Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = minor tides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 7447 KiB  
Article
Cultural Resilience from Sacred to Secular: Ritual Spatial Construction and Changes to the Tujia Hand-Waving Sacrifice in the Wuling Corridor, China
by Tianyi Min and Tong Zhang
Religions 2025, 16(7), 811; https://doi.org/10.3390/rel16070811 - 20 Jun 2025
Viewed by 532
Abstract
The “hand-waving sacrifice” is a large-scale sacrificial ceremony with more than 2000 years of history. It was passed down from ancient times by the Tujia ethnic group living in the Wuling Corridor of China, and it integrates religion, sacrifice, dance, drama, and other [...] Read more.
The “hand-waving sacrifice” is a large-scale sacrificial ceremony with more than 2000 years of history. It was passed down from ancient times by the Tujia ethnic group living in the Wuling Corridor of China, and it integrates religion, sacrifice, dance, drama, and other cultural forms. It primarily consists of two parts: ritual content (inviting gods, offering sacrifices to gods, dancing a hand-waving dance, etc.) and the architectural space that hosts the ritual (hand-waving hall), which together constitute Tujia’s most sacred ritual space and the most representative art and culture symbol. Nonetheless, in existing studies, the hand-waving sacrifice ritual, hand-waving hall architectural space, and hand-waving dance art are often separated as independent research objects, and little attention is paid to the coupling mechanism of the mutual construction of space and ritual in the process of historical development. Moreover, with the acceleration of modernization, the current survival context of the hand-waving sacrifice has undergone drastic changes. On the one hand, the intangible cultural heritage protection policy and the wave of tourism development have pushed it into the public eye and the cultural consumption system. On the other hand, the changes in the social structure of traditional villages have led to the dissolution of the sacredness of ritual space. Therefore, using the interaction of “space-ritual” as a prompt, this research first uses GIS technology to visualize the spatial geographical distribution characteristics and diachronic evolution process of hand-waving halls in six historical periods and then specifically analyzes the sacred construction of hand-waving hall architecture for the hand-waving sacrifice ritual space throughout history, as well as the changing mechanism of the continuous secularization of the hand-waving sacrifice space in contemporary society. Overall, this study reveals a unique path for non-literate ethnic groups to achieve the intergenerational transmission of cultural memory through the collusion of material symbols and physical art practices, as well as the possibility of embedding the hand-waving sacrifice ritual into contemporary spatial practice through symbolic translation and functional extension in the context of social function inheritance and variation. Finally, this study has specific inspirational and reference value for exploring how the traditional culture and art of ethnic minorities can maintain resilience against the tide of modernization. Full article
(This article belongs to the Special Issue Arts, Spirituality, and Religion)
Show Figures

Figure 1

19 pages, 2112 KiB  
Article
Storm Surge Clusters, Multi-Peak Storms and Their Effect on the Performance of the Maeslant Storm Surge Barrier (The Netherlands)
by Alexander M. R. Bakker, Dion L. T. Rovers and Leslie F. Mooyaart
J. Mar. Sci. Eng. 2025, 13(2), 298; https://doi.org/10.3390/jmse13020298 - 6 Feb 2025
Cited by 1 | Viewed by 1195
Abstract
Storm surge barriers are crucial for the flood protection of the Netherlands and other deltas. In the Netherlands, the reliability of flood defenses is typically assessed based on extreme water levels and wave height statistics. Yet, in the case of operated flood defenses, [...] Read more.
Storm surge barriers are crucial for the flood protection of the Netherlands and other deltas. In the Netherlands, the reliability of flood defenses is typically assessed based on extreme water levels and wave height statistics. Yet, in the case of operated flood defenses, such as storm surge barriers, the temporal clustering of successive events may be just as important. This study investigates the evolution and associated flood risk of clusters of successive storm tide peaks at the Maeslant Storm Surge Barrier in the Netherlands. Two mechanisms are considered. Multi-peak storm surge events, as a consequence of tidal movement on top of the surge, are studied by means of stochastic storm tide events. Clusters of storm tides resulting from different, but related storms are investigated by means of time series analysis of a long sea-level record. We conclude that the tendency of extreme storm tide peaks to cluster is especially related to the seasonality in storm activity. In the current situation, the occurrence of clusters of storm tide peaks have only a minor influence of the flood risk in the area behind the Maeslant Storm Surge Barrier. We envision, however, that this influence is likely to increase with sea-level rise. The numbers are, however, uncertain due to the strong sensitivity to assumptions, model choices and the applied data set. More insight into the statistics of the time evolution of extreme sea water levels is needed to better understand and ultimately to reduce these uncertainties. Full article
(This article belongs to the Special Issue Movable Coastal Structures and Flood Protection)
Show Figures

Figure 1

21 pages, 9834 KiB  
Article
Characteristics and Mechanisms of Spring Tidal Mixing and Sediment Transport in a Microtidal Funnel-Shaped Estuary
by Yitong Lin, Dezheng Liu, Mingen Liang, Tao Zhang, Enmao Huang, Zhiyuan Zhu and Liangwen Jia
J. Mar. Sci. Eng. 2024, 12(8), 1420; https://doi.org/10.3390/jmse12081420 - 17 Aug 2024
Cited by 1 | Viewed by 1672
Abstract
Information about estuarine mixing and its control of sediment transport is crucial to elucidating the dynamics and evolution of estuaries. Here, the microtidal and funnel-shaped Zhenhai Estuary, located in the southwestern Pearl River Delta of China, is used to investigate the characteristics and [...] Read more.
Information about estuarine mixing and its control of sediment transport is crucial to elucidating the dynamics and evolution of estuaries. Here, the microtidal and funnel-shaped Zhenhai Estuary, located in the southwestern Pearl River Delta of China, is used to investigate the characteristics and mechanisms of water mixing and sediment transport based on observations from three spring tides. The results reveal that the studied estuary remains well mixed during spring tides from 2013–2022 despite its microtidal regime. Tidal stirring, which is enhanced by tidal energy convergence and benefits from the funnel-shaped geometry and shallow bathymetry, favors vertical mixing, contributing to the formation of strong mixing in the estuary. Due to the well-mixed regime, sediment transport in the estuary is dominated by the advective term, followed by a moderate tidal pumping term and minor estuarine circulation term. Accordingly, sediments within the estuary tend to be transported landward owing to the regulation of the funnel-shaped geometry, and a gradual but slow infilling trend is predictable. This paper deepens our understanding of hydrodynamics and sediment transport in microtidal estuaries. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

22 pages, 8461 KiB  
Article
Multi-Factors Synthetically Contribute to Ulva prolifera Outbreaks in the South Yellow Sea of China
by Mingyue Xue, Mengquan Wu, Longxiao Zheng, Jiayan Liu, Longxing Liu, Shan Zhu, Shubin Liu and Lijuan Liu
Remote Sens. 2023, 15(21), 5151; https://doi.org/10.3390/rs15215151 - 27 Oct 2023
Cited by 13 | Viewed by 1745
Abstract
In recent years, the frequent outbreaks of Ulva prolifera in the South Yellow Sea have become the largest-scale green tide disasters in the world. The causes of its outbreaks have garnered widespread attention, particularly the coupled effects of multiple factors. Leveraging the Google [...] Read more.
In recent years, the frequent outbreaks of Ulva prolifera in the South Yellow Sea have become the largest-scale green tide disasters in the world. The causes of its outbreaks have garnered widespread attention, particularly the coupled effects of multiple factors. Leveraging the Google Earth Engine (GEE) platform, this study conducted a long-term investigation of the Yellow Sea green tide disaster and the factors using multi-source satellite imagery. Finally, the combined effects of natural environmental changes and human activities on Ulva prolifera were analyzed by redundancy analysis (RDA) and variation partitioning analysis (VPA). The results indicate: (1) Since 2018, the scale of Ulva prolifera in the South Yellow Sea has shown a distinct “biennial” trend. (2) Regarding environmental factors, SST, PAR, precipitation, and windspeed have certain effects on the growth of Ulva prolifera. However, they cannot be considered as determining factors for the outbreak of Ulva prolifera (0.002 < R2 < 0.14). Regarding anthropogenic factors, the recycle time of Pyropia yezoensis culture rafts has a relatively minor influence on the extent of Ulva prolifera. There exists a certain positive correlation (R2 = 0.45) between the human footprint index (HFI) of Jiangsu Province and the annual variation in Ulva prolifera area in the South Yellow Sea. (3) The combined effects of multiple factors influence green tide outbreaks. The Ulvatotal explanatory power of SST, PAR, precipitation, windspeed, HFI, and the recycle time of Pyropia yezoensis culture rafts for the annual variation in the Ulva prolifera area is 31.8%, with these factors interweaving and mutually influencing each other. This study offers important insights into quantifying the driving forces behind Ulva prolifera in the South Yellow Sea, providing valuable information for a deeper comprehension of the complexity of marine ecosystems and sustainable management. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

32 pages, 4212 KiB  
Article
Global Distribution and Morphodynamic Patterns of Paired Spits Developed at the Mouths of Interdistributary Bays of Deltas and within Coastal Channels
by Javier Alcántara-Carrió, Ángela Fontán-Bouzas, Ana Caicedo Rodríguez, Rogério Portantiolo Manzolli and Luana Portz
Remote Sens. 2023, 15(11), 2713; https://doi.org/10.3390/rs15112713 - 23 May 2023
Cited by 1 | Viewed by 2461
Abstract
Previously, paired spits have been described at the mouths of bays, estuaries, and deltas. This study analyzed the worldwide distribution and morphodynamic patterns of paired spits located at the mouths of interdistributary bays of deltas (three systems) and within coastal channels (24 systems). [...] Read more.
Previously, paired spits have been described at the mouths of bays, estuaries, and deltas. This study analyzed the worldwide distribution and morphodynamic patterns of paired spits located at the mouths of interdistributary bays of deltas (three systems) and within coastal channels (24 systems). The methodology was based on the detailed analysis of satellite images, nautical charts, and tidal-range databases. The paired spits found were mainly located on microtidal coasts at high or mid latitudes. Waves were the main factor controlling convergent progradation and breaching of the spits, while the hydraulic blockage for the development of these paired spits was mainly due to tide-induced currents, as well as minor fluvial outlets in the interdistributary bays. Three morphodynamic patterns were identified: (i) stable, with low progradation rates, generally without breaching or degradation of any of the spits; (ii) stationary, with high progradation rates, alternating degradation or breaching of any of the spits with the formation of new spits or closure of the breaches; and (iii) instable or ephemeral, which included three subtypes, the severe erosion of one or both spits, the joining of the head of the two spits forming a single barrier, and the merging of each with its channel margin. Full article
(This article belongs to the Special Issue Advances in Remote Sensing in Coastal Geomorphology Ⅱ)
Show Figures

Figure 1

12 pages, 4864 KiB  
Communication
Ionospheric 14.5 Day Periodic Oscillation during the 2019 Antarctic SSW Event
by Jinze Li, Qiong Tang, Yiyun Wu, Chen Zhou and Yi Liu
Atmosphere 2023, 14(5), 796; https://doi.org/10.3390/atmos14050796 - 27 Apr 2023
Cited by 1 | Viewed by 1850
Abstract
The International Global Navigation Satellite Systems Service (IGS) ionospheric total electron content (TEC) data are used to study the periodic perturbation in the ionosphere during the 2019 Antarctic sudden stratospheric warming (SSW) event, a rare Southern Hemisphere minor SSW event in the last [...] Read more.
The International Global Navigation Satellite Systems Service (IGS) ionospheric total electron content (TEC) data are used to study the periodic perturbation in the ionosphere during the 2019 Antarctic sudden stratospheric warming (SSW) event, a rare Southern Hemisphere minor SSW event in the last 40 years. A 14.5 day periodic signal with a zonal wavenumber of 0 is observed in the mesosphere and the lower thermosphere (MLT) region and the ionosphere during this SSW period, which could be related to the lunar tide. The 14.5 day periodic disturbance in the IGS TEC exhibits local time dependence and latitudinal variation, with the maximum amplitude appearing between 1000 and 1600 LT in the equatorial ionization anomaly (EIA) crest regions. Additionally, the 14.5 day periodic oscillation shows an obvious longitudinal variability, with the weakest amplitude appearing in the longitudinal region of 30° W–60° E. Full article
(This article belongs to the Special Issue Recent Advances in Ionosphere Observation and Investigation)
Show Figures

Figure 1

20 pages, 12149 KiB  
Article
Sea Tide Influence on Ice Flow of David Drygalski’s Ice Tongue Inferred from Geodetic GNSS Observations and SAR Offset Tracking Analysis
by Luca Vittuari, Antonio Zanutta, Andrea Lugli, Leonardo Martelli and Marco Dubbini
Remote Sens. 2023, 15(8), 2037; https://doi.org/10.3390/rs15082037 - 12 Apr 2023
Cited by 1 | Viewed by 2165
Abstract
David Glacier and Drygalski Ice Tongue are massive glaciers in Victoria Land, Antarctica. The ice from the East Antarctic Ice Sheet is drained through the former, and then discharged into the western Ross Sea through the latter. David Drygalski is the largest outlet [...] Read more.
David Glacier and Drygalski Ice Tongue are massive glaciers in Victoria Land, Antarctica. The ice from the East Antarctic Ice Sheet is drained through the former, and then discharged into the western Ross Sea through the latter. David Drygalski is the largest outlet glacier in Northern Victoria Land, floating kilometers out to sea. The floating and grounded part of the David Glacier are the main focus of this article. During the XXI Italian Antarctic Expedition (2005–2006), within the framework of the National Antarctic Research Programme (PNRA), two GNSS stations were installed at different points: the first close to the grounding line of David Glacier, and the second approximately 40 km downstream of the first one. Simultaneous data logging was performed by both GNSS stations for 24 days. In the latest data processing, the kinematic PPP technique was adopted to evaluate the dominant diurnal components and the very small semi-diurnal variations in ice motion induced by the ocean tide and the mean ice flow rates of both GNSS stations. Comparison of the GNSS time series with predicted ocean tide calculated from harmonic coefficients of the nearest tide gauge stations, installed at Cape Roberts and Mario Zucchelli Station, highlight different local response of the glacier to ocean tide, with a minor amplitude of vertical motion at a point partially anchored at the bedrock close to the grounding line. During low tide, the velocity of the ice flow reaches its daily maximum, in accordance with the direction of seawater outflow from the fjord into the ocean, while the greatest daily tidal excursion generates an increase in the horizontal ice flow velocity. With the aim to extend the analysis in spatial terms, five COSMO-SkyMED Stripmap scenes were processed. The comparison of the co-registered offset tracking rates, obtained from SAR images, with the GNSS estimation shows good agreement. Full article
(This article belongs to the Special Issue Antarctic Remote Sensing Applications)
Show Figures

Graphical abstract

15 pages, 4303 KiB  
Article
Anomalous 18.61-Year Nodal Cycles in the Gulf of Tonkin Revealed by Tide Gauges and Satellite Altimeter Records
by Haidong Pan, Adam Thomas Devlin, Tengfei Xu, Xianqing Lv and Zexun Wei
Remote Sens. 2022, 14(15), 3672; https://doi.org/10.3390/rs14153672 - 31 Jul 2022
Cited by 19 | Viewed by 2321
Abstract
Understanding nodal tidal characteristics is essential for accurate long-term tidal prediction. Observational nodal evolution of tides is mainly based on tide gauge records in coastal areas which are limited in time and space, thus impeding coherent determinations of basin-wide patterns of tidal variability. [...] Read more.
Understanding nodal tidal characteristics is essential for accurate long-term tidal prediction. Observational nodal evolution of tides is mainly based on tide gauge records in coastal areas which are limited in time and space, thus impeding coherent determinations of basin-wide patterns of tidal variability. In this paper, we indicate the potential of satellite altimeter data to investigate 18.61-year nodal modulations of main constituents in the Gulf of Tonkin. Three tide gauges and multi-source satellite altimeter observations (TOPEX/Poseidon, Jason1, Jason2, and Jason3) revealed that 18.61-year nodal cycles in tidal amplitudes have noticeable deviations from the equilibrium tidal theory in the Gulf of Tonkin. In general, M2 and N2 nodal modulations are anomalously larger than theoretical values while K2, K1, and O1 nodal modulations are noticeably smaller than theoretical values. Compared to point-based tide gauges, satellite altimeter records can provide basin-wide features of nodal modulations of main constituents. Although overlapping geographical blocks are applied to eliminate the effect of tidal alias originated from long-period sampling intervals, the estimation of nodal cycles of minor constituents are still questionable. Nevertheless, the methods described here provide a strong foundation for future research on time-varying tidal dynamics using the combination of tide gauges and satellite altimeter data. Full article
(This article belongs to the Special Issue Remote Sensing and Numerical Simulation for Tidal Dynamics)
Show Figures

Figure 1

15 pages, 3247 KiB  
Article
Regional Evaluation of Minor Tidal Constituents for Improved Estimation of Ocean Tides
by Michael G. Hart-Davis, Denise Dettmering, Roman Sulzbach, Maik Thomas, Christian Schwatke and Florian Seitz
Remote Sens. 2021, 13(16), 3310; https://doi.org/10.3390/rs13163310 - 21 Aug 2021
Cited by 9 | Viewed by 3508
Abstract
Satellite altimetry observations have provided a significant contribution to the understanding of global sea surface processes, particularly allowing for advances in the accuracy of ocean tide estimations. Currently, almost three decades of satellite altimetry are available which can be used to improve the [...] Read more.
Satellite altimetry observations have provided a significant contribution to the understanding of global sea surface processes, particularly allowing for advances in the accuracy of ocean tide estimations. Currently, almost three decades of satellite altimetry are available which can be used to improve the understanding of ocean tides by allowing for the estimation of an increased number of minor tidal constituents. As ocean tide models continue to improve, especially in the coastal region, these minor tides become increasingly important. Generally, admittance theory is used by most global ocean tide models to infer several minor tides from the major tides when creating the tidal correction for satellite altimetry. In this paper, regional studies are conducted to compare the use of admittance theory to direct estimations of minor tides from the EOT20 model to identify which minor tides should be directly estimated and which should be inferred. The results of these two approaches are compared to two global tide models (TiME and FES2014) and in situ tide gauge observations. The analysis showed that of the eight tidal constituents studied, half should be inferred (2N2, ϵ2, MSF and T2), while the remaining four tides (J1, L2, μ2 and ν2) should be directly estimated to optimise the ocean tidal correction. Furthermore, for certain minor tides, the other two tide models produced better results than the EOT model, suggesting that improvements can be made to the tidal correction made by EOT when incorporating tides from the two other tide models. Following on from this, a new approach of merging tidal constituents from different tide models to produce the ocean tidal correction for satellite altimetry that benefits from the strengths of the respective models is presented. This analysis showed that the tidal correction created based on the recommendations of the tide gauge analysis provided the highest reduction of sea-level variance. Additionally, the combination of the EOT20 model with the minor tides of the TiME and FES2014 model did not significantly increase the sea-level variance. As several additional minor tidal constituents are available from the TiME model, this opens the door for further investigations into including these minor tides and optimising the tidal correction for improved studies of the sea surface from satellite altimetry and in other applications, such as gravity field modelling. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

14 pages, 2526 KiB  
Article
Statistics on Nonmigrating Diurnal Tides Generated by Tide-Planetary Wave Interaction and Their Relationship to Sudden Stratospheric Warming
by Xiaojuan Niu, Jian Du and Xuwen Zhu
Atmosphere 2018, 9(11), 416; https://doi.org/10.3390/atmos9110416 - 25 Oct 2018
Cited by 4 | Viewed by 3276
Abstract
The nonmigrating diurnal tide, DW2, is known to have a source from the stationary planetary wave with wavenumber 1 (SPW1) and the migrating diurnal tide (DW1) interaction. Recent research has shown that DW2 time evolution in the equatorial mesopause tracks very well with [...] Read more.
The nonmigrating diurnal tide, DW2, is known to have a source from the stationary planetary wave with wavenumber 1 (SPW1) and the migrating diurnal tide (DW1) interaction. Recent research has shown that DW2 time evolution in the equatorial mesopause tracks very well with SPW1 in the polar stratosphere for the winter of 2009–2010, which contains a sudden stratospheric warming (SSW) vortex split event. This paper extends previous research and investigates the relationship between these two waves for 31 winters from 1979 to 2010 with the extended Canadian Middle Atmosphere Model (eCMAM) through correlation and composite analysis. Significant correlations are present between the two waves in 20 out of 31 winters (65%). We separate the 31 winters into four categories: SSW-displacement, SSW-split, minor-SSW, and no-SSW. Our results show that there is no significant difference among the four categories in terms of correlations between the two waves. Although SPW1 is usually stronger during a SSW-D winter, this does not warrant a stronger interaction with DW2. Full article
Show Figures

Figure 1

18 pages, 6814 KiB  
Article
The Impact of Lidar Elevation Uncertainty on Mapping Intertidal Habitats on Barrier Islands
by Nicholas M. Enwright, Lei Wang, Sinéad M. Borchert, Richard H. Day, Laura C. Feher and Michael J. Osland
Remote Sens. 2018, 10(1), 5; https://doi.org/10.3390/rs10010005 - 21 Dec 2017
Cited by 26 | Viewed by 8880
Abstract
While airborne lidar data have revolutionized the spatial resolution that elevations can be realized, data limitations are often magnified in coastal settings. Researchers have found that airborne lidar can have a vertical error as high as 60 cm in densely vegetated intertidal areas. [...] Read more.
While airborne lidar data have revolutionized the spatial resolution that elevations can be realized, data limitations are often magnified in coastal settings. Researchers have found that airborne lidar can have a vertical error as high as 60 cm in densely vegetated intertidal areas. The uncertainty of digital elevation models is often left unaddressed; however, in low-relief environments, such as barrier islands, centimeter differences in elevation can affect exposure to physically demanding abiotic conditions, which greatly influence ecosystem structure and function. In this study, we used airborne lidar elevation data, in situ elevation observations, lidar metadata, and tide gauge information to delineate low-lying lands and the intertidal wetlands on Dauphin Island, a barrier island along the coast of Alabama, USA. We compared three different elevation error treatments, which included leaving error untreated and treatments that used Monte Carlo simulations to incorporate elevation vertical uncertainty using general information from lidar metadata and site-specific Real-Time Kinematic Global Position System data, respectively. To aid researchers in instances where limited information is available for error propagation, we conducted a sensitivity test to assess the effect of minor changes to error and bias. Treatment of error with site-specific observations produced the fewest omission errors, although the treatment using the lidar metadata had the most well-balanced results. The percent coverage of intertidal wetlands was increased by up to 80% when treating the vertical error of the digital elevation models. Based on the results from the sensitivity analysis, it could be reasonable to use error and positive bias values from literature for similar environments, conditions, and lidar acquisition characteristics in the event that collection of site-specific data is not feasible and information in the lidar metadata is insufficient. The methodology presented in this study should increase efficiency and enhance results for habitat mapping and analyses in dynamic, low-relief coastal environments. Full article
(This article belongs to the Special Issue Uncertainty in Remote Sensing Image Analysis)
Show Figures

Graphical abstract

16 pages, 2183 KiB  
Article
Impact of Geophysical and Datum Corrections on Absolute Sea-Level Trends from Tide Gauges around Taiwan, 1993–2015
by Wen-Hau Lan, Chung-Yen Kuo, Huan-Chin Kao, Li-Ching Lin, C. K. Shum, Kuo-Hsin Tseng and Jung-Chieh Chang
Water 2017, 9(7), 480; https://doi.org/10.3390/w9070480 - 1 Jul 2017
Cited by 14 | Viewed by 6956
Abstract
The Taiwanese government has established a complete tide gauge network along the coastline for accurate sea-level monitoring. In this study, we analyze several factors impacting the determination of absolute or geocentric sea-level trends—including ocean tides, inverted barometer effect, datum shift, and vertical land [...] Read more.
The Taiwanese government has established a complete tide gauge network along the coastline for accurate sea-level monitoring. In this study, we analyze several factors impacting the determination of absolute or geocentric sea-level trends—including ocean tides, inverted barometer effect, datum shift, and vertical land motion—using tide gauge records near Taiwan, from 1993–2015. The results show that datum shifts and vertical land motion have a significant impact on sea-level trends with a respective average contribution of 7.3 and 8.0 mm/yr, whereas ocean tides and inverted barometer effects have a relatively minor impact, representing 9% and 14% of the observed trend, respectively. These results indicate that datum shifts and vertical land motion effects have to be removed in the tide gauge records for accurate sea-level estimates. Meanwhile, the estimated land motions show that the southwestern plain has larger subsidence rates, for example, the Boziliao, Dongshi, and Wengang tide gauge stations exhibit a rate of 24–31 mm/yr as a result of groundwater pumping. We find that the absolute sea-level trends around Taiwan derived from tide gauges or satellite altimetry agree well with each other, and are estimated to be 2.2 mm/yr for 1993–2015, which is significantly slower than the global average sea-level rise trend of 3.2 mm/yr from satellite altimeters. Finally, a recent hiatus in sea-level rise in this region exhibits good agreement with the interannual and decadal variabilities associated with the El Niño-Southern Oscillation and Pacific Decadal Oscillation. Full article
(This article belongs to the Special Issue Sea Level Changes)
Show Figures

Figure 1

21 pages, 4456 KiB  
Article
Estimates of Minor Ocean Tide Loading Displacement and Its Impact on Continuous GPS Coordinate Time Series
by Zhao Li, Weiping Jiang, Wenwu Ding, Liansheng Deng and Lifeng Peng
Sensors 2014, 14(3), 5552-5572; https://doi.org/10.3390/s140305552 - 20 Mar 2014
Cited by 14 | Viewed by 7261
Abstract
The site displacement due to ocean tidal loading is regarded as one of the largest uncertainties in precise geodetic positioning measurements, among which the effect of minor ocean tides (MOT), except for the 11 main tidal constituents, are sometimes neglected in routine precise [...] Read more.
The site displacement due to ocean tidal loading is regarded as one of the largest uncertainties in precise geodetic positioning measurements, among which the effect of minor ocean tides (MOT), except for the 11 main tidal constituents, are sometimes neglected in routine precise global positioning system (GPS) data processing. We find that MOT can cause large vertical loading displacements with peak-to-peak variations reaching more than 8 mm at coastal/island stations. The impact of MOT on the 24-hour GPS solution is slightly larger than the magnitude of MOT loading itself, with peak-to-peak displacement variation at about 10 mm for the horizontal and 30 mm for the vertical components. We also find that the vertical velocity of all the selected stations in the Southwest Pacific was reduced by more than 10% after considering the MOT effect, while stations with weighted root mean square reduced data account for 62%, 59%, and 36% for the up, east, and north components respectively, in particular for most coastal/island stations. Furthermore, MOT correction could significantly reduce the annual signal of the global stacked east component, the near fortnightly and the long-term periodic signals in the up component. The power of some anomalous harmonics of 1.04 cycle per year is also decreased to some extent. These results further proved the benefits of MOT correction in precise GPS data processing. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

18 pages, 1347 KiB  
Article
Fluxomics of the Eastern Oyster for Environmental Stress Studies
by Andrey P. Tikunov, Michael K. Stoskopf and Jeffrey M. Macdonald
Metabolites 2014, 4(1), 53-70; https://doi.org/10.3390/metabo4010053 - 7 Jan 2014
Cited by 12 | Viewed by 9924
Abstract
The metabolism of 2-13C/15N-glycine and U-13C-glucose was determined in four tissue blocks (adductor muscle, stomach and digestive gland, mantle, and gills) of the Eastern oyster (Crassostrea virginica) using proton (1H) and carbon-13 ( [...] Read more.
The metabolism of 2-13C/15N-glycine and U-13C-glucose was determined in four tissue blocks (adductor muscle, stomach and digestive gland, mantle, and gills) of the Eastern oyster (Crassostrea virginica) using proton (1H) and carbon-13 (13C) nuclear magnetic resonance (NMR) spectroscopy. The oysters were treated in aerated seawater with three treatments (5.5 mM U-13C-glucose, 2.7 mM 2-13C/15N-glycine, and 5.5 mM U-13C-glucose plus 2.7 mM 2-13C/15N-glycine) and the relative mass balance and 13C fractional enrichments were determined in the four tissue blocks. In all tissues, glycine was metabolized by the glycine cycle forming serine exclusively in the mitochondria by the glycine cleavage system forming 2,3-13C-serine. In muscle, a minor amount of serine-derived pyruvate entered the Krebs cycle as substantiated by detection of a trace of 2,3-13C-aspartate. In all tissues, U-13C-glucose formed glycogen by glycogen synthesis, alanine by glycolysis, and glutamate and aspartate through the Krebs cycle. Alanine was formed exclusively from glucose via alanine transaminase and not glycine via alanine-glyoxylate transaminase. Based on isotopomer analysis, pyruvate carboxylase and pyruvate dehydrogenase appeared to be equal points for pyruvate entry into the Krebs cycle. In the 5.5 mM U-13C-glucose plus 2.7 mM 2-13C/15N-glycine emergence treatment used to simulate 12 h of “low tide”, oysters accumulated more 13C-labeled metabolites, including both anaerobic glycolytic and aerobic Krebs cycle intermediates. The aerobic metabolites could be the biochemical result of the gaping behavior of mollusks during emergence. The change in tissue distribution and mass balance of 13C-labeled nutrients (U-13C-glucose and 2-13C/15N-glycine) provides the basis for a new quantitative fluxomic method for elucidating sub-lethal environmental effects in marine organisms called whole body mass balance phenotyping (WoMBaP). Full article
(This article belongs to the Special Issue Response to Environment and Stress Metabolism)
Show Figures

Figure 1

Back to TopTop