Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (751)

Search Parameters:
Keywords = mixed traits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3036 KiB  
Article
Histological Features Detected for Separation of the Edible Leaves of Allium ursinum L. from the Poisonous Leaves of Convallaria majalis L. and Colchicum autumnale L
by Márta M-Hamvas, Angéla Tótik, Csongor Freytag, Attila Gáspár, Amina Nouar, Tamás Garda and Csaba Máthé
Plants 2025, 14(15), 2377; https://doi.org/10.3390/plants14152377 (registering DOI) - 1 Aug 2025
Abstract
Allium ursinum (wild garlic) has long been collected and consumed as food and medicine in the north temperate zone, where its popularity is growing. Colchicum autumnale and Convallaria majalis contain toxic alkaloids. Their habitats overlap, and without flowers, their vegetative organs are similar. [...] Read more.
Allium ursinum (wild garlic) has long been collected and consumed as food and medicine in the north temperate zone, where its popularity is growing. Colchicum autumnale and Convallaria majalis contain toxic alkaloids. Their habitats overlap, and without flowers, their vegetative organs are similar. Confusing the leaves of Colchicum or Convallaria with the leaves of wild garlic has repeatedly led to serious human and animal poisonings. Our goal was to find a histological characteristic that makes the separation of these leaves clear. We compared the anatomy of foliage leaves of these three species grown in the same garden (Debrecen, Hungary, Central Europe). We used a bright-field microscope to characterize the transversal sections of leaves. Cell types of epidermises were compared based on peels and different impressions. We established some significant differences in the histology of leaves. The adaxial peels of Allium consist of only “long” cells without stomata, but the abaxial ones show “long”, “short” and “T” cells with wavy cell walls as a peculiarity, and stomata. Convallaria and Colchicum leaves are amphystomatic, but in the case of Allium, they are hypostomatic. These traits were confirmed with herbarium specimens. Our results help to clearly identify these species even in mixed, dried plant material and may be used for diagnostic purposes. Full article
16 pages, 1258 KiB  
Article
Genome-Wide Association Analysis of Traits Related to Nitrogen Deficiency Stress in Potato
by Carmen Iribar, Alba Alvarez-Morezuelas, Leire Barandalla and Jose Ignacio Ruiz de Galarreta
Horticulturae 2025, 11(8), 889; https://doi.org/10.3390/horticulturae11080889 (registering DOI) - 1 Aug 2025
Abstract
Potato (Solanum tuberosum L.) crop yields may be reduced by nitrogen deficiency stress tolerance. An evaluation of 144 tetraploid potato genotypes was carried out during two consecutive seasons (2019 and 2020), with the objective of characterizing their variability in key physiological and [...] Read more.
Potato (Solanum tuberosum L.) crop yields may be reduced by nitrogen deficiency stress tolerance. An evaluation of 144 tetraploid potato genotypes was carried out during two consecutive seasons (2019 and 2020), with the objective of characterizing their variability in key physiological and agronomic parameters. Physiological parameters included chlorophyll content and fluorescence, stomatal conductance, NDVI, leaf area, and perimeter, while agronomic characteristics such as yield, tuber fresh weight, tuber number, starch content, dry matter, and reducing sugars were evaluated. To genotype the population, the GGP V3 Potato array was used, generating 18,259 high-quality SNP markers. Marker–trait association analysis was conducted using the GWASpoly package in R, applying Q + K linear mixed models to enhance precision. This methodology enabled the identification of 18 SNP markers that exhibited statistically significant associations with the traits analyzed in both trials and periods, relating them to genes whose functional implication has already been described. Genetic loci associated with chlorophyll content and tuber number were detected across non-stress and stress treatments, while markers linked to leaf area and leaf perimeter were identified specifically under nitrogen deficiency stress. The genomic distribution of these markers revealed that genetic markers or single-nucleotide polymorphisms (SNPs) correlated with phenotypic traits under non-stress conditions were predominantly located on chromosome 11, whereas SNPs linked to stress responses were mainly identified on chromosomes 2 and 3. These findings contribute to understanding the genetic mechanisms underlying potato tolerance to nitrogen deficiency stress, offering valuable insights for the development of future marker-assisted selection programs aimed at improving nitrogen use efficiency and stress resilience in potato breeding. Full article
(This article belongs to the Special Issue Genetics, Genomics and Breeding of Vegetable Crops)
Show Figures

Figure 1

18 pages, 1711 KiB  
Article
Genome-Wide Association Analysis of Fresh Maize
by Suying Guo, Rengui Zhao and Jinhao Lan
Int. J. Mol. Sci. 2025, 26(15), 7431; https://doi.org/10.3390/ijms26157431 (registering DOI) - 1 Aug 2025
Abstract
This study measured eight key phenotypic traits across 259 fresh maize inbred lines, including plant height and spike length. A total of 82 single nucleotide polymorphisms (SNPs) significantly associated with these phenotypes were identified by applying a mixed linear model to calculate the [...] Read more.
This study measured eight key phenotypic traits across 259 fresh maize inbred lines, including plant height and spike length. A total of 82 single nucleotide polymorphisms (SNPs) significantly associated with these phenotypes were identified by applying a mixed linear model to calculate the best linear unbiased prediction (BLUP) values and integrating genome-wide genotypic data through genome-wide association analysis (GWAS). A further analysis of significant SNPs contributed to the identification of 63 candidate genes with functional annotations. Notably, 11 major candidate genes were identified from multi-trait association loci, all of which exhibited highly significant P-values (<0.0001) and explained between 7.21% and 12.78% of phenotypic variation. These 11 genes, located on chromosomes 1, 3, 4, 5, 6, and 9, were functionally involved in signaling, metabolic regulation, structural maintenance, and stress response, and are likely to play crucial roles in the growth and physiological processes of fresh maize inbred lines. The functional genes identified in this study have significant implications for the development of molecular markers, the optimization of breeding strategies, and the enhancement of quality in fresh maize. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 763 KiB  
Article
Estimation of Genetic Parameters for Body Weight and Its Stability in Huaxi Cows from Xinjiang Region
by Ye Feng, Wenjuan Zhao, Xubin Lu, Xue Gao, Qian Zhang, Bin Zhang, Bao Wang, Fagang Zhong, Mengli Han and Zhi Chen
Animals 2025, 15(15), 2248; https://doi.org/10.3390/ani15152248 - 31 Jul 2025
Viewed by 50
Abstract
In this study, we analyzed data from 2992 cows to comprehensively evaluate the adult weight (WEI), a key growth and body-size indicator, in West China cattle, aiming to estimate the related phenotypic and genetic parameters. The analysis focused on four weight traits while [...] Read more.
In this study, we analyzed data from 2992 cows to comprehensively evaluate the adult weight (WEI), a key growth and body-size indicator, in West China cattle, aiming to estimate the related phenotypic and genetic parameters. The analysis focused on four weight traits while considering non-genetic factors such as parity, season, year, and birth weight. Data were processed and corrected using a MIXED procedure and a multi-trait animal model. Results showed that these non-genetic factors significantly affected the weight traits (p < 0.05), which had high heritability (0.25–0.39) (p < 0.01). WEI is crucial for improving the genetic traits of cattle in western China and provides innovative approaches for optimizing herd management, enhancing the efficiency of genetic selection, and boosting beef cattle productivity. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

20 pages, 2854 KiB  
Article
Trait-Based Modeling of Surface Cooling Dynamics in Olive Fruit Using Thermal Imaging and Mixed-Effects Analysis
by Eddy Plasquy, José M. Garcia, Maria C. Florido and Anneleen Verhasselt
Agriculture 2025, 15(15), 1647; https://doi.org/10.3390/agriculture15151647 - 30 Jul 2025
Viewed by 178
Abstract
Effective postharvest cooling of olive fruit is increasingly critical under rising harvest temperatures driven by climate change. This study models passive cooling dynamics using a trait-based, mixed-effects statistical framework. Ten olive groups—representing seven cultivars and different ripening or size stages—were subjected to controlled [...] Read more.
Effective postharvest cooling of olive fruit is increasingly critical under rising harvest temperatures driven by climate change. This study models passive cooling dynamics using a trait-based, mixed-effects statistical framework. Ten olive groups—representing seven cultivars and different ripening or size stages—were subjected to controlled cooling conditions. Surface temperature was recorded using infrared thermal imaging, and morphological and compositional traits were quantified. Temperature decay was modeled using Newton’s Law of Cooling, extended with a quadratic time term to capture nonlinear trajse thectories. A linear mixed-effects model was fitted to log-transformed, normalized temperature data, incorporating trait-by-time interactions and hierarchical random effects. The results confirmed that fruit weight, specific surface area (SSA), and specific heat capacity (SHC) are key drivers of cooling rate variability, consistent with theoretical expectations, but quantified here using a trait-based statistical model applied to olive fruit. The quadratic model consistently outperformed standard exponential models, revealing dynamic effects of traits on temperature decline. Residual variation at the group level pointed to additional unmeasured structural influences. This study demonstrates that olive fruit cooling behavior can be effectively predicted using interpretable, trait-dependent models. The findings offer a quantitative basis for optimizing postharvest cooling protocols and are particularly relevant for maintaining quality under high-temperature harvest conditions. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

26 pages, 11108 KiB  
Article
Warming in the Maternal Environment Alters Seed Performance and Genetic Diversity of Stylosanthes capitata, a Tropical Legume Forage
by Priscila Marlys Sá Rivas, Fernando Bonifácio-Anacleto, Ivan Schuster, Carlos Alberto Martinez and Ana Lilia Alzate-Marin
Genes 2025, 16(8), 913; https://doi.org/10.3390/genes16080913 (registering DOI) - 30 Jul 2025
Viewed by 203
Abstract
Background/Objectives: Global warming and rising CO2 concentrations pose significant challenges to plant systems. Amid these pressures, this study contributes to understanding how tropical species respond by simultaneously evaluating reproductive and genetic traits. It specifically investigates the effects of maternal exposure to [...] Read more.
Background/Objectives: Global warming and rising CO2 concentrations pose significant challenges to plant systems. Amid these pressures, this study contributes to understanding how tropical species respond by simultaneously evaluating reproductive and genetic traits. It specifically investigates the effects of maternal exposure to warming and elevated CO2 on progeny physiology, genetic diversity, and population structure in Stylosanthes capitata, a resilient forage legume native to Brazil. Methods: Maternal plants were cultivated under controlled treatments, including ambient conditions (control), elevated CO2 at 600 ppm (eCO2), elevated temperature at +2 °C (eTE), and their combined exposure (eTEeCO2), within a Trop-T-FACE field facility (Temperature Free-Air Controlled Enhancement and Free-Air Carbon Dioxide Enrichment). Seed traits (seeds per inflorescence, hundred-seed mass, abortion, non-viable seeds, coat color, germination at 32, 40, 71 weeks) and abnormal seedling rates were quantified. Genetic diversity metrics included the average (A) and effective (Ae) number of alleles, observed (Ho) and expected (He) heterozygosity, and inbreeding coefficient (Fis). Population structure was assessed using Principal Coordinates Analysis (PCoA), Analysis of Molecular Variance (AMOVA), number of migrants per generation (Nm), and genetic differentiation index (Fst). Two- and three-way Analysis of Variance (ANOVA) were used to evaluate factor effects. Results: Compared to control conditions, warming increased seeds per inflorescence (+46%), reduced abortion (−42.9%), non-viable seeds (−57%), and altered coat color. The germination speed index (GSI +23.5%) and germination rate (Gr +11%) improved with warming; combined treatments decreased germination time (GT −9.6%). Storage preserved germination traits, with warming enhancing performance over time and reducing abnormal seedlings (−54.5%). Conversely, elevated CO2 shortened GSI in late stages, impairing germination efficiency. Warming reduced Ae (−35%), He (−20%), and raised Fis (maternal 0.50, progeny 0.58), consistent with the species’ mixed mating system; A and Ho were unaffected. Allele frequency shifts suggested selective pressure under eTE. Warming induced slight structure in PCoA, and AMOVA detected 1% (maternal) and 9% (progeny) variation. Fst = 0.06 and Nm = 3.8 imply environmental influence without isolation. Conclusions: Warming significantly shapes seed quality, reproductive success, and genetic diversity in S. capitata. Improved reproduction and germination suggest adaptive advantages, but higher inbreeding and reduced diversity may constrain long-term resilience. The findings underscore the need for genetic monitoring and broader genetic bases in cultivars confronting environmental stressors. Full article
(This article belongs to the Special Issue Genetics and Breeding of Forage)
Show Figures

Figure 1

17 pages, 2446 KiB  
Article
Different Phosphorus Preferences Among Arbuscular and Ectomycorrhizal Trees with Different Acquisition Strategies in a Subtropical Forest
by Yaping Zhu, Jianhua Lv, Pifeng Lei, Miao Chen and Jinjuan Xie
Forests 2025, 16(8), 1241; https://doi.org/10.3390/f16081241 - 28 Jul 2025
Viewed by 120
Abstract
Phosphorus (P) availability is a major constraint on plant growth in many forest ecosystems, yet the strategies by which different tree species acquire and utilize various forms of soil phosphorus remain poorly understood. This study investigated how coexisting tree species with contrasting mycorrhizal [...] Read more.
Phosphorus (P) availability is a major constraint on plant growth in many forest ecosystems, yet the strategies by which different tree species acquire and utilize various forms of soil phosphorus remain poorly understood. This study investigated how coexisting tree species with contrasting mycorrhizal types, specifically arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) associations, respond to different phosphorus forms under field conditions. An in situ root bag experiment was conducted using four phosphorus treatments (control, inorganic, organic, and mixed phosphorus) across four subtropical tree species. A comprehensive set of fine root traits, including morphological, physiological, and mycorrhizal characteristics, was measured to evaluate species-specific phosphorus foraging strategies. The results showed that AM species were more responsive to phosphorus form variation than ECM species, particularly under inorganic and mixed phosphorus treatments. Significant changes in root diameter (RD), root tissue density (RTD), and acid phosphatase activity (RAP) were observed in AM species, often accompanied by higher phosphorus accumulation in fine roots. For example, RD in AM species significantly decreased under the Na3PO4 treatment (0.94 mm) compared to the control (1.18 mm), while ECM species showed no significant changes in RD across treatments (1.12–1.18 mm, p > 0.05). RTD in AM species significantly increased under Na3PO4 (0.030 g/cm3) and Mixture (0.021 g/cm3) compared to the control (0.012 g/cm3, p < 0.05), whereas ECM species exhibited consistently low RTD values across treatments (0.017–0.020 g/cm3, p > 0.05). RAP in AM species increased significantly under Na3PO4 (1812 nmol/g/h) and Mixture (1596 nmol/g/h) relative to the control (1348 nmol/g/h), while ECM species showed limited variation (1286–1550 nmol/g/h, p > 0.05). In contrast, ECM species displayed limited trait variation across treatments, reflecting a more conservative acquisition strategy. In addition, trait correlation analysis revealed stronger coordination among root traits in AM species. And AM species exhibited high variability across treatments, while ECM species maintained consistent trait distributions with limited plasticity. These findings suggest that AM and ECM species adopt fundamentally different phosphorus acquisition strategies. AM species rely on integrated morphological and physiological responses to variable phosphorus conditions, while ECM species maintain stable trait configurations, potentially supported by fungal symbiosis. Such divergence may contribute to functional complementarity and species coexistence in phosphorus-limited subtropical forests. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

12 pages, 753 KiB  
Article
Reducing State and Trait Anxiety Through Art Therapy in Adolescents with Eating Disorders: Results from a Pilot Repeated-Measures Study
by Francesco Monaco, Annarita Vignapiano, Stefania Landi, Ernesta Panarello, Benedetta Di Gruttola, Naomi Gammella, Silvia Adiutori, Eleonora Acierno, Valeria Di Stefano, Ilaria Pullano, Giulio Corrivetti and Luca Steardo Jr
J. Clin. Med. 2025, 14(15), 5298; https://doi.org/10.3390/jcm14155298 - 27 Jul 2025
Viewed by 338
Abstract
Background: Art therapy is increasingly recognized as a valuable complementary intervention for individuals with eating disorders (EDs), who frequently experience comorbid anxiety and difficulties with emotional regulation. However, few studies have examined its short-term effects on state and trait anxiety within structured clinical [...] Read more.
Background: Art therapy is increasingly recognized as a valuable complementary intervention for individuals with eating disorders (EDs), who frequently experience comorbid anxiety and difficulties with emotional regulation. However, few studies have examined its short-term effects on state and trait anxiety within structured clinical settings. Methods: This pilot study involved 19 adolescent females (mean age 17.7 ± 2.1 years) diagnosed with anorexia nervosa (AN) or bulimia nervosa (BN) and admitted to the Mariconda Regional Residence for Eating Disorders (ASL Salerno, Italy) in residential or semi-residential treatment. Participants completed a structured six-week cycle of weekly textile-based art therapy sessions, designed to promote emotional expression and body reconnection. State and trait anxiety levels were assessed pre- and post-session using the State-Trait Anxiety Inventory (STAI). Repeated-measures ANOVA was used to analyze state anxiety changes; a linear mixed-effects model was applied to trait anxiety. Results: State anxiety significantly decreased immediately after sessions (p = 0.002). A significant main effect of session (p = 0.01) and a time × session interaction (p = 0.025) indicated variability across sessions. Trait anxiety showed a non-significant trend toward reduction (p = 0.11); however, reductions were significant at sessions 4 (p = 0.015), 5 (p < 0.001), and 6 (p = 0.005). Conclusions: Art therapy may offer immediate reductions in state anxiety and may contribute to a longer-term reduction in trait anxiety with 4–6 sessions. These findings support integrating creative interventions within multidisciplinary ED treatment programs. Future research with larger samples and control groups is needed to confirm and expand upon these preliminary results. Full article
Show Figures

Figure 1

22 pages, 1513 KiB  
Article
Forage Yield, Quality, and Weed Suppression in Narbon Vetch (Vicia narbonensis L.) and Italian Ryegrass (Lolium multiflorum L.) Mixtures Under Organic Management
by Melek Demircan, Emine Serap Kizil Aydemir and Koray Kaçan
Agronomy 2025, 15(8), 1796; https://doi.org/10.3390/agronomy15081796 - 25 Jul 2025
Viewed by 159
Abstract
This study aimed to evaluate the forage yield, quality, and weed suppression potential of narbon vetch (Vicia narbonensis L.) and Italian ryegrass (Lolium multiflorum L.) grown as sole crops and in mixtures under organic farming conditions in Bilecik, Turkey, during the [...] Read more.
This study aimed to evaluate the forage yield, quality, and weed suppression potential of narbon vetch (Vicia narbonensis L.) and Italian ryegrass (Lolium multiflorum L.) grown as sole crops and in mixtures under organic farming conditions in Bilecik, Turkey, during the 2020–2021 growing season. The experiment included 15 treatments comprising monocultures and mixed sowing at different ratios. Measurements included morphological traits, forage yield components (green herbage, hay, and crude protein), fiber content, botanical composition, and weed biomass. The results reveal significant differences among treatments in terms of growth parameters and forage performance. Monocultures of IFVN 567 and Bartigra showed the highest green and hay yields, while mixtures such as IFVN 567 + Trinova and IFVN 567 + Bartigra outperformed in terms of land equivalent ratio (LER) and protein yield, demonstrating a clear advantage in land use efficiency. Furthermore, these mixtures showed superior weed suppression compared to monocultures. Overall, the findings suggest that carefully selected vetch–ryegrass combinations can enhance forage productivity, nutritional quality, and weed management under organic systems. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

22 pages, 3974 KiB  
Article
Selection for Low-Nitrogen Tolerance Using Multi-Trait Genotype Ideotype Distance Index (MGIDI) in Poplar Varieties
by Jinhong Niu, Dongxu Jia, Zhenyuan Zhou, Mingrong Cao, Chenggong Liu, Qinjun Huang and Jinhua Li
Agronomy 2025, 15(7), 1754; https://doi.org/10.3390/agronomy15071754 - 21 Jul 2025
Viewed by 253
Abstract
The screening of poplar varieties that demonstrate tolerance to low nitrogen (N) represents a promising strategy for improving nitrogen-use efficiency in trees. Such an approach could reduce reliance on N fertilizers while mitigating environmental pollution associated with their cultivation. In this study, a [...] Read more.
The screening of poplar varieties that demonstrate tolerance to low nitrogen (N) represents a promising strategy for improving nitrogen-use efficiency in trees. Such an approach could reduce reliance on N fertilizers while mitigating environmental pollution associated with their cultivation. In this study, a total of 87 poplar varieties were evaluated in a controlled greenhouse pot experiment. Under both low-nitrogen (LN) and normal-nitrogen (NN) conditions, 18 traits spanning four categories—growth performance, leaf morphology, chlorophyll fluorescence, and N isotope parameters were measured. For 13 of these traits (growth, leaf morphology, chlorophyll fluorescence), genetic variation and parameters, including genotypic values, were analyzed using best linear unbiased prediction (BLUP) within a linear mixed model (LMM). LN tolerance of tested poplar varieties was comprehensively assessed with three MGIDI strategies by integrating means, BLUPs, and low-nitrogen tolerance coefficient (LNindex) to rank poplar varieties. The results exhibited highly significant differences across all traits between LN and NN experiments, as well as among varieties. LN stress markedly inhibited growth, altered leaf morphology, and reduced chlorophyll fluorescence parameters in young poplar plants. Among the selection strategies, the MGIDI_LNindex approach demonstrated the highest selection differential percent (SD% = 10.5–35.23%). Using a selection intensity (SI) of 20%, we systematically identified 17 superior genotypes across all three strategies. In a thorough, comprehensive MGIDI-based evaluation, these varieties exhibited exceptional adaptability and stability under LN stress. The selected genotypes represent valuable genetic resources for developing improved poplar cultivars with enhanced low-nitrogen tolerance. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

18 pages, 751 KiB  
Article
Effects of Salinity, Temperature, and Diet on the Biological Characteristics of Brachionus plicatilis Müller, 1786
by Quynh-Anh Tran-Nguyen, Truong Nhat Phan, Quang-Anh Tran, Hong Thi Mai, Thao Linh Phan Thi, Dang Doan Phan and Mau Trinh-Dang
Biology 2025, 14(7), 878; https://doi.org/10.3390/biology14070878 - 18 Jul 2025
Viewed by 325
Abstract
This study investigates the effects of salinity, temperature, and diet on the biological characteristics of the rotifer Brachionus plicatilis, an essential live feed in aquaculture. The results indicate that environmental factors have a significant influence on reproductive traits and survival. At a [...] Read more.
This study investigates the effects of salinity, temperature, and diet on the biological characteristics of the rotifer Brachionus plicatilis, an essential live feed in aquaculture. The results indicate that environmental factors have a significant influence on reproductive traits and survival. At a salinity of 5 ppt, B. plicatilis achieved the highest fecundity (25.50 ± 0.58 inds.), while the longest lifespan (273.00 ± 72.52 h) was observed at 35 ppt. The temperature had a strong influence on developmental rates, with the shortest juvenile period recorded at 35 °C (8.00 ± 0.00 h) and the longest lifespan at 20 °C (270.62 ± 30.38 h). The diet also played a critical role, with Chlorella vulgaris supporting maximum fecundity, whereas mixed diets prolonged lifespan to 290.50 ± 62.83 (h). These findings provide valuable insights into optimizing rotifer culture systems to improve aquaculture productivity and sustainability. Full article
Show Figures

Figure 1

16 pages, 410 KiB  
Article
Effects of Dietary Supplementation with Extruded Linseed on Growth Performance and Meat Quality of Young Holstein Bulls
by Stella Dokou, Maria Eleni Filippitzi, Anestis Tsitsos, Vasiliki Papanikolopoulou, Stergios Priskas, Vangelis Economou, Eleftherios Bonos, Ilias Giannenas and Georgios Arsenos
Animals 2025, 15(14), 2123; https://doi.org/10.3390/ani15142123 - 17 Jul 2025
Viewed by 286
Abstract
Beef production in Greece is a sector that has been characterized by a decline in both the output and the number of beef-producing animals over the last decades. The major challenge is low beef self-sufficiency; only 19.1% of demand is met by domestic [...] Read more.
Beef production in Greece is a sector that has been characterized by a decline in both the output and the number of beef-producing animals over the last decades. The major challenge is low beef self-sufficiency; only 19.1% of demand is met by domestic production. The latter leads to a growing reliance on imports of both live animals and carcasses. Hence, the fattening of young bulls from dairy breeds could be an option to address this challenge subject to improving the quality of produced meat. The objective of the present study was to investigate the effects of extruded linseed in the diet of young bulls on their performance and meat quality. Sixty-eight young Holstein bulls were equally assigned in two experimental groups: the control group (CON, n = 34) and Linseed Group (LS, n = 34). Bulls in the CON group received a basal total mixed ration while LS young bulls were offered the same basal ration supplemented with linseed (5% on dry matter basis) during the final fattening stage. All bulls were subjected to three individual weightings at the beginning, the middle and the end of the trial. The feed offered was recorded daily and feed refusals were weighed for each pen to calculate feed intake. After slaughter, the Longissimus dorsi muscle from each carcass was collected to evaluate meat pH, color, chemical composition, tenderness and fatty acid profile. Analysis of variance was used to evaluate the effect of dietary intervention on performance and examined meat parameters, with significance set at p < 0.05, using SPSS software (version 29.0). Average daily gain, dry matter intake and feed conversion ratio were not affected by the dietary intervention (p > 0.05). Similarly, carcass yield and dressing percentage remained unaffected (p > 0.05). Adding extruded linseed did not result in differences in meat quality traits (p > 0.05), except for meat pH, which was significantly decreased in the LS group (p < 0.05), indicating more efficient post-mortem glycolysis. Finally, the inclusion of extruded linseed resulted in higher levels of α-linolenic acid in the meat (p < 0.05). These results suggest that including 5% extruded linseed (on a DM basis) in the diet of young Holstein bulls increased meat n-3 content, improved beef pH and maintained production performance. Full article
(This article belongs to the Special Issue Beef Cattle Feedlot: Nutrition, Production and Management)
Show Figures

Figure 1

20 pages, 3714 KiB  
Article
Seed Mixes in Landscape Design and Management: An Untapped Conservation Tool for Pollinators in Cities
by Cláudia Fernandes, Ana Medeiros, Catarina Teixeira, Miguel Porto, Mafalda Xavier, Sónia Ferreira and Ana Afonso
Land 2025, 14(7), 1477; https://doi.org/10.3390/land14071477 - 16 Jul 2025
Viewed by 898
Abstract
Urban green spaces are increasingly recognized as important habitats for pollinators, and wildflower seed mixes marketed as pollinator-friendly are gaining popularity, though their actual conservation value remains poorly understood. This study provides the first systematic screening of commercially available seed mixes in Portugal, [...] Read more.
Urban green spaces are increasingly recognized as important habitats for pollinators, and wildflower seed mixes marketed as pollinator-friendly are gaining popularity, though their actual conservation value remains poorly understood. This study provides the first systematic screening of commercially available seed mixes in Portugal, evaluating their taxonomic composition, origin, life cycle traits, and potential to support pollinator communities. A total of 229 seed mixes were identified. Although these have a predominance of native species (median 86%), the taxonomic diversity was limited, with 91% of mixes comprising species from only one or two families, predominantly Poaceae and Fabaceae, potentially restricting the range of floral resources available to pollinators. Only 21 seed mixes met the criteria for being pollinator-friendly, based on a three-step decision tree prioritizing native species, extended flowering periods, and visual diversity. These showed the highest percentage of native species (median 87%) and a greater representation of flowering plants. However, 76% of all mixes still included at least one non-native species, although none is considered invasive. Perennial species dominated all seed mix types, indicating the potential for the long-term persistence of wildflower meadows in urban spaces. Despite their promise, the ecological quality and transparency of the seed mix composition remain inconsistent, with limited certification or information on species origin. This highlights the need for clearer labeling, regulatory guidance, and ecologically informed formulations. Seed mixes, if properly designed and implemented, represent a largely untapped yet cost-effective tool for enhancing the pollinator habitats and biodiversity within urban landscapes. Full article
Show Figures

Figure 1

14 pages, 1089 KiB  
Article
Modeling Plant Diversity Responses to Fire Recurrence in Disjunct Amazonian Savannas
by Mariana Martins Medeiros de Santana, Rodrigo Nogueira de Vasconcelos, Salustiano Vilar da Costa Neto, Eduardo Mariano Neto and Washington de Jesus Sant’Anna da Franca Rocha
Land 2025, 14(7), 1455; https://doi.org/10.3390/land14071455 - 13 Jul 2025
Viewed by 384
Abstract
Fire is a key ecological driver in tropical savannas, yet its effects on plant biodiversity remain understudied in Amazonian savannas. This study investigates how fire recurrence influences taxonomic and functional diversity in savanna ecosystems in northeastern Amazonia. We conducted vegetation surveys across five [...] Read more.
Fire is a key ecological driver in tropical savannas, yet its effects on plant biodiversity remain understudied in Amazonian savannas. This study investigates how fire recurrence influences taxonomic and functional diversity in savanna ecosystems in northeastern Amazonia. We conducted vegetation surveys across five phytophysiognomies in Amapá State, Brazil, and compiled trait data for 226 plant species. Generalized Additive Mixed Models (GAMMs) were used to evaluate the relationships between fire frequency and diversity metrics across five landscape scales. The results showed that taxonomic diversity—particularly Shannon diversity—exhibited a unimodal response to fire recurrence, with peak diversity occurring at intermediate fire frequencies. Abundance increased with fire frequency, indicating potential dominance by fire-tolerant species. Functional diversity responded more subtly: functional richness and dispersion showed weak, non-linear associations with fire, while functional evenness remained stable. These findings suggest that recurrent fire can reduce taxonomic diversity without strongly altering functional structure, possibly due to functional redundancy among species. The use of multiscale models revealed that biodiversity–fire relationships vary with spatial context. In conclusion, this study highlights the moderate resilience of Amazonian savannas to fire recurrence and emphasizes the need to incorporate these ecosystems into fire management plans in climate change scenarios. Full article
Show Figures

Figure 1

12 pages, 1617 KiB  
Article
Genomic Analysis of Reproductive Trait Divergence in Duroc and Yorkshire Pigs: A Comparison of Mixed Models and Selective Sweep Detection
by Changyi Chen, Yu He, Juan Ke, Xiaoran Zhang, Junwen Fei, Boxing Sun, Hao Sun and Chunyan Bai
Vet. Sci. 2025, 12(7), 657; https://doi.org/10.3390/vetsci12070657 - 11 Jul 2025
Viewed by 340
Abstract
This study aimed to investigate population genetic differences related to reproductive traits between Duroc and Yorkshire (Dutch Large White) pigs using two approaches: linear mixed models that dissect additive and dominant effects, and selective sweep analysis. (1) Methods: Genome-wide single-nucleotide polymorphism (SNP) data [...] Read more.
This study aimed to investigate population genetic differences related to reproductive traits between Duroc and Yorkshire (Dutch Large White) pigs using two approaches: linear mixed models that dissect additive and dominant effects, and selective sweep analysis. (1) Methods: Genome-wide single-nucleotide polymorphism (SNP) data of 3917 Duroc and 3217 Yorkshire pigs were analyzed. The first principal component (PC1) was used as a simulated phenotype to capture population-level variance. Additive and dominant genetic effects were partitioned and evaluated by using the combination of the linear mixed models (LMM) and ADDO’s algorithm (LMM + ADDO). In parallel, selective sweep signals were detected using fixation index (FST) and nucleotide diversity (θπ) analyses. A comparative assessment was then conducted between the LMM + ADDO and the selective sweep analysis results. Significant loci were annotated using quantitative trait loci (QTL) databases and the Ensembl genome browser. (2) Results: There are 39040 SNPs retained after quality control. Using the LMM + ADDO framework with PC1 as a simulated phenotype, a total of 632 significant SNPs and 184 candidate genes were identified. Notably, 587 SNPs and 171 genes were uniquely detected by the LMM + ADDO method and not among loci detected by the top 5% of FST and θπ values. Key candidate genes associated with litter size included HSPG2, KAT6B, SAMD8, and LRMDA, while DLGAP1, MYOM1, and VTI1A were associated with teat number traits. (3) Conclusions: This study demonstrates the power of integrating additive and dominant effect modeling with population genetics approaches for the detection of genomic regions under selection. The findings provide novel insights into the genetic architecture of reproductive traits in pigs and have practical implications for understanding the inheritance of complex traits. Full article
(This article belongs to the Special Issue Future Perspectives in Pig Reproductive Biotechnology)
Show Figures

Figure 1

Back to TopTop