Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,099)

Search Parameters:
Keywords = mixed stands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5214 KiB  
Article
Geothermal–Peltier Hybrid System for Air Cooling and Water Recovery
by Michele Spagnolo, Paolo Maria Congedo, Alessandro Buscemi, Gianluca Falcicchia Ferrara, Marina Bonomolo and Cristina Baglivo
Energies 2025, 18(15), 4115; https://doi.org/10.3390/en18154115 - 3 Aug 2025
Viewed by 71
Abstract
This study proposes a new air treatment system that integrates dehumidification, cooling, and water recovery using a Horizontal Air–Ground Heat Exchanger (HAGHE) combined with Peltier cells. The airflow generated by a fan flows through an HAGHE until it meets a septum on which [...] Read more.
This study proposes a new air treatment system that integrates dehumidification, cooling, and water recovery using a Horizontal Air–Ground Heat Exchanger (HAGHE) combined with Peltier cells. The airflow generated by a fan flows through an HAGHE until it meets a septum on which Peltier cells are placed, and then separates into two distinct streams that lap the two surfaces of the Peltier cells: one stream passes through the cold surfaces, undergoing both sensible and latent cooling with dehumidification; the other stream passes through the hot surfaces, increasing its temperature. The two treated air streams may then pass through a mixing chamber, where they are combined in the appropriate proportions to achieve the desired air supply conditions and ensure thermal comfort in the indoor environment. A Computational Fluid Dynamics (CFD) analysis was carried out to simulate the thermal interaction between the HAGHE and the surrounding soil. The simulation focused on a system installed under the subtropical climate conditions of Nairobi, Africa. The simulation results demonstrate that the HAGHE system is capable of reducing the air temperature by several degrees under typical summer conditions, with enhanced performance observed when the soil is moist. Condensation phenomena were triggered when the relative humidity of the inlet air exceeded 60%, contributing additional cooling through latent heat extraction. The proposed HAGHE–Peltier system can be easily powered by renewable energy sources and configured for stand-alone operation, making it particularly suitable for off-grid applications. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

21 pages, 3566 KiB  
Article
Dendrometer-Based Analysis of Intra-Annual Growth and Water Status in Two Pine Species in a Mediterranean Forest Stand Under a Semi-Arid Climate
by Mehmet S. Özçelik
Forests 2025, 16(8), 1229; https://doi.org/10.3390/f16081229 - 26 Jul 2025
Viewed by 313
Abstract
Stem radius growth (GRO), tree water deficit (TWD), and maximum daily shrinkage (MDS) were monitored throughout 2023 in a semi-arid Mediterranean forest stand in Burdur, Türkiye, where Pinus nigra subsp. pallasiana (Lamb.) Holmboe and Pinus brutia Ten. naturally co-occur. These indicators, derived from [...] Read more.
Stem radius growth (GRO), tree water deficit (TWD), and maximum daily shrinkage (MDS) were monitored throughout 2023 in a semi-arid Mediterranean forest stand in Burdur, Türkiye, where Pinus nigra subsp. pallasiana (Lamb.) Holmboe and Pinus brutia Ten. naturally co-occur. These indicators, derived from electronic band dendrometers, were analyzed in relation to key climatic variables. Results indicated that P. brutia had a longer growth period, while P. nigra exhibited a higher average daily increment under the environmental conditions of 2023 at the study site. Annual stem growth was nearly equal for both species. Based on dendrometer observations, P. brutia exhibited lower normalized TWD and higher normalized MDS values under varying vapor pressure deficit (VPD) and soil water potential (SWP) conditions. A linear mixed-effects model further confirmed that P. brutia consistently maintained lower TWD than P. nigra across a wide climatic range, suggesting a comparatively lower degree of drought-induced water stress. GRO was most influenced by air temperature and VPD, and negatively by SWP. TWD was strongly affected by both VPD and SWP, while MDS was primarily linked to minimum air temperature and VPD. Moreover, MDS in P. brutia appeared more sensitive to climate variability compared to P. nigra. Although drought limited stem growth in both species during the study year, the lower TWD and higher MDS observed in P. brutia may indicate distinct physiological strategies for coping with drought. These findings offer preliminary insights into interspecific differences in water regulation under the particular climatic conditions observed during the study year in this semi-arid Mediterranean ecosystem. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

17 pages, 1976 KiB  
Article
Soil Hydrological Properties and Organic Matter Content in Douglas-Fir and Spruce Stands: Implications for Forest Resilience to Climate Change
by Anna Klamerus-Iwan, Piotr Behan, Ewa Słowik-Opoka, María Isabel Delgado-Moreira and Lizardo Reyna-Bowen
Forests 2025, 16(8), 1217; https://doi.org/10.3390/f16081217 - 24 Jul 2025
Viewed by 297
Abstract
Climate change has intensified over recent decades, prompting shifts in forest management strategies, particularly in the Sudetes region of Poland, where native species like Norway spruce (Picea abies), European beech (Fagus sylvatica), and silver fir (Abies alba) [...] Read more.
Climate change has intensified over recent decades, prompting shifts in forest management strategies, particularly in the Sudetes region of Poland, where native species like Norway spruce (Picea abies), European beech (Fagus sylvatica), and silver fir (Abies alba) have historically dominated. To address these changes, non-native species such as Douglas fir (Pseudotsuga menziesii) have been introduced as potential alternatives. This study, conducted in the Jugów and Świerki forest districts, compared the soil properties and water retention capacities of Douglas fir (Dg) and Norway spruce (Sw) stands (age classes from 8–127 years) in the Fresh Mountain Mixed Forest Site habitat. Field measurements included temperature, humidity, organic matter content, water capacity, and granulometric composition. Results indicate that, in comparison to Sw stands, Dg stands were consistently linked to soils that were naturally finer textured. The observed hydrological changes were mostly supported by these textural differences: In all investigated circumstances, Dg soils demonstrated greater water retention, displaying a water capacity that was around 5% higher. In addition to texture, Dg stands showed reduced soil water repellency and a substantially greater organic matter content (59.74% compared to 27.91% in Sw), which further enhanced soil structure and moisture retention. Conversely, with increasing climatic stress, Sw soils, with coarser textures and less organic matter, showed decreased water retention. The study highlights the importance of species selection in sustainable forest management, especially under climate change. Future research should explore long-term ecological impacts, including effects on microbial communities, nutrient cycling, and biodiversity, to optimize forest resilience and sustainability. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

24 pages, 11000 KiB  
Article
Differences and Influencing Factors of Soil Bacterial Communities Under Different Forest Types on the Southern Slope of the Qilian Mountains
by Shuang Ji, Huichun Xie, Shaobo Du, Shaoxiong Zhang, Zhiqiang Dong, Hongye Li and Xunxun Qiu
Biology 2025, 14(8), 927; https://doi.org/10.3390/biology14080927 - 23 Jul 2025
Viewed by 212
Abstract
Understanding the distribution patterns of soil bacterial community structure and diversity across different forest types is essential for elucidating the mechanisms underlying microbial community assembly and its ecological drivers, particularly under the pressures of climate change. In this study, we examined six forest [...] Read more.
Understanding the distribution patterns of soil bacterial community structure and diversity across different forest types is essential for elucidating the mechanisms underlying microbial community assembly and its ecological drivers, particularly under the pressures of climate change. In this study, we examined six forest types—including four monocultures and two mixed-species stands—to systematically evaluate the structural composition, diversity metrics, and functional potential of soil bacterial communities. Significant differences in microbial structure and functional composition were observed among forest types. Mixed forests exhibited higher soil nutrient levels, more complex structures, and greater water retention capacity, resulting in significantly higher bacterial and functional diversity compared to monoculture forests. Bacterial diversity was greater in subsurface layers than in surface layers. Surface communities in monoculture forests showed relatively high structural heterogeneity, whereas deeper communities in mixed forests displayed more pronounced differentiation. The dominant bacterial phyla were mainly related to carbon and nitrogen metabolism, compound degradation, and anaerobic photosynthesis. Surface bacterial communities were primarily influenced by catalase activity, alkali-hydrolysable nitrogen, bulk density, and pH, whereas subsurface communities were largely controlled by pH, with supplementary regulation by nitrogen and potassium availability. Therefore, forest type and soil depth jointly influence the diversity, composition, and functional attributes of soil microbial communities by modulating soil physicochemical conditions. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

13 pages, 233 KiB  
Article
Exploring the Perceived Value of Standing in Individuals with Lower Limb Impairments
by Yukiyo Shimizu, Hideki Kadone, Yosuke Eguchi, Kai Sasaki, Kenji Suzuki and Yasushi Hada
J. Clin. Med. 2025, 14(14), 5161; https://doi.org/10.3390/jcm14145161 - 21 Jul 2025
Viewed by 313
Abstract
Background: Standing has medical and psychosocial benefits for people with lower limb impairments; however, systemic, logistical, and economic barriers often limit opportunities to stand in daily life. This study explored how users perceive standing and standing-assistive technologies. Methods: This study used a [...] Read more.
Background: Standing has medical and psychosocial benefits for people with lower limb impairments; however, systemic, logistical, and economic barriers often limit opportunities to stand in daily life. This study explored how users perceive standing and standing-assistive technologies. Methods: This study used a mixed-methods approach: in-person interviews (n = 18) and a nationwide web-based survey (n = 125; 74.4% male, mean age 52.2 ± 13.9 years, diagnoses: spinal cord injury 37.6%, cerebrovascular disease 27.2%, and cerebral palsy 16.8%). Results: Participants described the psychosocial values of standing, such as feeling more confident and being able to interact with others at eye level. The web survey revealed that most participants believed that standing was beneficial for health (76.8%) and task efficiency (76.0%), although only 49.6% showed an interest in standing wheelchairs. The multivariate analysis revealed that ongoing standing training was the strongest predictor of positive perceptions of health benefits, task efficiency, and interest in standing wheelchairs. Younger participants showed a greater interest in standing wheelchairs. The reported barriers include a lack of awareness, high costs, and difficulty in accessing training. Conclusions: These findings suggest the need for a user-centered design and improved support systems to integrate standing into the daily lives of people with mobility impairments. Full article
(This article belongs to the Section Clinical Rehabilitation)
28 pages, 5160 KiB  
Article
Comparative Study of Mechanical and Microstructural Properties of Biocemented Sandy Soils Enhanced with Biopolymer: Evaluation of Mixing and Injection Treatment Methods
by Mutlu Şimşek, Semet Çelik and Harun Akoğuz
Appl. Sci. 2025, 15(14), 8090; https://doi.org/10.3390/app15148090 - 21 Jul 2025
Viewed by 275
Abstract
Soil improvement is one of the fundamental practices in civil engineering, with a long-standing history. In today’s context, the rapidly increasing demand for construction driven by urbanization has further emphasized the necessity and significance of soil stabilization techniques. This study aims to determine [...] Read more.
Soil improvement is one of the fundamental practices in civil engineering, with a long-standing history. In today’s context, the rapidly increasing demand for construction driven by urbanization has further emphasized the necessity and significance of soil stabilization techniques. This study aims to determine the optimum parameters for improving sandy soils by incorporating sodium alginate (SA) as a biopolymer additive into the microbial calcium carbonate precipitation (MICP) process. Sand types S1, S2, and S3, each with distinct particle size distributions, were selected, and the specimens were prepared at medium relative density. Three distinct approaches, MICP, SA, and MICP + SA, were tested for comparison. Additionally, two different improvement methods, injection and mixing, were applied to investigate their effects on the geotechnical properties of the soils. In this context, hydraulic conductivity, unconfined compressive strength (UCS), and calcite content tests, as well as scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses, were performed to assess the changes in soil behavior. SA contributed positively to the overall efficiency of the MICP process. The study highlights SA-assisted MICP as an alternative that enhances the microstructural integrity of treated soils and responds to the environmental limitations of conventional methods through sustainable innovation. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

28 pages, 8123 KiB  
Article
Human Metabolism of Sirolimus Revisited
by Baharak Davari, Touraj Shokati, Alexandra M. Ward, Vu Nguyen, Jost Klawitter, Jelena Klawitter and Uwe Christians
Metabolites 2025, 15(7), 489; https://doi.org/10.3390/metabo15070489 - 20 Jul 2025
Viewed by 525
Abstract
Background: Sirolimus (SRL, rapamycin) is a clinically important mTOR inhibitor used in immunosuppression, oncology, and cardiovascular drug-eluting devices. Despite its long-standing FDA approval, the human metabolic profile of SRL remains incompletely characterized. SRL is primarily metabolized by CYP3A enzymes in the liver and [...] Read more.
Background: Sirolimus (SRL, rapamycin) is a clinically important mTOR inhibitor used in immunosuppression, oncology, and cardiovascular drug-eluting devices. Despite its long-standing FDA approval, the human metabolic profile of SRL remains incompletely characterized. SRL is primarily metabolized by CYP3A enzymes in the liver and intestine, but the diversity, pharmacokinetics, and biological activity of its metabolites have been poorly explored due to the lack of structurally identified standards. Methods: To investigate SRL metabolism, we incubated SRL with pooled human liver microsomes (HLM) and isolated the resulting metabolites. Structural characterization was performed using high-resolution mass spectrometry (HRMS) and ion trap MSn. We also applied Density Functional Theory (DFT) calculations to assess the energetic favorability of metabolic transformations and conducted molecular dynamics (MD) simulations to model metabolite interactions within the CYP3A4 active site. Results: We identified 21 unique SRL metabolites, classified into five major structural groups: O-demethylated, hydroxylated, didemethylated, di-hydroxylated, and mixed hydroxylated/demethylated derivatives. DFT analyses indicated that certain demethylation and hydroxylation reactions were energetically preferred, correlating with metabolite abundance. MD simulations further validated these findings by demonstrating the favorable orientation and accessibility of key sites within the CYP3A4 binding pocket. Conclusions: This study provides a comprehensive structural map of SRL metabolism, offering mechanistic insights into the formation of its metabolites. Our integrated approach of experimental and computational analyses lays the groundwork for future investigations into the pharmacodynamic and toxicodynamic effects of SRL metabolites on the mTOR pathway. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Figure 1

24 pages, 1802 KiB  
Systematic Review
Non-Invasive Telemonitoring in Heart Failure: A Systematic Review
by Patrick A. Kwaah, Emmanuel Olumuyide, Kassem Farhat, Barbara Malaga-Espinoza, Ahmed Abdullah, Michael H. Beasley, Novi Y. Sari, Lily K. Stern, Julio A. Lamprea-Montealegre, Adrian daSilva-deAbreu and Jiun-Ruey Hu
Medicina 2025, 61(7), 1277; https://doi.org/10.3390/medicina61071277 - 15 Jul 2025
Viewed by 517
Abstract
Background and Objectives: Heart failure (HF) represents a major public health challenge worldwide, with rising prevalence, high morbidity and mortality rates, and substantial healthcare costs. Non-invasive telemonitoring has emerged as a promising adjunct in HF management, yet its clinical effectiveness remains unclear. Materials [...] Read more.
Background and Objectives: Heart failure (HF) represents a major public health challenge worldwide, with rising prevalence, high morbidity and mortality rates, and substantial healthcare costs. Non-invasive telemonitoring has emerged as a promising adjunct in HF management, yet its clinical effectiveness remains unclear. Materials and Methods: In this systematic review, we summarize randomized controlled trials (RCTs) between 2004 and 2024 examining the efficacy of non-invasive telemonitoring on mortality, readmission, and quality of life (QoL) in HF. In addition, we characterize the heterogeneity of features of different telemonitoring interventions. Results: In total, 32 RCTs were included, comprising 13,294 participants. While some individual studies reported benefits, non-invasive telemonitoring demonstrated mixed effects on mortality, readmission rates, and QoL. The most common modality for interfacing with patients was by mobile application (53%), followed by web portals (22%), and stand-alone devices (19%). Periodic feedback (63%) was more common than continuous feedback (31%) or on-demand feedback (6%). Clinician reviews of patient telemonitoring data was event-triggered (44%) more commonly than based on a prespecified timeline (38%). In most designs (90%), patients played a passive role in telemonitoring. Conclusions: Non-invasive telemonitoring interventions for HF exhibited considerable variation in duration and system design and had a low rate of patient engagement. Future work should focus on identifying telemonitoring-responsive subgroups and refining telemonitoring strategies to complement traditional HF care. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

18 pages, 10178 KiB  
Article
Effects of Legume–Grass Mixture Combinations and Planting Ratios on Forage Productivity and Nutritional Quality in Typical Sand-Fixing Vegetation Areas of the Mu Us Sandy Land
by Yuqing Mi, Hongbin Xu, Lei Zhang, Ruihua Pan, Shengnan Zhang, Haiyan Gao, Haibing Wang and Chunying Wang
Agriculture 2025, 15(14), 1474; https://doi.org/10.3390/agriculture15141474 - 9 Jul 2025
Viewed by 364
Abstract
Monoculture and legume–grass mixed cropping are the two most common planting methods, with mixed cropping generally demonstrating higher hay yield and superior nutritional quality compared to monoculture. However, research on legume–grass mixed cropping for establishing cultivated pastures in typical sand-fixing vegetation areas of [...] Read more.
Monoculture and legume–grass mixed cropping are the two most common planting methods, with mixed cropping generally demonstrating higher hay yield and superior nutritional quality compared to monoculture. However, research on legume–grass mixed cropping for establishing cultivated pastures in typical sand-fixing vegetation areas of the Mu Us Sandy Land remains scarce. These knowledge gaps have hindered the synergistic integration of forage production and ecological restoration in the region. This study conducted mixed cropping trials in the sand-fixing vegetation zone of the Mu Us Sandy Land using Dahurian wildrye (Elymus dahuricus), Mongolian wheatgrass (Agropyron mongolicum), and Standing milkvetch (Astragalus adsurgens) to investigate the effects of species combinations and planting ratios on forage productivity and nutritional quality, aiming to determine the optimal planting strategy. Results showed that in the first establishment year, the yield of all mixed cropping systems significantly exceeded that of monocultured Dahurian wildrye and Mongolian wheatgrass. All mixed cropping combinations exhibited land equivalent ratios (LER) and relative yield totals (RYT) below 1, indicating varying degrees of interspecific competition during the first year, with grass species generally demonstrating stronger competitive abilities than legumes. Mixed-cropped forages showed higher crude protein, crude fat, and crude ash content compared to monocultures, alongside lower neutral detergent fiber (NDF) and acid detergent fiber (ADF) levels, suggesting improved relative feed value (RFV). Among the combinations, E5A5 and E6A4 (5:5 and 6:4 ratio of Dahurian wildrye to Standing milkvetch) achieved higher RFV, with RFV gradually declining as the legume proportion decreased. In conclusion, both monoculture and legume–grass mixed cropping are viable in the Mu Us Sandy Land’s sand-fixing vegetation areas and the E5A5 combination (5:5 ratio of Dahurian wildrye to Standing milkvetch) as having the highest overall score, demonstrating that this mixed cropping ratio optimally balances yield and nutritional quality, making it the recommended planting protocol for the region. This mixed cropping system offers a theoretical foundation for efficiently establishing artificial pastures in the Mu Us Sandy Land, supporting regional pastoral industry development and desertification mitigation. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

62 pages, 4192 KiB  
Review
Advancements in Magnetorheological Foams: Composition, Fabrication, AI-Driven Enhancements and Emerging Applications
by Hesamodin Khodaverdi and Ramin Sedaghati
Polymers 2025, 17(14), 1898; https://doi.org/10.3390/polym17141898 - 9 Jul 2025
Viewed by 577
Abstract
Magnetorheological (MR) foams represent a class of smart materials with unique tunable viscoelastic properties when subjected to external magnetic fields. Combining porous structures with embedded magnetic particles, these materials address challenges such as leakage and sedimentation, typically encountered in conventional MR fluids while [...] Read more.
Magnetorheological (MR) foams represent a class of smart materials with unique tunable viscoelastic properties when subjected to external magnetic fields. Combining porous structures with embedded magnetic particles, these materials address challenges such as leakage and sedimentation, typically encountered in conventional MR fluids while offering advantages like lightweight design, acoustic absorption, high energy harvesting capability, and tailored mechanical responses. Despite their potential, challenges such as non-uniform particle dispersion, limited durability under cyclic loads, and suboptimal magneto-mechanical coupling continue to hinder their broader adoption. This review systematically addresses these issues by evaluating the synthesis methods (ex situ vs. in situ), microstructural design strategies, and the role of magnetic particle alignment under varying curing conditions. Special attention is given to the influence of material composition—including matrix types, magnetic fillers, and additives—on the mechanical and magnetorheological behaviors. While the primary focus of this review is on MR foams, relevant studies on MR elastomers, which share fundamental principles, are also considered to provide a broader context. Recent advancements are also discussed, including the growing use of artificial intelligence (AI) to predict the rheological and magneto-mechanical behavior of MR materials, model complex device responses, and optimize material composition and processing conditions. AI applications in MR systems range from estimating shear stress, viscosity, and storage/loss moduli to analyzing nonlinear hysteresis, magnetostriction, and mixed-mode loading behavior. These data-driven approaches offer powerful new capabilities for material design and performance optimization, helping overcome long-standing limitations in conventional modeling techniques. Despite significant progress in MR foams, several challenges remain to be addressed, including achieving uniform particle dispersion, enhancing viscoelastic performance (storage modulus and MR effect), and improving durability under cyclic loading. Addressing these issues is essential for unlocking the full potential of MR foams in demanding applications where consistent performance, mechanical reliability, and long-term stability are crucial for safety, effectiveness, and operational longevity. By bridging experimental methods, theoretical modeling, and AI-driven design, this work identifies pathways toward enhancing the functionality and reliability of MR foams for applications in vibration damping, energy harvesting, biomedical devices, and soft robotics. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

27 pages, 1431 KiB  
Article
Environmental and Behavioral Dimensions of Private Autonomous Vehicles in Sustainable Urban Mobility
by Iulia Ioana Mircea, Eugen Rosca, Ciprian Sorin Vlad and Larisa Ivascu
Clean Technol. 2025, 7(3), 56; https://doi.org/10.3390/cleantechnol7030056 - 7 Jul 2025
Viewed by 451
Abstract
In the current context, where environmental concerns are gaining increased attention, the transition toward sustainable urban mobility stands out as a necessary and responsible step. Technological advancements over the past decade have brought private autonomous vehicles, particularly those defined by the Society of [...] Read more.
In the current context, where environmental concerns are gaining increased attention, the transition toward sustainable urban mobility stands out as a necessary and responsible step. Technological advancements over the past decade have brought private autonomous vehicles, particularly those defined by the Society of Automotive Engineers Levels 4 and 5, into focus as promising solutions for mitigating road congestion and reducing greenhouse gas emissions. However, the extent to which Autonomous Vehicles can fulfill this potential depends largely on user acceptance, patterns of use, and their integration within broader green energy and sustainability policies. The present paper aims to develop an integrated conceptual model that links behavioral determinants to environmental outcomes, assessing how individuals’ intention to adopt private autonomous vehicles can contribute to sustainable urban mobility. The model integrates five psychosocial determinants—perceived usefulness, trust in technology, social influence, environmental concern, and perceived behavioral control—with contextual variables such as energy source, infrastructure availability, and public policy. These components interact to predict users’ intention to adopt AVs and their perceived contribution to urban sustainability. Methodologically, the study builds on a narrative synthesis of the literature and proposes a framework applicable to empirical validation through structural equation modeling (SEM). The model draws on established frameworks such as Technology Acceptance Model (TAM), Theory of Planned Behavior, and Unified Theory of Acceptance and Use of Technology, incorporating constructs including perceived usefulness, trust in technology, social influence, environmental concern, and perceived behavioral control, constructs later to be examined in relation to key contextual variables, including the energy source powering Autonomous Vehicles—such as electricity from mixed or renewable grids, hydrogen, or hybrid systems—and the broader policy environment (regulatory frameworks, infrastructure investment, fiscal incentives, and alignment with climate and mobility strategies and others). The research provides relevant directions for public policy and behavioral interventions in support of the development of clean and smart urban transport in the age of automation. Full article
Show Figures

Figure 1

20 pages, 3626 KiB  
Article
Environmental, Genetic and Structural Interactions Affecting Phytophthora spp. in Citrus: Insights from Mixed Modelling and Mediation Analysis to Support Agroecological Practices
by Dalal Boudoudou, Majid Mounir, Mohamed El bakkali, Allal Douira and Hamid Benyahia
Agronomy 2025, 15(7), 1631; https://doi.org/10.3390/agronomy15071631 - 4 Jul 2025
Viewed by 424
Abstract
This study investigates the complex interactions between environmental, genetic, and structural factors that influence two key parameters: the density of Phytophthora spp. propagules per gram of dry soil (NPSS) and the number of colonies (NC). Using advanced statistical approaches, we examined the combined [...] Read more.
This study investigates the complex interactions between environmental, genetic, and structural factors that influence two key parameters: the density of Phytophthora spp. propagules per gram of dry soil (NPSS) and the number of colonies (NC). Using advanced statistical approaches, we examined the combined effects of variables such as soil moisture, dry weight, temporal fluctuations, and rootstocks. The results show a significant linear relationship between NPSS and soil moisture, as well as a strong positive correlation between NPSS and NC. Genetic analyses reveal a predominant contribution of environmental factors to trait variability, with high phenotypic coefficient of variation (PCV) and low broad-sense heritability. Mixed models highlight the synergistic impact of soil moisture, NC, and dry soil weight on NPSS, as well as significant temporal effects. Mediation analysis confirms that soil moisture influences NPSS primarily through an indirect effect transmitted by NC, with a mediated proportion exceeding 94%. Finally, multivariate analysis reveals significant differences between rootstocks, with Citrus Volkameriana B2 28613 (R4) and Mandarin Sunki x P.T. B2 38581 (R7) standing out as the most performant. These results highlight the importance of an integrated management of environmental variables and rootstocks to optimize soil productivity and agronomic quality. The implications of this study provide a solid foundation for guiding genetic improvement and soil management strategies, balancing environmental constraints and the opportunities offered by targeted genetic selection. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

18 pages, 56511 KiB  
Article
A CMOS Current Reference with Novel Temperature Compensation Based on Geometry-Dependent Threshold Voltage Effects
by Francesco Gagliardi, Andrea Ria, Massimo Piotto and Paolo Bruschi
Electronics 2025, 14(13), 2698; https://doi.org/10.3390/electronics14132698 - 3 Jul 2025
Viewed by 316
Abstract
Next-generation smart sensing devices necessitate on-chip integration of power-efficient reference circuits. The latters are required to provide other circuit blocks with highly reliable bias signals, even in the presence of temperature shifts and supply voltage disturbances, while draining a small fraction of the [...] Read more.
Next-generation smart sensing devices necessitate on-chip integration of power-efficient reference circuits. The latters are required to provide other circuit blocks with highly reliable bias signals, even in the presence of temperature shifts and supply voltage disturbances, while draining a small fraction of the overall power budget. In particular, it is especially challenging to design current references with enhanced robustness and efficiency; hence, thorough exploration of novel architectures and design approaches is needed for this type of circuits. In this work, we propose a novel CMOS-only current reference, achieving temperature compensation by exploiting geometry dependences of the threshold voltage (specifically, the reverse short-channel effect and the narrow-channel effect). This allows reaching first-order temperature compensation within a single current reference core. Implemented in 0.18 µm CMOS, a version of the proposed current reference designed to deliver 141 nA (with 377 nW of total power consumption) achieved an average temperature coefficient equal to 194 ppm/°C (from −20 °C to 80 °C) and an average line sensitivity of −0.017%/V across post-layout statistical Monte Carlo simulations. Based on such findings, the newly proposed design methodology stands out as a noteworthy solution to design robust current references for power-constrained mixed-signal systems-on-chip. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

21 pages, 1175 KiB  
Article
The Effects of ESG Scores and ESG Momentum on Stock Returns and Volatility: Evidence from U.S. Markets
by Luis Jacob Escobar-Saldívar, Dacio Villarreal-Samaniego and Roberto J. Santillán-Salgado
J. Risk Financial Manag. 2025, 18(7), 367; https://doi.org/10.3390/jrfm18070367 - 2 Jul 2025
Viewed by 1326
Abstract
The impact of Environmental, Social, and Governance (ESG) scores on financial performance remains a subject of debate, as the literature reports mixed evidence regarding their effect on stock returns. This research aims to examine the relationship between ESG ratings and the change in [...] Read more.
The impact of Environmental, Social, and Governance (ESG) scores on financial performance remains a subject of debate, as the literature reports mixed evidence regarding their effect on stock returns. This research aims to examine the relationship between ESG ratings and the change in ESG scores, or ESG Momentum, concerning both returns and risk of a large sample of stocks traded on U.S. exchanges. The study examined a sample of 3856 stocks traded on U.S. exchanges, considering 20 years of quarterly data from December 2002 to December 2022. We applied multi-factor models and tested them through pooled ordinary, fixed effects, and random effects panel regression methods. Our results show negative relationships between ESG scores and stock returns and between ESG Momentum and volatility. Contrarily, we find positive associations between ESG Momentum and returns and between ESG scores and volatility. Although high ESG scores are generally associated with lower long-term stock returns, an increase in a company’s ESG rating tends to translate into immediate positive returns and reduced risk. Accordingly, investors may benefit from strategies that focus on companies actively improving their ESG performance, while firms themselves stand to gain by signaling continuous advancement in ESG-related areas. Full article
(This article belongs to the Special Issue Emerging Trends and Innovations in Corporate Finance and Governance)
Show Figures

Figure 1

22 pages, 1585 KiB  
Article
Beyond Climate Reductionism: Environmental Risks and Ecological Entanglements in the Chittagong Hill Tracts of Bangladesh
by Md. Nadiruzzaman, Hosna J. Shewly, Md. Bazlur Rashid, Sharif A. Mukul and Orchisman Dutta
Earth 2025, 6(3), 63; https://doi.org/10.3390/earth6030063 - 30 Jun 2025
Viewed by 1507
Abstract
Although Bangladesh is frequently regarded as ‘ground zero’ for climate change, the Chittagong Hill Tracts (CHTs) have only recently been acknowledged for their environmental vulnerabilities, especially after the devastating rainfall and landslides of 2017. However, attributing these risks solely to climate change overlooks [...] Read more.
Although Bangladesh is frequently regarded as ‘ground zero’ for climate change, the Chittagong Hill Tracts (CHTs) have only recently been acknowledged for their environmental vulnerabilities, especially after the devastating rainfall and landslides of 2017. However, attributing these risks solely to climate change overlooks their entanglement with structural inequalities, extractive development, deforestation, and long-standing marginalization. The study examines how climate variability intersects with broader environmental risks through a mixed-methods approach, integrating 30 years of NASA TRMM_3B42_daily rainfall data with a household survey (n = 400), life stories, focus group discussions, and key informant interviews conducted across all three CHT districts. Findings do not support a singular attribution to climate change. Rather, they reveal compounded vulnerabilities shaped by land degradation, water scarcity, flash flooding, and landslides—often linked to deforestation and neoliberal development interventions. We argue that the CHT exemplifies ecological entanglement, shaped by climate variability and structural inequalities rooted in land governance and Indigenous dispossession. By integrating spatially disaggregated climate data with historically grounded local experiential narratives, this study contributes to climate justice debates through relational, place-based understandings of vulnerability in the Global South. Full article
Show Figures

Figure 1

Back to TopTop