Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (152)

Search Parameters:
Keywords = mission plan adaptation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 6588 KiB  
Article
Path Planning for Unmanned Aerial Vehicle: A-Star-Guided Potential Field Method
by Jaewan Choi and Younghoon Choi
Drones 2025, 9(8), 545; https://doi.org/10.3390/drones9080545 - 1 Aug 2025
Viewed by 368
Abstract
The utilization of Unmanned Aerial Vehicles (UAVs) in missions such as reconnaissance and surveillance has grown rapidly, underscoring the need for efficient path planning algorithms that ensure both optimality and collision avoidance. The A-star algorithm is widely used for global path planning due [...] Read more.
The utilization of Unmanned Aerial Vehicles (UAVs) in missions such as reconnaissance and surveillance has grown rapidly, underscoring the need for efficient path planning algorithms that ensure both optimality and collision avoidance. The A-star algorithm is widely used for global path planning due to its ability to generate optimal routes; however, its high computational cost makes it unsuitable for real-time applications, particularly in unknown or dynamic environments. For local path planning, the Artificial Potential Field (APF) algorithm enables real-time navigation by attracting the UAV toward the target while repelling it from obstacles. Despite its efficiency, APF suffers from local minima and limited performance in dynamic settings. To address these challenges, this paper proposes the A-star-Guided Potential Field (AGPF) algorithm, which integrates the strengths of A-star and APF to achieve robust performance in both global and local path planning. The AGPF algorithm was validated through simulations conducted in the Robot Operating System (ROS) environment. Simulation results demonstrate that AGPF produces smoother and more optimal paths than A-star, while avoiding the local minima issues inherent in APF. Furthermore, AGPF effectively handles moving and previously unknown obstacles by generating real-time avoidance trajectories, demonstrating strong adaptability in dynamic and uncertain environments. Full article
Show Figures

Figure 1

18 pages, 2894 KiB  
Article
Technology Roadmap Methodology and Tool Upgrades to Support Strategic Decision in Space Exploration
by Giuseppe Narducci, Roberta Fusaro and Nicole Viola
Aerospace 2025, 12(8), 682; https://doi.org/10.3390/aerospace12080682 - 30 Jul 2025
Viewed by 134
Abstract
Technological roadmaps are essential tools for managing and planning complex projects, especially in the rapidly evolving field of space exploration. Defined as dynamic schedules, they support strategic and long-term planning while coordinating current and future objectives with particular technology solutions. Currently, the available [...] Read more.
Technological roadmaps are essential tools for managing and planning complex projects, especially in the rapidly evolving field of space exploration. Defined as dynamic schedules, they support strategic and long-term planning while coordinating current and future objectives with particular technology solutions. Currently, the available methodologies are mostly built on experts’ opinions and in just few cases, methodologies and tools have been developed to support the decision makers with a rational approach. In any case, all the available approaches are meant to draw “ideal” maturation plans. Therefore, it is deemed essential to develop an integrate new algorithms able to decision guidelines on “non-nominal” scenarios. In this context, Politecnico di Torino, in collaboration with the European Space Agency (ESA) and Thales Alenia Space–Italia, developed the Technology Roadmapping Strategy (TRIS), a multi-step process designed to create robust and data-driven roadmaps. However, one of the main concerns with its initial implementation was that TRIS did not account for time and budget estimates specific to the space exploration environment, nor was it capable of generating alternative development paths under constrained conditions. This paper discloses two main significant updates to TRIS methodology: (1) improved time and budget estimation to better reflect the specific challenges of space exploration scenarios and (2) the capability of generating alternative roadmaps, i.e., alternative technological maturation paths in resource-constrained scenarios, balancing financial and temporal limitations. The application of the developed routines to available case studies confirms the tool’s ability to provide consistent planning outputs across multiple scenarios without exceeding 20% deviation from expert-based judgements available as reference. The results demonstrate the potential of the enhanced methodology in supporting strategic decision making in early-phase mission planning, ensuring adaptability to changing conditions, optimized use of time and financial resources, as well as guaranteeing an improved flexibility of the tool. By integrating data-driven prioritization, uncertainty modeling, and resource-constrained planning, TRIS equips mission planners with reliable tools to navigate the complexities of space exploration projects. This methodology ensures that roadmaps remain adaptable to changing conditions and optimized for real-world challenges, supporting the sustainable advancement of space exploration initiatives. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

40 pages, 7941 KiB  
Article
Synergistic Hierarchical AI Framework for USV Navigation: Closing the Loop Between Swin-Transformer Perception, T-ASTAR Planning, and Energy-Aware TD3 Control
by Haonan Ye, Hongjun Tian, Qingyun Wu, Yihong Xue, Jiayu Xiao, Guijie Liu and Yang Xiong
Sensors 2025, 25(15), 4699; https://doi.org/10.3390/s25154699 - 30 Jul 2025
Viewed by 421
Abstract
Autonomous Unmanned Surface Vehicle (USV) operations in complex ocean engineering scenarios necessitate robust navigation, guidance, and control technologies. These systems require reliable sensor-based object detection and efficient, safe, and energy-aware path planning. To address these multifaceted challenges, this paper proposes a novel synergistic [...] Read more.
Autonomous Unmanned Surface Vehicle (USV) operations in complex ocean engineering scenarios necessitate robust navigation, guidance, and control technologies. These systems require reliable sensor-based object detection and efficient, safe, and energy-aware path planning. To address these multifaceted challenges, this paper proposes a novel synergistic AI framework. The framework integrates (1) a novel adaptation of the Swin-Transformer to generate a dense, semantic risk map from raw visual data, enabling the system to interpret ambiguous marine conditions like sun glare and choppy water, enabling real-time environmental understanding crucial for guidance; (2) a Transformer-enhanced A-star (T-ASTAR) algorithm with spatio-temporal attentional guidance to generate globally near-optimal and energy-aware static paths; (3) a domain-adapted TD3 agent featuring a novel energy-aware reward function that optimizes for USV hydrodynamic constraints, making it suitable for long-endurance missions tailored for USVs to perform dynamic local path optimization and real-time obstacle avoidance, forming a key control element; and (4) CUDA acceleration to meet the computational demands of real-time ocean engineering applications. Simulations and real-world data verify the framework’s superiority over benchmarks like A* and RRT, achieving 30% shorter routes, 70% fewer turns, 64.7% fewer dynamic collisions, and a 215-fold speed improvement in map generation via CUDA acceleration. This research underscores the importance of integrating powerful AI components within a hierarchical synergy, encompassing AI-based perception, hierarchical decision planning for guidance, and multi-stage optimal search algorithms for control. The proposed solution significantly advances USV autonomy, addressing critical ocean engineering challenges such as navigation in dynamic environments, object avoidance, and energy-constrained operations for unmanned maritime systems. Full article
Show Figures

Figure 1

17 pages, 3393 KiB  
Article
Research on Distributed Collaborative Task Planning and Countermeasure Strategies for Satellites Based on Game Theory Driven Approach
by Huayu Gao, Junqi Wang, Xusheng Xu, Qiufan Yuan, Pei Wang and Daming Zhou
Remote Sens. 2025, 17(15), 2640; https://doi.org/10.3390/rs17152640 - 30 Jul 2025
Viewed by 271
Abstract
With the rapid advancement of space technology, satellites are playing an increasingly vital role in fields such as Earth observation, communication and navigation, space exploration, and military applications. Efficiently deploying satellite missions under multi-objective, multi-constraint, and dynamic environments has become a critical challenge [...] Read more.
With the rapid advancement of space technology, satellites are playing an increasingly vital role in fields such as Earth observation, communication and navigation, space exploration, and military applications. Efficiently deploying satellite missions under multi-objective, multi-constraint, and dynamic environments has become a critical challenge in the current aerospace domain. This paper integrates the concepts of game theory and proposes a distributed collaborative task model suitable for on-orbit satellite mission planning. A two-player impulsive maneuver game model is constructed using differential game theory. Based on the ideas of Nash equilibrium and distributed collaboration, multi-agent technology is applied to the distributed collaborative task planning, achieving collaborative allocation and countermeasure strategies for multi-objective and multi-satellite scenarios. Experimental results demonstrate that the method proposed in this paper exhibits good adaptability and robustness in multiple impulse scheduling, maneuver strategy iteration, and heterogeneous resource utilization, providing a feasible technical approach for mission planning and game confrontation in satellite clusters. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

27 pages, 31172 KiB  
Article
Digital Twin for Analog Mars Missions: Investigating Local Positioning Alternatives for GNSS-Denied Environments
by Benjamin Reimeir, Amelie Leininger, Raimund Edlinger, Andreas Nüchter and Gernot Grömer
Sensors 2025, 25(15), 4615; https://doi.org/10.3390/s25154615 - 25 Jul 2025
Viewed by 226
Abstract
Future planetary exploration missions will rely heavily on efficient human–robot interaction to ensure astronaut safety and maximize scientific return. In this context, digital twins offer a promising tool for planning, simulating, and optimizing extravehicular activities. This study presents the development and evaluation of [...] Read more.
Future planetary exploration missions will rely heavily on efficient human–robot interaction to ensure astronaut safety and maximize scientific return. In this context, digital twins offer a promising tool for planning, simulating, and optimizing extravehicular activities. This study presents the development and evaluation of a digital twin for the AMADEE-24 analog Mars mission, organized by the Austrian Space Forum and conducted in Armenia in March 2024. Alternative local positioning methods were evaluated to enhance the system’s utility in Global Navigation Satellite System (GNSS)-denied environments. The digital twin integrates telemetry from the Aouda space suit simulators, inertial measurement unit motion capture (IMU-MoCap), and sensor data from the Intuitive Rover Operation and Collecting Samples (iROCS) rover. All nine experiment runs were reconstructed successfully by the developed digital twin. A comparative analysis of localization methods found that Simultaneous Localization and Mapping (SLAM)-based rover positioning and IMU-MoCap localization of the astronaut matched Global Positioning System (GPS) performance. Adaptive Cluster Detection showed significantly higher deviations compared to the previous GNSS alternatives. However, the IMU-MoCap method was limited by discontinuous segment-wise measurements, which required intermittent GPS recalibration. Despite these limitations, the results highlight the potential of alternative localization techniques for digital twin integration. Full article
Show Figures

Figure 1

23 pages, 1667 KiB  
Review
Review of Advances in Multiple-Resolution Modeling for Distributed Simulation
by Luis Rabelo, Mario Marin, Jaeho Kim and Gene Lee
Information 2025, 16(8), 635; https://doi.org/10.3390/info16080635 - 25 Jul 2025
Viewed by 218
Abstract
Multiple-resolution modeling (MRM) has emerged as a foundational paradigm in modern simulation, enabling the integration of models with varying levels of granularity to address complex and evolving operational demands. By supporting seamless transitions between high-resolution and low-resolution representations, MRM facilitates scalability and interoperability, [...] Read more.
Multiple-resolution modeling (MRM) has emerged as a foundational paradigm in modern simulation, enabling the integration of models with varying levels of granularity to address complex and evolving operational demands. By supporting seamless transitions between high-resolution and low-resolution representations, MRM facilitates scalability and interoperability, particularly within distributed simulation environments such as military command and control systems. This paper provides a structured review and comparative analysis of prominent MRM methodologies, including multi-resolution entities (MRE), agent-based modeling (from a federation viewpoint), hybrid frameworks, and the novel MR mode, synchronizing resolution transitions with time advancement and interaction management. Each approach is evaluated across critical dimensions such as consistency, computational efficiency, flexibility, and integration with legacy systems. Emphasis is placed on the applicability of MRM in distributed military simulations, where it enables dynamic interplay between strategic-level planning and tactical-level execution, supporting real-time decision-making, mission rehearsal, and scenario-based training. The paper also explores emerging trends involving artificial intelligence (AI) and large language models (LLMs) as enablers for adaptive resolution management and automated model interoperability. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: "Information Systems")
Show Figures

Figure 1

20 pages, 6538 KiB  
Article
A Space for the Elderly: Inclusion Through Design
by Ahlam Ammar Sharif
Buildings 2025, 15(15), 2596; https://doi.org/10.3390/buildings15152596 - 23 Jul 2025
Viewed by 161
Abstract
Awareness of design when planning public urban spaces assumes particular importance through its mission to meet the diverse needs of the different segments within the community. The elderly is considered one of the pivotal segments, with their influence on strengthening social cohesion, fortifying [...] Read more.
Awareness of design when planning public urban spaces assumes particular importance through its mission to meet the diverse needs of the different segments within the community. The elderly is considered one of the pivotal segments, with their influence on strengthening social cohesion, fortifying values, and upholding traditions. On the other hand, such a segment demands special physical, behavioral, and mental requirements that would entail specific consideration in the design process of public common spaces. The study aimed to identify and evaluate the most relevant and important indicators pertaining to the most effective design of an age-friendly public space, with community parks taken as a particular case. The study relies on a mixed approach, combining desk research, expert views, the Delphi technique, and the Analytical Hierarchy Process to achieve that purpose. It resulted in a group of sourced, filtered, and evaluated indicators classified into Physical, Experiential, and Social/Emotional categories, which were evaluated by a mixed representative group of academics, practitioners, governmental officials, and end users, being the elderly or their caretakers. Focus was placed on the central park in the Dahiyat Al-Hussein suburb in Amman, Jordan, which was utilized as a contextual case through which a refined design framework was extracted. This framework serves as a potential base that can be expanded and adapted to create a more generalizable model. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

32 pages, 5465 KiB  
Article
DETEAMSK: A Model-Based Reinforcement Learning Approach to Intelligent Top-Level Planning and Decisions for Multi-Drone Ad Hoc Teamwork by Decoupling the Identification of Teammate and Task
by Penghui Xu, Yu Zhang, Le Hao and Qilin Yan
Aerospace 2025, 12(7), 635; https://doi.org/10.3390/aerospace12070635 - 16 Jul 2025
Viewed by 230
Abstract
The ability to collaborate with new teammates, adapt to unfamiliar environments, and engage in effective planning is essential for multi-drone agents within unmanned combat systems. This paper introduces DETEAMSK (Model-based Reinforcement Learning by Decoupling the Identification of Teammates and Tasks), a model-based reinforcement [...] Read more.
The ability to collaborate with new teammates, adapt to unfamiliar environments, and engage in effective planning is essential for multi-drone agents within unmanned combat systems. This paper introduces DETEAMSK (Model-based Reinforcement Learning by Decoupling the Identification of Teammates and Tasks), a model-based reinforcement learning method in intelligent top-level planning and decisions designed for ad hoc teamwork among multi-drone agents. It specifically addresses integrated reconnaissance and strike missions in urban combat scenarios under varying conditions. DETEAMSK’s performance is evaluated through comprehensive, multidimensional experiments and compared with other baseline models. The results demonstrate that DETEAMSK exhibits superior effectiveness, robustness, and generalization capabilities across a range of task domains. Moreover, the model-based reinforcement learning approach offers distinct advantages over traditional models, such as the PLASTIC-Model, and model-free approaches, like the PLASTIC-Policy, due to its unique “dynamic decoupling identification” feature. This study provides valuable insights for advancing both theoretical and applied research in model-based reinforcement learning methods for multi-drone systems. Full article
(This article belongs to the Special Issue Innovations in Unmanned Aerial Vehicle: Design and Development)
Show Figures

Figure 1

26 pages, 987 KiB  
Article
Traj-Q-GPSR: A Trajectory-Informed and Q-Learning Enhanced GPSR Protocol for Mission-Oriented FANETs
by Mingwei Wu, Bo Jiang, Siji Chen, Hong Xu, Tao Pang, Mingke Gao and Fei Xia
Drones 2025, 9(7), 489; https://doi.org/10.3390/drones9070489 - 10 Jul 2025
Viewed by 365
Abstract
Routing in flying ad hoc networks (FANETs) is hindered by high mobility, trajectory-induced topology dynamics, and energy constraints. Conventional topology-based or position-based protocols often fail due to stale link information and limited neighbor awareness. This paper proposes a trajectory-informed routing protocol enhanced by [...] Read more.
Routing in flying ad hoc networks (FANETs) is hindered by high mobility, trajectory-induced topology dynamics, and energy constraints. Conventional topology-based or position-based protocols often fail due to stale link information and limited neighbor awareness. This paper proposes a trajectory-informed routing protocol enhanced by Q-learning: Traj-Q-GPSR, tailored for mission-oriented UAV swarm networks. By leveraging mission-planned flight trajectories, the protocol builds time-aware two-hop neighbor tables, enabling routing decisions based on both current connectivity and predicted link availability. This spatiotemporal information is integrated into a reinforcement learning framework that dynamically optimizes next-hop selection based on link stability, queue length, and node mobility patterns. To further enhance adaptability, the learning parameters are adjusted in real time according to network dynamics. Additionally, a delay-aware queuing model is introduced to forecast optimal transmission timing, thereby reducing buffering overhead and mitigating redundant retransmissions. Extensive ns-3 simulations across diverse mobility, density, and CBR connections demonstrate that the proposed protocol consistently outperforms GPSR, achieving up to 23% lower packet loss, over 80% reduction in average end-to-end delay, and improvements of up to 37% and 52% in throughput and routing efficiency, respectively. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

19 pages, 14033 KiB  
Article
SCCA-YOLO: Spatial Channel Fusion and Context-Aware YOLO for Lunar Crater Detection
by Jiahao Tang, Boyuan Gu, Tianyou Li and Ying-Bo Lu
Remote Sens. 2025, 17(14), 2380; https://doi.org/10.3390/rs17142380 - 10 Jul 2025
Viewed by 401
Abstract
Lunar crater detection plays a crucial role in geological analysis and the advancement of lunar exploration. Accurate identification of craters is also essential for constructing high-resolution topographic maps and supporting mission planning in future lunar exploration efforts. However, lunar craters often suffer from [...] Read more.
Lunar crater detection plays a crucial role in geological analysis and the advancement of lunar exploration. Accurate identification of craters is also essential for constructing high-resolution topographic maps and supporting mission planning in future lunar exploration efforts. However, lunar craters often suffer from insufficient feature representation due to their small size and blurred boundaries. In addition, the visual similarity between craters and surrounding terrain further exacerbates background confusion. These challenges significantly hinder detection performance in remote sensing imagery and underscore the necessity of enhancing both local feature representation and global semantic reasoning. In this paper, we propose a novel Spatial Channel Fusion and Context-Aware YOLO (SCCA-YOLO) model built upon the YOLO11 framework. Specifically, the Context-Aware Module (CAM) employs a multi-branch dilated convolutional structure to enhance feature richness and expand the local receptive field, thereby strengthening the feature extraction capability. The Joint Spatial and Channel Fusion Module (SCFM) is utilized to fuse spatial and channel information to model the global relationships between craters and the background, effectively suppressing background noise and reinforcing feature discrimination. In addition, the improved Channel Attention Concatenation (CAC) strategy adaptively learns channel-wise importance weights during feature concatenation, further optimizing multi-scale semantic feature fusion and enhancing the model’s sensitivity to critical crater features. The proposed method is validated on a self-constructed Chang’e 6 dataset, covering the landing site and its surrounding areas. Experimental results demonstrate that our model achieves an mAP0.5 of 96.5% and an mAP0.5:0.95 of 81.5%, outperforming other mainstream detection models including the YOLO family of algorithms. These findings highlight the potential of SCCA-YOLO for high-precision lunar crater detection and provide valuable insights into future lunar surface analysis. Full article
Show Figures

Figure 1

17 pages, 2514 KiB  
Article
Forecasting Transient Fuel Consumption Spikes in Ships: A Hybrid DGM-SVR Approach
by Junhao Chen and Yan Peng
Eng 2025, 6(7), 151; https://doi.org/10.3390/eng6070151 - 3 Jul 2025
Viewed by 262
Abstract
Accurate prediction of ship fuel consumption is essential for improving energy efficiency, optimizing mission planning, and ensuring operational integrity at sea. However, during complex tasks such as high-speed maneuvers, fuel consumption exhibits complex dynamics characterized by the coexistence of baseline drift and transient [...] Read more.
Accurate prediction of ship fuel consumption is essential for improving energy efficiency, optimizing mission planning, and ensuring operational integrity at sea. However, during complex tasks such as high-speed maneuvers, fuel consumption exhibits complex dynamics characterized by the coexistence of baseline drift and transient peaks that conventional models often fail to capture accurately, particularly the abrupt peaks. In this study, a hybrid prediction model, DGM-SVR, is presented, combining a rolling dynamic grey model (DGM (1,1)) with support vector regression (SVR). The DGM (1,1) adapts to the dynamic fuel consumption baseline and trends via a rolling window mechanism, while the SVR learns and predicts the residual sequence generated by the DGM, specifically addressing the high-amplitude fuel spikes triggered by maneuvers. Validated on a simulated dataset reflecting typical fuel spike characteristics during high-speed maneuvers, the DGM-SVR model demonstrated superior overall prediction accuracy (MAPE and RMSE) compared to standalone DGM (1,1), moving average (MA), and SVR models. Notably, DGM-SVR reduced the test set’s MAPE and RMSE by approximately 21% and 34%, respectively, relative to the next-best DGM model, and significantly improved the predictive accuracy, magnitude, and responsiveness in predicting fuel consumption spikes. The findings indicate that the DGM-SVR hybrid strategy effectively fuses DGM’s trend-fitting strength with SVR’s proficiency in capturing spikes from the residual sequence, offering a more reliable and precise method for dynamic ship fuel consumption forecasting, with considerable potential for ship energy efficiency management and intelligent operational support. This study lays a foundation for future validation on real-world operational data. Full article
Show Figures

Figure 1

26 pages, 6752 KiB  
Article
A Q-Learning Crested Porcupine Optimizer for Adaptive UAV Path Planning
by Jiandong Liu, Yuejun He, Bing Shen, Jing Wang, Penggang Wang, Guoqing Zhang, Xiang Zhuang, Ran Chen and Wei Luo
Machines 2025, 13(7), 566; https://doi.org/10.3390/machines13070566 - 30 Jun 2025
Viewed by 407
Abstract
Unmanned Aerial Vehicle (UAV) path planning is critical for ensuring flight safety and enhancing mission execution efficiency. This problem is typically formulated as a complex, multi-constrained, and nonlinear optimization task, often addressed using meta-heuristic algorithms. The Crested Porcupine Optimizer (CPO) has become an [...] Read more.
Unmanned Aerial Vehicle (UAV) path planning is critical for ensuring flight safety and enhancing mission execution efficiency. This problem is typically formulated as a complex, multi-constrained, and nonlinear optimization task, often addressed using meta-heuristic algorithms. The Crested Porcupine Optimizer (CPO) has become an excellent method to solve this problem; however, the standard CPO has limitations, such as the lack of adaptive parameter tuning to adapt to complex environments, slow convergence, and the tendency to fall into local optimal solutions. To address these issues, this paper proposes an algorithm named QCPO, which integrates CPO with Q-learning to improve UAV path optimization performance. Q-learning is employed to adaptively adjust the key parameters of the CPO, thereby overcoming the limitations of traditional fixed-parameter settings. Inspired by the porcupine’s defense mechanisms, a novel audiovisual coordination strategy is introduced to balance visual and auditory responses, accelerating convergence in the early optimization stages. A refined position update mechanism is designed to prevent excessive step sizes and boundary violations, enhancing the algorithm’s global search capability. A B-spline-based trajectory smoothing method is also incorporated to improve the feasibility and smoothness of the planned paths. In this paper, we compare QCPO with four outstanding heuristics, and QCPO achieves the lowest path cost in all three test scenarios, with path cost reductions of 30.23%, 26.41%, and 33.47%, respectively, compared to standard CPO. The experimental results confirm that QCPO offers an efficient and safe solution for UAV path planning. Full article
(This article belongs to the Special Issue Intelligent Control Techniques for Unmanned Aerial Vehicles)
Show Figures

Figure 1

18 pages, 7710 KiB  
Article
Improved Space Object Detection Based on YOLO11
by Yi Zhou, Tianhao Zhang, Zijing Li and Jianbin Qiu
Aerospace 2025, 12(7), 568; https://doi.org/10.3390/aerospace12070568 - 23 Jun 2025
Viewed by 489
Abstract
Space object detection, as the foundation for ensuring the long-term safe and stable operation of spacecraft, is widely applied in a variety of close-proximity tasks such as non-cooperative target monitoring, space debris avoidance, and spacecraft mission planning. To strengthen the detection capabilities for [...] Read more.
Space object detection, as the foundation for ensuring the long-term safe and stable operation of spacecraft, is widely applied in a variety of close-proximity tasks such as non-cooperative target monitoring, space debris avoidance, and spacecraft mission planning. To strengthen the detection capabilities for non-cooperative spacecraft and space debris, a method based on You Only Look Once Version 11 (YOLO11) is proposed in this paper. On the one hand, to tackle the issues of noise and low contrast in images captured by spacecraft, bilateral filtering is applied to remove noise while preserving edge and texture details effectively, and image contrast is enhanced using the contrast-limited adaptive histogram equalization (CLAHE) technique. On the other hand, to address the challenge of small object detection in spacecraft, loss-guided online data augmentation is proposed, along with improvements to the YOLO11 network architecture, to boost detection capabilities for small objects. The experimental results show that the proposed method achieved 99.0% mAP50 (mean Average Precision with an Intersection over Union threshold of 0.50) and 92.6% mAP50-95 on the SPARK-2022 dataset, significantly outperforming the YOLO11 baseline, thereby validating the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Intelligent Perception, Decision and Autonomous Control in Aerospace)
Show Figures

Figure 1

15 pages, 6013 KiB  
Article
Urban Air Mobility Vertiport’s Capacity Simulation and Analysis
by Antoni Kopyt and Sebastian Dylicki
Aerospace 2025, 12(6), 560; https://doi.org/10.3390/aerospace12060560 - 19 Jun 2025
Viewed by 661
Abstract
This study shows a comprehensive simulation to assess and enhance the throughput capacity of unmanned air system vertiports, one of the most essential elements of urban air mobility ecosystems. The framework integrates dynamic grid-based spatial management, probabilistic mission duration algorithms, and EASA-compliant operational [...] Read more.
This study shows a comprehensive simulation to assess and enhance the throughput capacity of unmanned air system vertiports, one of the most essential elements of urban air mobility ecosystems. The framework integrates dynamic grid-based spatial management, probabilistic mission duration algorithms, and EASA-compliant operational protocols to address the infrastructural and logistical demands of high-density UAS operations. It was focused on two use cases—high-frequency food delivery utilizing small UASs and extended-range package logistics with larger UASs—and the model incorporates adaptive vertiport zoning strategies, segregating operations into dedicated sectors for battery charging, swapping, and cargo handling to enable parallel processing and mitigate congestion. The simulation evaluates critical variables such as vertiport dimensions, UAS fleet composition, and mission duration ranges while emphasizing scalability, safety, and compliance with evolving regulatory standards. By examining the interplay between infrastructure design, operational workflows, and resource allocation, the research provides a versatile tool for urban planners and policymakers to optimize vertiport layouts and traffic management protocols. Its modular architecture supports future extensions. This work underscores the necessity of adaptive, data-driven planning to harmonize vertiport functionality with the dynamic demands of urban air mobility, ensuring interoperability, safety, and long-term scalability. Full article
(This article belongs to the Special Issue Operational Requirements for Urban Air Traffic Management)
Show Figures

Figure 1

32 pages, 4695 KiB  
Article
Entry Guidance for Hypersonic Glide Vehicles via Two-Phase hp-Adaptive Sequential Convex Programming
by Xu Liu, Xiang Li, Houjun Zhang, Hao Huang and Yonghui Wu
Aerospace 2025, 12(6), 539; https://doi.org/10.3390/aerospace12060539 - 14 Jun 2025
Viewed by 766
Abstract
This paper addresses the real-time trajectory generation problem for hypersonic glide vehicles (HGVs) during atmospheric entry, subject to complex constraints including aerothermal limits, actuator bounds, and no-fly zones (NFZs). To achieve efficient and reliable trajectory planning, a two-phase hp-adaptive sequential convex programming (SCP) [...] Read more.
This paper addresses the real-time trajectory generation problem for hypersonic glide vehicles (HGVs) during atmospheric entry, subject to complex constraints including aerothermal limits, actuator bounds, and no-fly zones (NFZs). To achieve efficient and reliable trajectory planning, a two-phase hp-adaptive sequential convex programming (SCP) framework is proposed. NFZ avoidance is reformulated as a soft objective to enhance feasibility under tight geometric constraints. In Phase I, a shrinking-trust-region strategy progressively tightens the soft trust-region radius by increasing the penalty weight, effectively suppressing linearization errors. A sensitivity-driven mesh refinement method then allocates collocation points based on their contribution to the objective function. Phase II applies residual-based refinement to reduce discretization errors. The resulting reference trajectory is tracked using a linear quadratic regulator (LQR) within a reference-trajectory-tracking guidance (RTTG) architecture. Simulation results demonstrate that the proposed method achieves convergence in only a few iterations, generating high-fidelity trajectories within 2–3 s. Compared to pseudospectral solvers, the method achieves over 12× computational speed-up while maintaining kilometer-level accuracy. Monte Carlo tests under uncertainties confirm a 100% success rate, with all constraints satisfied. These results validate the proposed method’s robustness, efficiency, and suitability for onboard real-time entry guidance in dynamic mission environments. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

Back to TopTop