Abstract
This article analyzes the properties of concrete in which up to 25% of natural fine aggregate (sand 0/4 mm fraction) was partly replaced by the crushed tempered glass waste. The granulometric composition of crushed glass waste and 0/4 mm fraction sand was unified [...] Read more.
This article analyzes the properties of concrete in which up to 25% of natural fine aggregate (sand 0/4 mm fraction) was partly replaced by the crushed tempered glass waste. The granulometric composition of crushed glass waste and 0/4 mm fraction sand was unified to ensure comparable particle size distributions between the natural aggregate and the crushed tempered glass waste. The alkali silica reactivity of crushed tempered glass waste particles was evaluated. The influence of crushed tempered glass waste on the properties of fresh concrete mixture and hardened concrete was determined experimentally. Results have shown that crushed tempered glass waste is non-reactive and can be used in concrete as a partial replacement of natural fine aggregate. Partial replacement of natural fine aggregate with crushed tempered glass waste caused only an insignificant decrease in the density of the concrete mixture, while the entrained air content increased, and the slump decreased more noticeably. The addition of crushed tempered glass waste decreased the density, compressive strength, and depth of water penetration under pressure of all modified concretes. On the other hand, all modified concretes had increased water absorption and closed or total porosities, which improved their durability in terms of the number of freeze and thaw cycles. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

Back to TopTop