Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (328)

Search Parameters:
Keywords = mitophagy mitochondrial dysfunction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 877 KiB  
Review
Mitochondrial Metabolism in T-Cell Exhaustion
by Fei Li, Yu Feng, Zesheng Yin and Yahong Wang
Int. J. Mol. Sci. 2025, 26(15), 7400; https://doi.org/10.3390/ijms26157400 (registering DOI) - 31 Jul 2025
Abstract
T cells play a vital role in resisting pathogen invasion and maintaining immune homeostasis. However, T cells gradually become exhausted under chronic antigenic stimulation, and this exhaustion is closely related to mitochondrial dysfunction in T cells. Mitochondria play a crucial role in the [...] Read more.
T cells play a vital role in resisting pathogen invasion and maintaining immune homeostasis. However, T cells gradually become exhausted under chronic antigenic stimulation, and this exhaustion is closely related to mitochondrial dysfunction in T cells. Mitochondria play a crucial role in the metabolic reprogramming of T cells to achieve the desired immune response. Here, we compiled the latest research on how mitochondrial metabolism determines T cell function and differentiation, with the mechanisms mainly including mitochondrial biogenesis, fission, fusion, mitophagy, and mitochondrial transfer. In addition, the alterations in mitochondrial metabolism in T-cell exhaustion were also reviewed. Furthermore, we discussed intervention strategies targeting mitochondrial metabolism to reverse T cell exhaustion in detail, including inducing PGC-1α expression, alleviating reactive oxygen species (ROS) production or hypoxia, enhancing ATP production, and utilizing mitochondrial transfer. Targeting mitochondrial metabolism in exhausted T cells may achieve the goal of reversing and preventing T cell exhaustion. Full article
(This article belongs to the Special Issue Mitochondria: Transport of Metabolites Across Biological Membranes)
Show Figures

Figure 1

16 pages, 7397 KiB  
Article
Astragaloside IV Ameliorates Cerebral Ischemic-Reperfusion Injury via Improving Mitochondrial Function and Inhibiting Neuronal Apoptosis
by Tongtong He, Xiaohong Zhou, Xiaorong Wang, Yanmeng Zhao, Zhenyi Liu, Ping Gao, Weijuan Gao and Xiaofei Jin
Curr. Issues Mol. Biol. 2025, 47(8), 597; https://doi.org/10.3390/cimb47080597 - 29 Jul 2025
Viewed by 172
Abstract
Cerebral ischemic-reperfusion injury (CIRI) involves mitochondrial dysfunction, with mitophagy playing a key role. Astragaloside IV (AS-IV) shows neuroprotective potential; however, its mechanisms related to mitochondrial function and apoptosis remain unclear. Methods: Using a rat MCAO/R model, we evaluated the AS-IV’s effects via neurological [...] Read more.
Cerebral ischemic-reperfusion injury (CIRI) involves mitochondrial dysfunction, with mitophagy playing a key role. Astragaloside IV (AS-IV) shows neuroprotective potential; however, its mechanisms related to mitochondrial function and apoptosis remain unclear. Methods: Using a rat MCAO/R model, we evaluated the AS-IV’s effects via neurological scores, TTC staining, and histopathology. Molecular assays and docking were used to analyze mitophagy (PINK1, Parkin, p62, ROS, Bcl-2, and BAX) and apoptosis markers. Results: AS-IV improved neurological function, reduced infarct volume, and alleviated neuronal/mitochondrial damage. It upregulated PINK1/Parkin, decreased p62, and modulated Bcl-2/Bax. Docking confirmed AS-IV binds PINK1/Parkin with high affinity. Conclusions: AS-IV protects against CIRI by regulating the PINK1/Parkin pathway, improving mitochondrial function, and inhibiting neuronal apoptosis, providing an experimental basis for the clinical use Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Graphical abstract

22 pages, 5657 KiB  
Article
SUL-150 Limits Vascular Remodeling and Ventricular Failure in Pulmonary Arterial Hypertension
by Lysanne M. Jorna, Dalibor Nakládal, Johannes N. van Heuveln, Diederik E. van der Feen, Quint A. J. Hagdorn, Guido P. L. Bossers, Annemieke van Oosten, Michel Weij, Ludmila Tkáčiková, Soňa Tkáčiková, Robert H. Henning, Martin C. Harmsen, Rolf M. F. Berger and Guido Krenning
Int. J. Mol. Sci. 2025, 26(15), 7181; https://doi.org/10.3390/ijms26157181 - 25 Jul 2025
Viewed by 200
Abstract
Pulmonary arterial hypertension (PAH) is a rare, progressive, and incurable disease characterized by an elevated pulmonary blood pressure, extensive remodeling of the pulmonary vasculature, increased pulmonary vascular resistance, and culminating in right ventricular failure. Mitochondrial dysfunction has a major role in the pathogenesis [...] Read more.
Pulmonary arterial hypertension (PAH) is a rare, progressive, and incurable disease characterized by an elevated pulmonary blood pressure, extensive remodeling of the pulmonary vasculature, increased pulmonary vascular resistance, and culminating in right ventricular failure. Mitochondrial dysfunction has a major role in the pathogenesis of PAH and secondary right ventricular failure, and its targeting may offer therapeutic benefit. In this study, we provide proof-of-concept for the use of the mitochondrially active drug SUL-150 to treat PAH. PAH was induced in rats by monocrotaline, followed by the placement of an aortocaval shunt one week later. The mitoprotective compound SUL-150 (~6 mg·kg−1·day−1) or vehicle was administered intraperitoneally via osmotic minipump for 28 days, implanted at the time of aortocaval shunt placement. Vehicle-treated PAH rats had dyspnea and showed pulmonary artery remodeling with increased responsiveness to phenylephrine, in addition to remodeling of the intrapulmonary arterioles. SUL-150 administration mitigated the dyspnea and the remodeling responses. Vehicle-treated PAH rats developed right ventricular hypertrophy, fibrosis, and failure. SUL-150 administration precluded cardiomyocyte hypertrophy and inhibited ventricular fibrogenesis. Right ventricular failure in vehicle-treated PAH rats induced mitochondrial loss and dysfunction associated with a decrease in mitophagy. SUL-150 was unable to prevent the mitochondrial loss but improved mitochondrial health in the right ventricle, which culminated in the preservation of right ventricular function. We conclude that SUL-150 improves PAH-associated morbidity by the amelioration of pulmonary vascular remodeling and right ventricular failure and may be considered a promising therapeutic candidate to slow disease progression in pulmonary arterial hypertension and secondary right ventricular failure. Full article
Show Figures

Figure 1

26 pages, 2490 KiB  
Article
Diet-Derived Advanced Glycation End-Products (AGEs) Induce Muscle Wasting In Vitro, and a Standardized Vaccinium macrocarpon Extract Restrains AGE Formation and AGE-Dependent C2C12 Myotube Atrophy
by Martina Paiella, Tommaso Raiteri, Simone Reano, Dominga Manfredelli, Tommaso Manenti, Giulia Gentili, Hajar Meskine, Sara Chiappalupi, Giovanni Bellomo, Flavia Prodam, Cinzia Antognelli, Roccaldo Sardella, Anna Migni, Guglielmo Sorci, Laura Salvadori, Nicoletta Filigheddu and Francesca Riuzzi
Antioxidants 2025, 14(8), 900; https://doi.org/10.3390/antiox14080900 - 23 Jul 2025
Viewed by 313
Abstract
Dietary advanced glycation end-products (dAGEs) contained in high-sugar/fat and ultra-processed foods of the “Western diet” (WD) pattern predispose to several diseases by altering protein function or increasing oxidative stress and inflammation via RAGE (receptor for advanced glycation end-products). Although elevated endogenous AGEs are [...] Read more.
Dietary advanced glycation end-products (dAGEs) contained in high-sugar/fat and ultra-processed foods of the “Western diet” (WD) pattern predispose to several diseases by altering protein function or increasing oxidative stress and inflammation via RAGE (receptor for advanced glycation end-products). Although elevated endogenous AGEs are associated with loss of muscle mass and functionality (i.e., muscle wasting; MW), the impact of dAGEs on MW has not been elucidated. Here, we show that the most common dAGEs or their precursor, methylglyoxal (MGO), induce C2C12 myotube atrophy as endogenous AGE-derived BSA. ROS production, mitochondrial dysfunction, mitophagy, ubiquitin–proteasome activation, and inhibition of myogenic potential are common atrophying mechanisms used by MGO and AGE-BSA. Although of different origins, ROS are mainly responsible for AGE-induced myotube atrophy. However, while AGE-BSA activates the RAGE-myogenin axis, reduces anabolic mTOR, and causes mitochondrial damage, MGO induces glycolytic stress and STAT3 activation without affecting RAGE expression. Among thirty selected natural compounds, Vaccinium macrocarpon (VM), Camellia sinensis, and chlorophyll showed a surprising ability in counteracting in vitro AGE formation. However, only the standardized VM, containing anti-glycative metabolites as revealed by UHPLC-HRMS analysis, abrogates AGE-induced myotube atrophy. Collectively, our data suggest that WD-linked dAGE consumption predisposes to MW, which might be restricted by VM food supplements. Full article
Show Figures

Graphical abstract

16 pages, 2972 KiB  
Article
Protective Effects of N-Acetylcysteine in Alleviating Cocaine-Mediated Microglial Activation and Neuroinflammation
by Uma Maheswari Deshetty, Abiola Oladapo, Yazhini Mohankumar, Elias Horanieh, Shilpa Buch and Palsamy Periyasamy
Biology 2025, 14(7), 893; https://doi.org/10.3390/biology14070893 - 20 Jul 2025
Viewed by 395
Abstract
Cocaine misuse induces microglial activation and neuroinflammation, contributing to neurodegeneration and behavioral impairments. Prior studies have shown that cocaine induces mitochondrial dysfunction, dysregulated mitophagy, and lysosomal impairment in microglia. Here, we investigated the therapeutic potential of N-acetylcysteine (NAC) in mitigating cocaine-induced microglial activation [...] Read more.
Cocaine misuse induces microglial activation and neuroinflammation, contributing to neurodegeneration and behavioral impairments. Prior studies have shown that cocaine induces mitochondrial dysfunction, dysregulated mitophagy, and lysosomal impairment in microglia. Here, we investigated the therapeutic potential of N-acetylcysteine (NAC) in mitigating cocaine-induced microglial activation and neuroinflammation. Mouse primary microglial cells (MPMs) were pretreated with NAC (5 mM) for 1 h prior to cocaine exposure (10 µM, 24 h) and analyzed for markers of microglial activation, mitophagy, and lysosomal integrity using Western blot, Seahorse assays, lysosomal pH, and membrane potential measurements. In vivo, C57BL/6N mice received NAC (200 mg/kg, i.p.) 1 h before daily cocaine injections (20 mg/kg, i.p.) for 7 days. Behavioral assays (open field, novel object recognition) and brain biomarker analyses (frontal cortex, hippocampus) were performed. Cocaine exposure elevated CD11b, mitophagy markers (PINK1, PARK, and DLP1), and autophagy proteins (Beclin1, and p62), while impairing mitochondrial and lysosomal functions. NAC pretreatment restored mitochondrial and lysosomal function, reduced reactive oxygen species, and normalized protein expression. In vivo, NAC also alleviated cocaine-induced microglial activation and behavioral deficits. These findings highlight NAC as a promising therapeutic agent to counteract cocaine-mediated neuroinflammation and neurotoxicity. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Graphical abstract

23 pages, 5768 KiB  
Article
Effect of Peanut Shell Extract and Luteolin on Gut Microbiota and High-Fat Diet-Induced Sequelae of the Inflammatory Continuum in a Metabolic Syndrome-like Murine Model
by Hemalata Deshmukh, Roberto Mendóza, Julianna M. Santos, Sathish Sivaprakasam, Moamen M. Elmassry, Jonathan M. Miranda, Patrick Q. Pham, Zarek Driver, Matthew Bender, Jannette M. Dufour and Chwan-Li Shen
Nutrients 2025, 17(14), 2290; https://doi.org/10.3390/nu17142290 - 10 Jul 2025
Viewed by 437
Abstract
Background: Metabolic syndrome (MetS) is characterized by chronic inflammation, oxidative stress, and mitochondrial dysfunction. MetS is associated with increased intestinal permeability and dysbiosis. The objective of this study was to investigate the effects of peanut shell extract (PSE) and luteolin (LUT) on the [...] Read more.
Background: Metabolic syndrome (MetS) is characterized by chronic inflammation, oxidative stress, and mitochondrial dysfunction. MetS is associated with increased intestinal permeability and dysbiosis. The objective of this study was to investigate the effects of peanut shell extract (PSE) and luteolin (LUT) on the kidneys, colon, and ileum in a MetS-like murine model. Methods: Thirty-six male Slc6a14y/− mice were divided into four groups: low-fat diet (LFD), high-fat diet (HFD), HFD + 200 mg PSE/kg BW (PSE, p.o.), and HFD + 100 mg LUT/kg BW (LUT, p.o.) for 4 months. Outcome measures included glucose homeostasis, intestinal permeability, gut microbiome composition, and mRNA gene expression of mitochondrial homeostasis and inflammation/oxidative stress in the kidneys, colon, and ileum. Results: HFD resulted in glucose dysregulation with hyperglycemia and insulin resistance. PSE and LUT improved insulin tolerance and beta-cell function. PSE and LUT mitigated HFD-increased serum lipopolysaccharide-binding protein concentration. Perturbations in the gut microbiome were associated with HFD, and PSE or LUT reversed some of these changes. Specifically, Phocaeicola vulgatus was depleted by HFD and reverted by PSE or LUT. Relative to the LFD group, the HFD group (1) upregulated mitochondrial fusion (MFN1, MFN2, OPA1), mitophagy (TLR4, PINK1, LC3B), and inflammation (NFκB, TNFα, IL6), and (2) downregulated mitochondrial fission (FIS1, DRP1), biosynthesis (PGC1α, NRF1, NRF2, TFAM), electron transport chain (complex I), and antioxidant enzyme (SOD1) in the kidneys, colon, and ileum. Conclusions: PSE and LUT reversed such HFD-induced changes in the aforementioned gene expression levels. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health—2nd Edition)
Show Figures

Figure 1

20 pages, 581 KiB  
Review
Mapping Disorders with Neurological Features Through Mitochondrial Impairment Pathways: Insights from Genetic Evidence
by Anna Makridou, Evangelie Sintou, Sofia Chatzianagnosti, Iasonas Dermitzakis, Sofia Gargani, Maria Eleni Manthou and Paschalis Theotokis
Curr. Issues Mol. Biol. 2025, 47(7), 504; https://doi.org/10.3390/cimb47070504 - 1 Jul 2025
Viewed by 547
Abstract
Mitochondrial dysfunction is a key driver of neurological disorders due to the brain’s high energy demands and reliance on mitochondrial homeostasis. Despite advances in genetic characterization, the heterogeneity of mitochondrial diseases complicates diagnosis and treatment. Mitochondrial dysfunction spans a broad clinical spectrum, from [...] Read more.
Mitochondrial dysfunction is a key driver of neurological disorders due to the brain’s high energy demands and reliance on mitochondrial homeostasis. Despite advances in genetic characterization, the heterogeneity of mitochondrial diseases complicates diagnosis and treatment. Mitochondrial dysfunction spans a broad clinical spectrum, from early-onset encephalopathies to adult neurodegeneration, with phenotypic and genetic variability necessitating integrated models of mitochondrial neuropathology. Mutations in nuclear or mitochondrial DNA disrupt energy production, induce oxidative stress, impair mitophagy and biogenesis, and lead to neuronal degeneration and apoptosis. This narrative review provides a structured synthesis of current knowledge by classifying mitochondrial-related neurological disorders according to disrupted biochemical pathways, in order to clarify links between genetic mutations, metabolic impairments, and clinical phenotypes. More specifically, a pathway-oriented framework was adopted that organizes disorders based on the primary mitochondrial processes affected: oxidative phosphorylation (OXPHOS), pyruvate metabolism, fatty acid β-oxidation, amino acid metabolism, phospholipid remodeling, multi-system interactions, and neurodegeneration with brain iron accumulation. Genetic, clinical and molecular data were analyzed to elucidate shared and distinct pathophysiological features. A comprehensive table synthesizes genetic causes, inheritance patterns, and neurological manifestations across disorders. This approach offers a conceptual framework that connects molecular findings to clinical practice, supporting more precise diagnostic strategies and the development of targeted therapies. Advances in whole-exome sequencing, pharmacogenomic profiling, mitochondrial gene editing, metabolic reprogramming, and replacement therapy—promise individualized therapeutic approaches, although hurdles including heteroplasmy, tissue specificity, and delivery challenges must be overcome. Ongoing molecular research is essential for translating these advances into improved patient care and quality of life. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Biology 2025)
Show Figures

Figure 1

18 pages, 2642 KiB  
Review
Postbiotics as Mitochondrial Modulators in Inflammatory Bowel Disease: Mechanistic Insights and Therapeutic Potential
by Santosh Kumar Prajapati, Dhananjay Yadav, Shweta Katiyar, Shalini Jain and Hariom Yadav
Biomolecules 2025, 15(7), 954; https://doi.org/10.3390/biom15070954 - 1 Jul 2025
Viewed by 532
Abstract
Postbiotics, which are non-viable microbial derivatives including short-chain fatty acids (SCFAs), microbial peptides, and cell wall components, are emerging as novel therapeutic agents for Inflammatory Bowel Disease (IBD). Unlike probiotics, postbiotics offer a safer, more stable alternative while retaining potent bioactivity. IBD, encompassing [...] Read more.
Postbiotics, which are non-viable microbial derivatives including short-chain fatty acids (SCFAs), microbial peptides, and cell wall components, are emerging as novel therapeutic agents for Inflammatory Bowel Disease (IBD). Unlike probiotics, postbiotics offer a safer, more stable alternative while retaining potent bioactivity. IBD, encompassing Crohn’s disease and ulcerative colitis, is characterized by chronic gastrointestinal inflammation, epithelial barrier dysfunction, and immune dysregulation. Recent evidence links mitochondrial dysfunction marked by impaired energy metabolism, oxidative stress, and apoptosis with the pathogenesis and persistence of IBD. Postbiotics have shown the ability to modulate mitochondrial health through multiple mechanisms. SCFAs such as butyrate serve as primary energy substrates for colonocytes, enhancing mitochondrial respiration and promoting biogenesis. They improve mitochondrial function and boost ATP production. Moreover, postbiotics reduce oxidative damage by regulating antioxidant defenses. These antioxidant actions limit epithelial apoptosis and preserve cellular integrity. In addition, postbiotics regulate mitophagy and help maintain mitochondrial quality and reduce inflammation. Structural components such as lipoteichoic acid and peptidoglycan have been shown to interact with mitochondrial pathways and modulate inflammatory responses. Collectively, this review explores the interplay between mitochondrial dysfunction, IBD, and preventive approach using postbiotics. Understanding the connections with postbiotics could open up new avenues for therapeutic interventions aimed at mitigating IBD severity in people with IBD. Full article
(This article belongs to the Special Issue Mitochondrial ROS in Health and Disease)
Show Figures

Figure 1

21 pages, 10345 KiB  
Article
Intratracheal Administration of Polystyrene Micro(nano)plastics with a Mixed Particle Size Promote Pulmonary Fibrosis in Rats by Activating TGF-β1 Signaling and Destabilizing Mitochondrial Dynamics and Mitophagy in a Dose- and Time-Dependent Manner
by Shuang Xia, Chunli Yuan, Wei Long, Zongcheng Wu, Xiuqin Li, Nan Wang, Mumu Gao, Zhe Li, Peilun Li, Peng Liu, Xiaoxi Qu and Lina Sun
Toxics 2025, 13(6), 487; https://doi.org/10.3390/toxics13060487 - 9 Jun 2025
Viewed by 865
Abstract
Background: Microplastics (MPs) can be inhaled by people. However, the relationships between long-term exposure to inhaled MPs, pulmonary fibrosis, and mitochondrial dysfunction are not completely clear. Methods: SD rats were exposed to a 0.0125, 0.125, 0.31, or 1.25 mg/day dosage of mixed polystyrene [...] Read more.
Background: Microplastics (MPs) can be inhaled by people. However, the relationships between long-term exposure to inhaled MPs, pulmonary fibrosis, and mitochondrial dysfunction are not completely clear. Methods: SD rats were exposed to a 0.0125, 0.125, 0.31, or 1.25 mg/day dosage of mixed polystyrene MPs (PS-MPs), with the particle sizes ranging from 500 nm to 4 µm, via intratracheal administration, for 7 to 35 consecutive days. Results: PS-MPs with particle sizes ranging from 1 µm to 4 µm were deposited in the lungs. The contents of NFκB-mediated proinflammatory cytokines were increased in the lungs of the rats after 7 days of PS-MP exposure. After exposure to PS-MPs, the degree of collagen deposition and the expression of TGF-β1/Smad increased significantly, and the levels of phosphorylated Akt (p-Akt) and nuclear β-catenin decreased significantly. The number of healthy mitochondria decreased, the expression of mitochondrial fission and fusion proteins increased, and the level of PINK1/Parkin-mediated mitophagy decreased in the lungs of the rats after 7 days of PS-MP exposure. A benchmark dose (BMD) of 0.151 mg/day and a benchmark dose lower confidence limit (BMDL) of 0.031 mg/day were identified on the basis of the subchronic effects of the intratracheal administration of the PS-MPs. Conclusions: Our study provides an in-depth understanding of the potential impacts of MP pollution on respiratory diseases. Full article
(This article belongs to the Special Issue Health Effects and Toxicology Studies of Emerging Contaminants)
Show Figures

Graphical abstract

18 pages, 3009 KiB  
Article
Lipopolysaccharide Induces Mitochondrial Fragmentation and Energetic Shift in Reactive Microglia: Evidence for a Cell-Autonomous Program of Metabolic Plasticity
by Marcelle Pereira dos Santos, Vitor Emanuel Leocadio, Lívia de Sá Hayashide, Mariana Marques, Clara Fernandes Carvalho, Antonio Galina and Luan Pereira Diniz
Toxins 2025, 17(6), 293; https://doi.org/10.3390/toxins17060293 - 9 Jun 2025
Viewed by 889
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play essential roles in maintaining brain homeostasis. While transient activation is protective, chronic microglial reactivity contributes to neuroinflammatory damage and neurodegeneration. The mitochondrial mechanisms underlying this shift remain poorly understood. Here, we [...] Read more.
Microglia, the resident immune cells of the central nervous system (CNS), play essential roles in maintaining brain homeostasis. While transient activation is protective, chronic microglial reactivity contributes to neuroinflammatory damage and neurodegeneration. The mitochondrial mechanisms underlying this shift remain poorly understood. Here, we investigated whether lipopolysaccharide (LPS) induces coordinated mitochondrial and metabolic alterations in BV-2 microglial cells. LPS stimulation (100 ng/mL, 24 h) induced a reactive phenotype, with increased Iba1 (+82%), F4/80 (+132%), and Cd68 (+44%), alongside elevated hydrogen peroxide (~6-fold) and nitrite (~45-fold). Cytotoxicity increased by 40% (LDH assay), and cell viability dropped to ~80% of the control (MTT). Extracellular lactate increased, indicating glycolytic reprogramming. However, LPS-primed cells showed greater ATP depletion under antimycin A challenge, reflecting impaired metabolic flexibility. Hoechst staining revealed a ~4-fold increase in pyknotic nuclei, indicating apoptosis. Mitochondrial dysfunction was confirmed by a 30–40% reduction in membrane potential (TMRE, JC-1), a ~30% loss of Tomm20, and changes in dynamics: phospho-Drp1 increased (+23%), while Mfn1/2 decreased (33%). Despite a ~70% rise in Lamp2 signal, Tomm20–Lamp2 colocalization decreased, suggesting impaired mitophagy. High-resolution respirometry revealed decreased basal (−22%), ATP-linked (24%), and spare respiratory capacity (41%), with increased non-mitochondrial oxygen consumption. These findings demonstrate that LPS induces mitochondrial dysfunction, loss of metabolic adaptability, and increased apoptotic susceptibility in microglia. Mitochondrial quality control and energy flexibility emerge as relevant targets to better understand and potentially modulate microglial responses in neuroinflammatory and neurodegenerative conditions. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Graphical abstract

21 pages, 679 KiB  
Review
Respiratory Pathophysiology Through the Lens of Mitochondria
by Masafumi Noguchi, Keiko Iwata and Norihito Shintani
Clin. Bioenerg. 2025, 1(1), 4; https://doi.org/10.3390/clinbioenerg1010004 - 5 Jun 2025
Viewed by 513
Abstract
Mitochondrial integrity is indispensable for pulmonary cellular homeostasis, with its dysfunction increasingly being implicated as a central mechanism in the etiology of respiratory disorders. We present a comprehensive overview of the integral role played by mitochondrial dynamics, such as fusion, fission, mitophagy, intracellular [...] Read more.
Mitochondrial integrity is indispensable for pulmonary cellular homeostasis, with its dysfunction increasingly being implicated as a central mechanism in the etiology of respiratory disorders. We present a comprehensive overview of the integral role played by mitochondrial dynamics, such as fusion, fission, mitophagy, intracellular trafficking, and biogenesis, in maintaining pulmonary homeostasis. This study further explores how perturbations in these processes contribute to the pathogenesis of diverse lung disorders, including chronic obstructive pulmonary disease (COPD), bronchopulmonary dysplasia (BPD), pulmonary arterial hypertension (PAH), idiopathic pulmonary fibrosis (IPF), and drug-induced lung disease. It further explores how perturbations in these processes contribute to the pathogenesis of diverse lung disorders—for example, chronic obstructive pulmonary disease (COPD; responsible for roughly 55% of chronic respiratory disease cases), bronchopulmonary dysplasia (BPD; affecting up to 45% of infants born before 29 weeks of gestation), pulmonary arterial hypertension (PAH; a rare condition causing about 22,000 deaths worldwide in 2021), idiopathic pulmonary fibrosis (IPF; 0.33–4.51 cases per 10,000 persons), and drug-induced lung disease. Evidence demonstrates that mitochondria-triggered apoptosis, metabolic shifts, and subsequent inflammatory signaling act together to drive airway tissue remodeling and fibrotic progression across these lung diseases. Furthermore, this review evaluates the therapeutic potential of mitochondrial-targeted drugs, such as MitoQ and SS31, and metformin, which have shown promise in basic and preclinical studies. Preclinical and early clinical evaluations include an ongoing trial of the mitochondrial-targeted antioxidant MitoQ (NCT02966665, phase 1) in COPD, a 4-month open-label DCA study in PAH patients, and studies determining the preclinical efficacy of SS-31 and metformin in IPF models. Ultimately, integrating mitochondrial biomarkers into clinical practice holds the potential not only to facilitate early disease detection but also to enable the development of precision therapies, thereby offering renewed hope for patients afflicted with chronic lung diseases. Full article
Show Figures

Figure 1

20 pages, 1329 KiB  
Review
Mitochondrial Dysfunction: The Silent Catalyst of Kidney Disease Progression
by Nikola Pavlović, Marinela Križanac, Marko Kumrić, Katarina Vukojević and Joško Božić
Cells 2025, 14(11), 794; https://doi.org/10.3390/cells14110794 - 28 May 2025
Cited by 2 | Viewed by 2354
Abstract
Mitochondrial dysfunction is a pivotal driver in the pathogenesis of acute kidney injury (AKI), chronic kidney disease (CKD), and congenital anomalies of the kidney and urinary tract (CAKUT). The kidneys, second only to the heart in mitochondrial density, rely on oxidative phosphorylation to [...] Read more.
Mitochondrial dysfunction is a pivotal driver in the pathogenesis of acute kidney injury (AKI), chronic kidney disease (CKD), and congenital anomalies of the kidney and urinary tract (CAKUT). The kidneys, second only to the heart in mitochondrial density, rely on oxidative phosphorylation to meet the high ATP demands of solute reabsorption and filtration. Disrupted mitochondrial dynamics, such as excessive fission mediated by Drp1, exacerbate tubular apoptosis and inflammation in AKI models like ischemia–reperfusion injury. In CKD, persistent mitochondrial dysfunction drives oxidative stress, fibrosis, and metabolic reprogramming, with epigenetic mechanisms (DNA methylation, histone modifications, non-coding RNAs) regulating genes critical for mitochondrial homeostasis, such as PMPCB and TFAM. Epigenetic dysregulation also impacts mitochondrial–ER crosstalk, influencing calcium signaling and autophagy in renal pathology. Mitophagy, the selective clearance of damaged mitochondria, plays a dual role in kidney disease. While PINK1/Parkin-mediated mitophagy protects against cisplatin-induced AKI by preventing mitochondrial fragmentation and apoptosis, its dysregulation contributes to fibrosis and CKD progression. For instance, macrophage-specific loss of mitophagy regulators like MFN2 amplifies ROS production and fibrotic responses. Conversely, BNIP3/NIX-dependent mitophagy attenuates contrast-induced AKI by suppressing NLRP3 inflammasome activation. In diabetic nephropathy, impaired mitophagy correlates with declining eGFR and interstitial fibrosis, highlighting its diagnostic and therapeutic potential. Emerging therapeutic strategies target mitochondrial dysfunction through antioxidants (e.g., MitoQ, SS-31), mitophagy inducers (e.g., COPT nanoparticles), and mitochondrial transplantation, which mitigates AKI by restoring bioenergetics and modulating inflammatory pathways. Nanotechnology-enhanced drug delivery systems, such as curcumin-loaded nanoparticles, improve renal targeting and reduce oxidative stress. Epigenetic interventions, including PPAR-α agonists and KLF4 modulators, show promise in reversing metabolic reprogramming and fibrosis. These advances underscore mitochondria as central hubs in renal pathophysiology. Tailored interventions—ranging from Drp1 inhibition to mitochondrial transplantation—hold transformative potential to mitigate kidney injury and improve clinical outcomes. Additionally, dietary interventions and novel regulators such as adenogens are emerging as promising strategies to modulate mitochondrial function and attenuate kidney disease progression. Future research should address the gaps in understanding the role of mitophagy in CAKUT and optimize targeted delivery systems for precision therapies. Full article
Show Figures

Figure 1

20 pages, 1310 KiB  
Review
Mitochondrial Dysfunction in the Development and Progression of Cardiometabolic Diseases: A Narrative Review
by Loukia Pliouta, Stamatios Lampsas, Aikaterini Kountouri, Emmanouil Korakas, John Thymis, Eva Kassi, Evangelos Oikonomou, Ignatios Ikonomidis and Vaia Lambadiari
J. Clin. Med. 2025, 14(11), 3706; https://doi.org/10.3390/jcm14113706 - 25 May 2025
Cited by 1 | Viewed by 1095
Abstract
Mitochondria play a central role in energy metabolism and continuously adapt through dynamic processes such as fusion and fission. When the balance between these processes is disrupted, it can lead to mitochondrial dysfunction and increased oxidative stress, contributing to the development and progression [...] Read more.
Mitochondria play a central role in energy metabolism and continuously adapt through dynamic processes such as fusion and fission. When the balance between these processes is disrupted, it can lead to mitochondrial dysfunction and increased oxidative stress, contributing to the development and progression of various cardiometabolic diseases (CMDs). Their role is crucial in diabetes mellitus (DM), since their dysfunction drives β-cell apoptosis, immune activation, and chronic inflammation through excessive ROS production, worsening endogenous insulin secretion. Moreover, sympathetic nervous system activation and altered dynamics, contribute to hypertension through oxidative stress, impaired mitophagy, endothelial dysfunction, and cardiomyocyte hypertrophy. Furthermore, the role of mitochondria is catalytic in endothelial dysfunction through excessive reactive oxygen species (ROS) production, disrupting the vascular tone, permeability, and apoptosis, while impairing antioxidant defense and promoting inflammatory processes. Mitochondrial oxidative stress, resulting from an imbalance between ROS/Reactive nitrogen species (RNS) imbalance, promotes atherosclerotic alterations and oxidative modification of oxidizing low-density lipoprotein (LDL). Mitochondrial DNA (mtDNA), situated in close proximity to the inner mitochondrial membrane where ROS are generated, is particularly susceptible to oxidative damage. ROS activate redox-sensitive inflammatory signaling pathways, notably the nuclear factor kappa B (NF-κB) pathway, leading to the transcriptional upregulation of proinflammatory cytokines, chemokines, and adhesion molecules. This proinflammatory milieu promotes endothelial activation and monocyte recruitment, thereby perpetuating local inflammation and enhancing atherogenesis. Additionally, mitochondrial disruptions in heart failure promote further ischemic injury and excessive oxidative stress release and impair ATP production and Ca2⁺ dysregulation, contributing to cell death, fibrosis, and decreased cardiac performance. This narrative review aims to investigate the intricate relationship between mitochondrial dysfunction and CMDs. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

21 pages, 7360 KiB  
Article
CIRBP Enhances the Function of Yak Cumulus Cells by Activating AMPK/mTOR-Mediated Mitophagy
by Rui Zhang, Yan Cui, Yangyang Pan, Meng Wang, Sijiu Yu, Ruihua Xu, Wenbin Ma, Junqian Wang, Donglan Zhong and Zhengxing Jiao
Biomolecules 2025, 15(6), 759; https://doi.org/10.3390/biom15060759 - 24 May 2025
Viewed by 540
Abstract
Cold-inducible RNA-binding protein (CIRBP) has been reported to be involved in various cellular functions by regulating programmed cell death (PCD). However, the specific mechanism and function of CIRBP in regulating mitochondrial autophagy are still unclear. In this study, we found that CIRBP induced [...] Read more.
Cold-inducible RNA-binding protein (CIRBP) has been reported to be involved in various cellular functions by regulating programmed cell death (PCD). However, the specific mechanism and function of CIRBP in regulating mitochondrial autophagy are still unclear. In this study, we found that CIRBP induced mitophagy through the AMPK/mTOR pathway to improve the function of yak cumulus cells (YCCs). We observed that low temperatures (32 °C) activated autophagy, increased E2 and P4 secretion, and up-regulated CIRBP expression. CIRBP overexpression activated mitophagy in YCCs, promoted cumulus diffusion, enhanced E2 and P4 synthesis and secretion, and inhibited apoptosis. CIRBP overexpression significantly attenuated the dysfunction of YCCs induced by the inhibition of mitophagy, whereas the activation of mitophagy exerted the same effect as CIRBP overexpression. DOX HCL is an AMPK/mTOR pathway inhibitor. CIRBP overexpression can successfully alleviate the inhibition of mitophagy caused by DOX HCL inhibiting the AMPK/mTOR pathway and can significantly enhance the mitophagy induced by AMPK/mTOR pathway activation in YCCs. Furthermore, we found that the increased expression of CIRBP protein alleviated the apoptosis caused by AKT pathway activation. In summary, CIRBP promoted mitophagy by activating AMPK/mTOR pathway, thereby promoting the synthesis and secretion of steroid hormones and cumulus diffusion in YCCs and enhancing YCCs survival through activating autophagy and AKT signaling pathway, and then improve the function of YCCs. Our research provided new perspectives on CIRBP’s regulation of cell death and highlighted its potential role in female reproductive systems. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Graphical abstract

38 pages, 2728 KiB  
Review
Mitochondrial Dysfunction in Genetic and Non-Genetic Parkinson’s Disease
by Martina Lucchesi, Letizia Biso, Marco Bonaso, Biancamaria Longoni, Bianca Buchignani, Roberta Battini, Filippo Maria Santorelli, Stefano Doccini and Marco Scarselli
Int. J. Mol. Sci. 2025, 26(9), 4451; https://doi.org/10.3390/ijms26094451 - 7 May 2025
Cited by 2 | Viewed by 1556
Abstract
Mitochondrial dysfunction is a hallmark of Parkinson’s disease (PD) pathogenesis, contributing to increased oxidative stress and impaired endo-lysosomal-proteasome system efficiency underlying neuronal injury. Genetic studies have identified 19 monogenic mutations—accounting for ~10% of PD cases—that affect mitochondrial function and are associated with early- [...] Read more.
Mitochondrial dysfunction is a hallmark of Parkinson’s disease (PD) pathogenesis, contributing to increased oxidative stress and impaired endo-lysosomal-proteasome system efficiency underlying neuronal injury. Genetic studies have identified 19 monogenic mutations—accounting for ~10% of PD cases—that affect mitochondrial function and are associated with early- or late-onset PD. Early-onset forms typically involve genes encoding proteins essential for mitochondrial quality control, including mitophagy and structural maintenance, while late-onset mutations impair mitochondrial dynamics, bioenergetics, and trafficking. Atypical juvenile genetic syndromes also exhibit mitochondrial abnormalities. In idiopathic PD, environmental neurotoxins such as pesticides and MPTP act as mitochondrial inhibitors, disrupting complex I activity and increasing reactive oxygen species. These converging pathways underscore mitochondria as a central node in PD pathology. This review explores the overlapping and distinct mitochondrial mechanisms in genetic and non-genetic PD, emphasizing their role in neuronal vulnerability. Targeting mitochondrial dysfunction finally offers a promising therapeutic avenue to slow or modify disease progression by intervening at a key point of neurodegenerative convergence. Full article
(This article belongs to the Special Issue Mitochondrial Function in Human Health and Disease: 2nd Edition)
Show Figures

Figure 1

Back to TopTop