Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,811)

Search Parameters:
Keywords = missions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 10200 KiB  
Article
Real-Time Temperature Estimation of the Machine Drive SiC Modules Consisting of Parallel Chips per Switch for Reliability Modelling and Lifetime Prediction
by Tamer Kamel, Olamide Olagunju and Temitope Johnson
Machines 2025, 13(8), 689; https://doi.org/10.3390/machines13080689 - 5 Aug 2025
Abstract
This paper presents a new methodical procedure to monitor in real time the junction temperature of SiC Power MOSFET modules of parallel-connected chips utilized in machine drive systems to develop their reliability modelling and predict their lifetime. The paper implements the on-line measurements [...] Read more.
This paper presents a new methodical procedure to monitor in real time the junction temperature of SiC Power MOSFET modules of parallel-connected chips utilized in machine drive systems to develop their reliability modelling and predict their lifetime. The paper implements the on-line measurements of temperature-sensitive electrical parameters (TSEP) approach, particularly the quasi-threshold voltage and the on-state drain to source voltage, to estimate the junction temperature in real time. The proposed procedure firstly applied computational fluid dynamics analysis on the module under study to determine the chip which undergoes the maximum junction temperature during typical operation of the module. Then, a calibration phase, using double-pulse tests on the selected chip, is used to generate look-up tables to relate the TSEPs under study to the junction temperature. Next, the real-time estimation of junction temperature was accomplished during the on-line operation of the three-phase inverter, taking into account the induced distortion/noises due to operation of the parallel-connected chips in the module. After that, a comparison between the two TSEPs under study was provided to demonstrate their advantages/drawbacks. Finally, reliability modelling was developed to predict the lifetime of the studied module based on the estimated junction temperature under a predetermined mission profile. Full article
(This article belongs to the Special Issue Power Converters: Topology, Control, Reliability, and Applications)
Show Figures

Figure 1

28 pages, 4437 KiB  
Review
Development and Core Technologies of Long-Range Underwater Gliders: A Review
by Xu Wang, Changyu Wang, Ke Zhang, Kai Ren and Jiancheng Yu
J. Mar. Sci. Eng. 2025, 13(8), 1509; https://doi.org/10.3390/jmse13081509 - 5 Aug 2025
Abstract
Long-range underwater gliders (LRUGs) have emerged as essential platforms for sustained and autonomous observation in deep and remote marine environments. This paper provides a comprehensive review of their developmental status, performance characteristics, and application progress. Emphasis is placed on two critical enabling technologies [...] Read more.
Long-range underwater gliders (LRUGs) have emerged as essential platforms for sustained and autonomous observation in deep and remote marine environments. This paper provides a comprehensive review of their developmental status, performance characteristics, and application progress. Emphasis is placed on two critical enabling technologies that fundamentally determine endurance: lightweight, pressure-resistant hull structures and high-efficiency buoyancy-driven propulsion systems. First, the role of carbon fiber composite pressure hulls in enhancing energy capacity and structural integrity is examined, with attention to material selection, fabrication methods, compressibility compatibility, and antifouling resistance. Second, the evolution of buoyancy control systems is analyzed, covering the transition to hybrid active–passive architectures, rapid-response actuators based on smart materials, thermohaline energy harvesting, and energy recovery mechanisms. Based on this analysis, the paper identifies four key technical challenges and proposes strategic research directions, including the development of ultralight, high-strength structural materials; integrated multi-mechanism antifouling technologies; energy-optimized coordinated buoyancy systems; and thermally adaptive glider platforms. Achieving a system architecture with ultra-long endurance, enhanced energy efficiency, and robust environmental adaptability is anticipated to be a foundational enabler for future long-duration missions and globally distributed underwater glider networks. Full article
(This article belongs to the Section Ocean Engineering)
21 pages, 9017 KiB  
Review
Sentence-Level Insights from the Martian Literature: A Natural Language Processing Approach
by Yizheng Zhang, Jian Zhang, Qian Huang, Yangyi Sun, Jia Shao, Yu Gou, Kaiming Huang and Shaodong Zhang
Appl. Sci. 2025, 15(15), 8663; https://doi.org/10.3390/app15158663 (registering DOI) - 5 Aug 2025
Abstract
Mars has been a primary focus of planetary science, with significant advancements over the past two decades across disciplines including geological evolution, surface environment, and atmospheric and space science. However, the rapid growth of the related literature has rendered traditional manual review methods [...] Read more.
Mars has been a primary focus of planetary science, with significant advancements over the past two decades across disciplines including geological evolution, surface environment, and atmospheric and space science. However, the rapid growth of the related literature has rendered traditional manual review methods increasingly inadequate. This inadequacy is particularly evident in interdisciplinary research, which is often characterized by dispersed topics and complex semantics. To address this challenge, this study proposes an automated analysis framework based on natural language processing (NLP) to systematically review the Martian research in Earth and space science over the past two decades. The research database contains 151,196 Mars-related sentences extracted from 10,655 publications spanning 2001 to 2024. Using machine learning techniques, the framework clusters Mars-related sentences into semantically coherent groups and applies topic modeling to extract core research themes. It then analyzes their temporal evolution across the Martian solid, surface, atmosphere, and space environments. Finally, through sentiment analysis and semantic matching, it highlights unresolved scientific questions and potential directions for future research. This approach offers a novel perspective on the knowledge structure underlying Mars exploration and demonstrates the potential of NLP for large-scale literature analysis in planetary science. The findings potentially provide a structured foundation for building an interdisciplinary, peer-reviewed Mars knowledge base, which may inform future scientific research and mission planning. Full article
(This article belongs to the Topic Artificial Intelligence Models, Tools and Applications)
Show Figures

Figure 1

22 pages, 3217 KiB  
Article
A Deep Reinforcement Learning Approach for Energy Management in Low Earth Orbit Satellite Electrical Power Systems
by Silvio Baccari, Elisa Mostacciuolo, Massimo Tipaldi and Valerio Mariani
Electronics 2025, 14(15), 3110; https://doi.org/10.3390/electronics14153110 - 5 Aug 2025
Abstract
Effective energy management in Low Earth Orbit satellites is critical, as inefficient energy management can significantly affect mission objectives. The dynamic and harsh space environment further complicates the development of effective energy management strategies. To address these challenges, we propose a Deep Reinforcement [...] Read more.
Effective energy management in Low Earth Orbit satellites is critical, as inefficient energy management can significantly affect mission objectives. The dynamic and harsh space environment further complicates the development of effective energy management strategies. To address these challenges, we propose a Deep Reinforcement Learning approach using Deep-Q Network to develop an adaptive energy management framework for Low Earth Orbit satellites. Compared to traditional techniques, the proposed solution autonomously learns from environmental interaction, offering robustness to uncertainty and online adaptability. It adjusts to changing conditions without manual retraining, making it well-suited for handling modeling uncertainties and non-stationary dynamics typical of space operations. Training is conducted using a realistic satellite electric power system model with accurate component parameters and single-orbit power profiles derived from real space missions. Numerical simulations validate the controller performance across diverse scenarios, including multi-orbit settings, demonstrating superior adaptability and efficiency compared to conventional Maximum Power Point Tracking methods. Full article
Show Figures

Figure 1

11 pages, 240 KiB  
Article
Modeling Generative AI and Social Entrepreneurial Searches: A Contextualized Optimal Stopping Approach
by Junic Kim
Adm. Sci. 2025, 15(8), 302; https://doi.org/10.3390/admsci15080302 - 5 Aug 2025
Abstract
This theoretical study rigorously investigates how generative artificial intelligence reshapes decision-making in social entrepreneurship by modeling the opportunity search process through the lens of optimal stopping theory. Social entrepreneurs often face high uncertainty and resource constraints, requiring them to strategically balance the cost [...] Read more.
This theoretical study rigorously investigates how generative artificial intelligence reshapes decision-making in social entrepreneurship by modeling the opportunity search process through the lens of optimal stopping theory. Social entrepreneurs often face high uncertainty and resource constraints, requiring them to strategically balance the cost of continued searching with the chance of identifying socially impactful opportunities. This study develops a formal model that captures two core mechanisms of generative AI: reducing search costs and increasing the probability of mission-aligned opportunity success. The theoretical analysis yields three key findings. First, generative AI accelerates the optimal stopping point, allowing social entrepreneurs to act more quickly on high-potential opportunities by lowering cognitive and resource burdens. Second, the influence of increased success probability outweighs that of reduced search costs, underscoring the strategic importance of insight quality over efficiency in socially embedded contexts. Third, the benefits of generative AI are amplified in uncertain environments, where it helps navigate complexity and mitigate information asymmetry. These insights contribute to a deeper conceptual understanding of how intelligent technologies transform the cognitive and strategic dimensions of social entrepreneurship, and they offer empirically testable propositions for future research at the intersection of AI, innovation, and mission-driven opportunity pursuit. Full article
27 pages, 2361 KiB  
Review
Review of Thrust Regulation and System Control Methods of Variable-Thrust Liquid Rocket Engines in Space Drones
by Meng Sun, Xiangzhou Long, Bowen Xu, Haixia Ding, Xianyu Wu, Weiqi Yang, Wei Zhao and Shuangxi Liu
Actuators 2025, 14(8), 385; https://doi.org/10.3390/act14080385 - 4 Aug 2025
Abstract
Variable-thrust liquid rocket engines are essential for precision landing in deep-space exploration, reusable launch vehicle recovery, high-accuracy orbital maneuvers, and emergency obstacle evasions of space drones. However, with the increasingly complex space missions, challenges remain with the development of different technical schemes. In [...] Read more.
Variable-thrust liquid rocket engines are essential for precision landing in deep-space exploration, reusable launch vehicle recovery, high-accuracy orbital maneuvers, and emergency obstacle evasions of space drones. However, with the increasingly complex space missions, challenges remain with the development of different technical schemes. In view of these issues, this paper systematically reviews the technology’s evolution through mechanical throttling, electromechanical precision regulation, and commercial space-driven deep throttling. Then, the development of key variable thrust technologies for liquid rocket engines is summarized from the perspective of thrust regulation and control strategy. For instance, thrust regulation requires synergistic flow control devices and adjustable pintle injectors to dynamically match flow rates with injection pressure drops, ensuring combustion stability across wide thrust ranges—particularly under extreme conditions during space drones’ high-maneuver orbital adjustments—though pintle injector optimization for such scenarios remains challenging. System control must address strong multivariable coupling, response delays, and high-disturbance environments, as well as bottlenecks in sensor reliability and nonlinear modeling. Furthermore, prospects are made in response to the research progress, and breakthroughs are required in cryogenic wide-range flow regulation for liquid oxygen-methane propellants, combustion stability during deep throttling, and AI-based intelligent control to support space drones’ autonomous orbital transfer, rapid reusability, and on-demand trajectory correction in complex deep-space missions. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

14 pages, 18722 KiB  
Article
Safe Autonomous UAV Target-Tracking Under External Disturbance, Through Learned Control Barrier Functions
by Promit Panja, Madan Mohan Rayguru and Sabur Baidya
Robotics 2025, 14(8), 108; https://doi.org/10.3390/robotics14080108 - 3 Aug 2025
Viewed by 53
Abstract
Ensuring the safe operation of Unmanned Aerial Vehicles (UAVs) is crucial for both mission-critical and safety-critical tasks. In scenarios where UAVs must track airborne targets, they need to follow the target’s path while maintaining a safe distance, even in the presence of unmodeled [...] Read more.
Ensuring the safe operation of Unmanned Aerial Vehicles (UAVs) is crucial for both mission-critical and safety-critical tasks. In scenarios where UAVs must track airborne targets, they need to follow the target’s path while maintaining a safe distance, even in the presence of unmodeled dynamics and environmental disturbances. This paper presents a novel collision avoidance strategy for dynamic quadrotor UAVs during target-tracking missions. We propose a safety controller that combines a learning-based Control Barrier Function (CBF) with standard sliding mode feedback. Our approach employs a neural network that learns the true CBF constraint, accounting for wind disturbances, while the sliding mode controller addresses unmodeled dynamics. This unified control law ensures safe leader-following behavior and precise trajectory tracking. By leveraging a learned CBF, the controller offers improved adaptability to complex and unpredictable environments, enhancing both the safety and robustness of the system. The effectiveness of our proposed method is demonstrated through the AirSim platform using the PX4 flight controller. Full article
(This article belongs to the Special Issue Applications of Neural Networks in Robot Control)
23 pages, 386 KiB  
Article
Balancing Tradition, Reform, and Constraints: A Study of Principal Leadership Practices in Chinese Primary Schools
by Chenzhi Li, Edmond Hau-Fai Law, Yunyun Huang and Ke Ding
Educ. Sci. 2025, 15(8), 988; https://doi.org/10.3390/educsci15080988 (registering DOI) - 3 Aug 2025
Viewed by 87
Abstract
It is well-established that principal leadership significantly influences student learning in developed countries, yet much less is known about how leadership practices manifest in complex systems like China’s, where rapid modernization intersects with deep-rooted educational traditions. In particular, Chinese principals face multiple challenges [...] Read more.
It is well-established that principal leadership significantly influences student learning in developed countries, yet much less is known about how leadership practices manifest in complex systems like China’s, where rapid modernization intersects with deep-rooted educational traditions. In particular, Chinese principals face multiple challenges in balancing the implementation of educational reform policies, high parental expectations, and their own educational ideology, all within limited resources. The current study examines these challenges in Shenzhen, a city which typically manifests them through its rapid development. Specifically, we took a phenomenographic approach and interviewed the principals and staff from five prestigious primary schools to extract the key components behind the diverse school leaders’ styles and practices. Results showed that, the Chinese leadership practice model consists of five key components: mission setting, infrastructure reconstruction, teacher development, learning improvement, and educators’ networking. Although the first four components in this model align with established theories in developed countries, networking was identified as a distinctive and critical element for securing resources and fostering collaboration. These findings may broaden the scope of leadership theories and underscore the need to contextualize leadership practices based on local challenges and dynamics. It also offers practical insights for school leaders on navigating challenges to improve teacher and student outcomes. Full article
(This article belongs to the Special Issue School Leadership and School Improvement)
Show Figures

Figure 1

18 pages, 4799 KiB  
Article
An Adaptive CNN-Based Approach for Improving SWOT-Derived Sea-Level Observations Using Drifter Velocities
by Sarah Asdar and Bruno Buongiorno Nardelli
Remote Sens. 2025, 17(15), 2681; https://doi.org/10.3390/rs17152681 - 3 Aug 2025
Viewed by 60
Abstract
The Surface Water and Ocean Topography (SWOT) mission provides unprecedented high-resolution observations of sea-surface height. However, their direct use in ocean circulation studies is complicated by the presence of small-scale unbalanced motion signals and instrumental noise, which hinder accurate estimation of geostrophic velocities. [...] Read more.
The Surface Water and Ocean Topography (SWOT) mission provides unprecedented high-resolution observations of sea-surface height. However, their direct use in ocean circulation studies is complicated by the presence of small-scale unbalanced motion signals and instrumental noise, which hinder accurate estimation of geostrophic velocities. To address these limitations, we developed an adaptive convolutional neural network (CNN)-based filtering technique that refines SWOT-derived sea-level observations. The network includes multi-head attention layers to exploit information on concurrent wind fields and standard altimetry interpolation errors. We train the model with a custom loss function that accounts for the differences between geostrophic velocities computed from SWOT sea-surface topography and simultaneous in-situ drifter velocities. We compare our method to existing filtering techniques, including a U-Net-based model and a variational noise-reduction filter. Our adaptive-filtering CNN produces accurate velocity estimates while preserving small-scale features and achieving a substantial noise reduction in the spectral domain. By combining satellite and in-situ data with machine learning, this work demonstrates the potential of an adaptive CNN-based filtering approach to enhance the accuracy and reliability of SWOT-derived sea-level and velocity estimates, providing a valuable tool for global oceanographic applications. Full article
Show Figures

Figure 1

32 pages, 6588 KiB  
Article
Path Planning for Unmanned Aerial Vehicle: A-Star-Guided Potential Field Method
by Jaewan Choi and Younghoon Choi
Drones 2025, 9(8), 545; https://doi.org/10.3390/drones9080545 - 1 Aug 2025
Viewed by 291
Abstract
The utilization of Unmanned Aerial Vehicles (UAVs) in missions such as reconnaissance and surveillance has grown rapidly, underscoring the need for efficient path planning algorithms that ensure both optimality and collision avoidance. The A-star algorithm is widely used for global path planning due [...] Read more.
The utilization of Unmanned Aerial Vehicles (UAVs) in missions such as reconnaissance and surveillance has grown rapidly, underscoring the need for efficient path planning algorithms that ensure both optimality and collision avoidance. The A-star algorithm is widely used for global path planning due to its ability to generate optimal routes; however, its high computational cost makes it unsuitable for real-time applications, particularly in unknown or dynamic environments. For local path planning, the Artificial Potential Field (APF) algorithm enables real-time navigation by attracting the UAV toward the target while repelling it from obstacles. Despite its efficiency, APF suffers from local minima and limited performance in dynamic settings. To address these challenges, this paper proposes the A-star-Guided Potential Field (AGPF) algorithm, which integrates the strengths of A-star and APF to achieve robust performance in both global and local path planning. The AGPF algorithm was validated through simulations conducted in the Robot Operating System (ROS) environment. Simulation results demonstrate that AGPF produces smoother and more optimal paths than A-star, while avoiding the local minima issues inherent in APF. Furthermore, AGPF effectively handles moving and previously unknown obstacles by generating real-time avoidance trajectories, demonstrating strong adaptability in dynamic and uncertain environments. Full article
Show Figures

Figure 1

36 pages, 12384 KiB  
Article
A Soil Moisture-Informed Seismic Landslide Model Using SMAP Satellite Data
by Ali Farahani and Majid Ghayoomi
Remote Sens. 2025, 17(15), 2671; https://doi.org/10.3390/rs17152671 - 1 Aug 2025
Viewed by 259
Abstract
Earthquake-triggered landslides pose significant hazards to lives and infrastructure. While existing seismic landslide models primarily focus on seismic and terrain variables, they often overlook the dynamic nature of hydrologic conditions, such as seasonal soil moisture variability. This study addresses this gap by incorporating [...] Read more.
Earthquake-triggered landslides pose significant hazards to lives and infrastructure. While existing seismic landslide models primarily focus on seismic and terrain variables, they often overlook the dynamic nature of hydrologic conditions, such as seasonal soil moisture variability. This study addresses this gap by incorporating satellite-based soil moisture data from NASA’s Soil Moisture Active Passive (SMAP) mission into the assessment of seismic landslide occurrence. Using landslide inventories from five major earthquakes (Nepal 2015, New Zealand 2016, Papua New Guinea 2018, Indonesia 2018, and Haiti 2021), a balanced global dataset of landslide and non-landslide cases was compiled. Exploratory analysis revealed a strong association between elevated pre-event soil moisture and increased landslide occurrence, supporting its relevance in seismic slope failure. Moreover, a Random Forest model was trained and tested on the dataset and demonstrated excellent predictive performance. To assess the generalizability of the model, a leave-one-earthquake-out cross-validation approach was also implemented, in which the model trained on four events was tested on the fifth. This approach outperformed comparable models that did not consider soil moisture, such as the United States Geological Survey (USGS) seismic landslide model, confirming the added value of satellite-based soil moisture data in improving seismic landslide susceptibility assessments. Full article
(This article belongs to the Special Issue Satellite Soil Moisture Estimation, Assessment, and Applications)
Show Figures

Figure 1

20 pages, 413 KiB  
Article
Spectral Graph Compression in Deploying Recommender Algorithms on Quantum Simulators
by Chenxi Liu, W. Bernard Lee and Anthony G. Constantinides
Computers 2025, 14(8), 310; https://doi.org/10.3390/computers14080310 - 1 Aug 2025
Viewed by 146
Abstract
This follow-up scientific case study builds on prior research to explore the computational challenges of applying quantum algorithms to financial asset management, focusing specifically on solving the graph-cut problem for investment recommendation. Unlike our prior study, which focused on idealized QAOA performance, this [...] Read more.
This follow-up scientific case study builds on prior research to explore the computational challenges of applying quantum algorithms to financial asset management, focusing specifically on solving the graph-cut problem for investment recommendation. Unlike our prior study, which focused on idealized QAOA performance, this work introduces a graph compression pipeline that enables QAOA deployment under real quantum hardware constraints. This study investigates quantum-accelerated spectral graph compression for financial asset recommendations, addressing scalability and regulatory constraints in portfolio management. We propose a hybrid framework combining the Quantum Approximate Optimization Algorithm (QAOA) with spectral graph theory to solve the Max-Cut problem for investor clustering. Our methodology leverages quantum simulators (cuQuantum and Cirq-GPU) to evaluate performance against classical brute-force enumeration, with graph compression techniques enabling deployment on resource-constrained quantum hardware. The results underscore that efficient graph compression is crucial for successful implementation. The framework bridges theoretical quantum advantage with practical financial use cases, though hardware limitations (qubit counts, coherence times) necessitate hybrid quantum-classical implementations. These findings advance the deployment of quantum algorithms in mission-critical financial systems, particularly for high-dimensional investor profiling under regulatory constraints. Full article
(This article belongs to the Section AI-Driven Innovations)
Show Figures

Figure 1

26 pages, 2036 KiB  
Article
Mission Planning for UAV Swarm with Aircraft Carrier Delivery: A Decoupled Framework
by Hongyun Zhang, Bin Li, Lei Wang, Yujie Cheng, Yu Ding, Chen Lu, Haijun Peng and Xinwei Wang
Aerospace 2025, 12(8), 691; https://doi.org/10.3390/aerospace12080691 - 31 Jul 2025
Viewed by 97
Abstract
Due to the limited endurance of UAVs, especially in scenarios involving large areas and dense target nodes, it is challenging for multiple UAVs to complete diverse tasks while ensuring timely execution. Toward this, we propose a cross-platform system consisting of an aircraft carrier [...] Read more.
Due to the limited endurance of UAVs, especially in scenarios involving large areas and dense target nodes, it is challenging for multiple UAVs to complete diverse tasks while ensuring timely execution. Toward this, we propose a cross-platform system consisting of an aircraft carrier (AC) and multiple UAVs, which makes unified task planning for included heterogeneous platforms to maximize the efficiency of the entire combat system. The carrier-based UAV swarm mission planning problem is formulated to minimize completion time and resource utilization, taking into account large-scale targets, multi-type tasks, and multi-obstacle environments. Since the problem is complex, we design a decoupled framework to simplify the solution by decomposing it into two levels: upper-level AC path planning and bottom-level multi-UAV cooperative mission planning. At the upper level, a drop point determination method and a discrete genetic algorithm incorporating improved A* (DGAIIA) are proposed to plan the AC’s path in the presence of no-fly zones and radar threats. At the bottom level, an improved differential evolution algorithm with a market mechanism (IDEMM) is proposed to minimize task completion time and maximize UAV utilization. Specifically, a dual-switching search strategy and a neighborhood-first buying-and-selling mechanism are developed to improve the search efficiency of the IDEMM. Simulation results validate the effectiveness of both the DGAIIA and IDEMM. An animation of the simulation results is available at simulation section. Full article
Show Figures

Figure 1

18 pages, 1643 KiB  
Article
Precise Tracking Control of Unmanned Surface Vehicles for Maritime Sports Course Teaching Assistance
by Wanting Tan, Lei Liu and Jiabao Zhou
J. Mar. Sci. Eng. 2025, 13(8), 1482; https://doi.org/10.3390/jmse13081482 - 31 Jul 2025
Viewed by 149
Abstract
With the rapid advancement of maritime sports, the integration of auxiliary unmanned surface vehicles (USVs) has emerged as a promising solution to enhance the efficiency and safety of maritime education, particularly in tasks such as buoy deployment and escort operations. This paper presents [...] Read more.
With the rapid advancement of maritime sports, the integration of auxiliary unmanned surface vehicles (USVs) has emerged as a promising solution to enhance the efficiency and safety of maritime education, particularly in tasks such as buoy deployment and escort operations. This paper presents a novel high-precision trajectory tracking control algorithm designed to ensure stable navigation of the USVs along predefined competition boundaries, thereby facilitating the reliable execution of buoy placement and escort missions. First, the paper proposes an improved adaptive fractional-order nonsingular fast terminal sliding mode control (AFONFTSMC) algorithm to achieve precise trajectory tracking of the reference path. To address the challenges posed by unknown environmental disturbances and unmodeled dynamics in marine environments, a nonlinear lumped disturbance observer (NLDO) with exponential convergence properties is proposed, ensuring robust and continuous navigation performance. Additionally, an artificial potential field (APF) method is integrated to dynamically mitigate collision risks from both static and dynamic obstacles during trajectory tracking. The efficacy and practical applicability of the proposed control framework are rigorously validated through comprehensive numerical simulations. Experimental results demonstrate that the developed algorithm achieves superior trajectory tracking accuracy under complex sea conditions, thereby offering a reliable and efficient solution for maritime sports education and related applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

7 pages, 2626 KiB  
Proceeding Paper
SpaFLEX: Field Campaign for Calibration and Validation of FLEX-S3 Mission Products
by Pedro J. Gómez-Giráldez, David Aragonés, Marcos Jiménez, Mª Pilar Cendrero-Mateo, Shari Van Wittenberghe, Juan José Peón, Adrián Moncholí-Estornell and Ricardo Díaz-Delgado
Eng. Proc. 2025, 94(1), 13; https://doi.org/10.3390/engproc2025094013 - 31 Jul 2025
Viewed by 92
Abstract
The FLEX-S3 mission by ESA will deliver key Level 2 products such as sun-induced chlorophyll fluorescence (SIF) and vegetation-reflected radiance. To validate these, the SpaFLEX project, funded by the Spanish Ministry of Science and Innovation, is developing a robust calibration and validation strategy [...] Read more.
The FLEX-S3 mission by ESA will deliver key Level 2 products such as sun-induced chlorophyll fluorescence (SIF) and vegetation-reflected radiance. To validate these, the SpaFLEX project, funded by the Spanish Ministry of Science and Innovation, is developing a robust calibration and validation strategy in Spain. This includes test site setup, instrument characterization, and sampling protocols. A field campaign was conducted in two Holm Oak forests in Teruel, analyzing Sentinel-2 spatial heterogeneity and collecting ground, UAV, and airborne data. The results support scaling procedures to match the 300 m pixel resolution of FLEX-S3, ensuring product accuracy and compliance with ESA standards. Full article
Show Figures

Figure 1

Back to TopTop