Anomalous 18.61-Year Nodal Cycles in the Gulf of Tonkin Revealed by Tide Gauges and Satellite Altimeter Records
Abstract
:1. Introduction
2. Study Domain and Data
2.1. Study Domain
2.2. Water Level Observations
3. Methodology
3.1. Processing Tide Gauge Data
3.2. Processing Satellite Altimeter Data
4. Results
4.1. 18.61-Year Nodal Variability from Tide Gauges
4.2. Main Constituents Extracted from Satellite Altimeter
4.3. 18.61-Year Nodal Variability from Satellite Altimeter
5. Discussion
5.1. Systematic Nomenclature of Nodal Satellite Tides
5.2. The Advantages and Disadvantages of X-TRACK Data
6. Conclusions
- 1.
- Both tide gauges and satellite altimeter observations indicate that 18.61-year nodal cycles in tidal amplitudes significantly deviate from the equilibrium theory in the Gulf of Tonkin. In general, M2 and N2 nodal modulations significantly exceed theoretical values while K2, K1, and O1 nodal modulations are significantly lower than theoretical values.
- 2.
- Compared to point-based tide gauges, satellite altimeter records can provide basin-wide features of nodal modulations of main constituents. It is found that M2 nodal modulations are generally consistent with the theoretical value in the southwest of the Gulf of Tonkin. Furthermore, Q1 nodal modulations are noticeably larger than the theoretical value in the southeastern part of the Gulf of Tonkin. Although overlapping geographical blocks are applied to eliminate the potential effect of tidal alias, the estimated N2 and K2 nodal modulations are still questionable.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Generation of the Nodal Factor of K1 Tide
Tidal Constituent | Doodson Numbers | Frequency (h−1) | Amplitude Ratio |
---|---|---|---|
1 1 0 0-2 0 | 0.041768488 | 0.0001 | |
1 1 0 0-1 0 | 0.041774617 | 0.0198 | |
K1 | 1 1 0 0 0 0 | 0.041780746 | 1 |
1 1 0 0 1 0 | 0.041786875 | 0.1356 | |
1 1 0 0 2 0 | 0.041793004 | 0.0029 |
References
- Feng, X.; Tsimplis, M.; Woodworth, P. Nodal variations and long-term changes in the main tides on the coasts of China. J. Geophys. Res. Oceans. 2015, 120, 1215–1232. [Google Scholar] [CrossRef] [Green Version]
- Müller, M. Rapid change in semi-diurnal tides in the North Atlantic since 1980. Geophys. Res. Lett. 2011, 38, L11602. [Google Scholar] [CrossRef]
- Pan, H.; Zheng, Q.; Lv, X. Temporal changes in the response of the nodal modulation of the M2 tide in the Gulf of Maine. Cont. Shelf Res. 2019, 186, 13–20. [Google Scholar] [CrossRef]
- Ku, L.; Greenberg, D.; Garrett, C.; Dobson, F. Nodal Modulation of the Lunar Semidiurnal Tide in the Bay of Fundy and Gulf of Maine. Science 1985, 230, 69–71. [Google Scholar] [CrossRef]
- Ray, R.D. Secular Changes of the M2 Tide in the Gulf of Maine. Cont. Shelf Res. 2006, 26, 422–427. [Google Scholar] [CrossRef] [Green Version]
- Eliot, M. Influence of interannual tidal modulation on coastal flooding along the Western Australian coast. J. Geophys. Res. 2010, 115, C11013. [Google Scholar] [CrossRef] [Green Version]
- Haigh, I.; Nicholls, R.; Wells, N. Assessing changes in extreme sea levels: Application to the English Channel, 1900–2006. Cont. Shelf Res. 2010, 30, 1042–1055. [Google Scholar] [CrossRef]
- Shaw, A.; Tsimplis, M. The 18.6-yr nodal modulation in the tides of southern European coasts. Cont. Shelf Res. 2010, 30, 138–151. [Google Scholar] [CrossRef]
- Peng, D.; Hill, E.; Meltzner, A.; Switzer, A. Tide gauge records show that the 18.61-year nodal tidal cycle can change high water levels by up to 30 cm. J. Geophys. Res. Ocean. 2019, 124, 736–749. [Google Scholar] [CrossRef] [Green Version]
- Haigh, I.; Eliot, M.; Pattiaratchi, C. Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels. J. Geophys. Res. 2011, 116, C06025. [Google Scholar] [CrossRef] [Green Version]
- Royer, T. High-latitude oceanic variability associated with the 18.6-year nodal tide. J. Geophys. Res. 1993, 98, 4639–4644. [Google Scholar] [CrossRef]
- Yasuda, I.; Osafune, S.; Tatebe, H. Possible explanation linking 18.6-year period nodal tidal cycle with bi-decadal variations of ocean and climate in the North Pacific. Geophys. Res. Lett. 2006, 33, L08606. [Google Scholar] [CrossRef]
- Cherniawsky, J.; Foreman, M.; Kang, S.; Scharroo, R.; Eert, A. 18.6-year lunar nodal tides from altimeter data. Cont. Shelf Res. 2010, 30, 575–587. [Google Scholar] [CrossRef]
- Birol, F.; Fuller, N.; Lyard, F.; Cancet, M.; Niño, F.; Delebecque, C.; Fleury, S.; Toublanc, F.; Melet, A.; Saraceno, M.; et al. Coastal Applications from Nadir Altimetry: Example of the X-TRACK Regional Products. Adv. Space Res. 2017, 59, 936–953. [Google Scholar] [CrossRef]
- Vignudelli, S.; Birol, F.; Benveniste, J.; Fu, L.-L.; Picot, N.; Raynal, M.; Roinard, M. Satellite Altimetry Measurements of Sea Level in the Coastal Zone. Rev. Geophys. 2019, 40, 1319–1349. [Google Scholar] [CrossRef]
- Fang, G.; Kwok, Y.; Yu, K.; Zhu, Y. Numerical Simulation of Principal Tidal Constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Cont. Shelf Res. 1999, 19, 845–869. [Google Scholar] [CrossRef]
- Hart-Davis, M.; Piccioni, G.; Dettmering, D.; Schwatke, C.; Passaro, M.; Seitz, F. EOT20: A global ocean tide model from multi-mission satellite altimetry. Earth Syst. Sci. Data. 2021, 13, 3869–3884. [Google Scholar] [CrossRef]
- Pan, H.; Lv, X.; Wang, Y.; Matte, P.; Chen, H.; Jin, G. Exploration of Tidal-Fluvial Interaction in the Columbia River Estuary Using S_TIDE. J. Geophys. Res. 2018, 123, 6598–6619. [Google Scholar] [CrossRef]
- Pugh, D.; Woodworth, P. Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes; Cambridge University Press: Cambridge, UK, 2012; p. 395. [Google Scholar]
- Pawlowicz, R.; Beardsley, B.; Lentz, S. Classical Tidal Harmonic Analysis with Error Analysis in MATLAB Using T_TIDE. Comput. Geosci. 2002, 28, 929–937. [Google Scholar] [CrossRef]
- Ray, R.D. Secular changes in the solar semidiurnal tide of the western North Atlantic Ocean. Geophys. Res. Lett. 2009, 36, L19601. [Google Scholar] [CrossRef] [Green Version]
- Jay, D.A. Evolution of tidal amplitudes in the eastern Pacific Ocean. Geophys. Res. Lett. 2009, 36, L04603. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Lv, X. Is there a quasi 60-year oscillation in global tides? Cont. Shelf Res. 2021, 222, 104433. [Google Scholar] [CrossRef]
- Leffler, K.; Jay, D. Enhancing Tidal Harmonic Analysis: Robust (Hybrid L1/L2) Solutions. Cont. Shelf Res. 2009, 29, 78–88. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, W.; Tian, J.; Liang, X. A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. J. Geophys. Res. Atmos. 2013, 118, 6479–6494. [Google Scholar] [CrossRef]
- Ray, R.; Zaron, E. Internal tides and their observed wavenumber spectra from satellite altimetry. J. Phys. Oceanogr. 2016, 46, 3–22. [Google Scholar] [CrossRef]
- Ray, R.; Byrne, D. Bottom Pressure Tides along a Line in the Southeast Atlantic Ocean and Comparisons with Satellite Altimetry. Ocean. Dyn. 2010, 60, 1167–1176. [Google Scholar] [CrossRef] [Green Version]
- Ray, R.D. Propagation of the overtide M4 through the deep Atlantic Ocean. Geophys. Res. Lett. 2007, 34, L21602. [Google Scholar] [CrossRef]
- Piccioni, G.; Dettmering, D.; Schwatke, C.; Passaro, M.; Seitz, F. Design and regional assessment of an empirical tidal model based on FES2014 and coastal altimetry. Adv. Space Res. 2021, 68, 1013–1022. [Google Scholar] [CrossRef]
- Yu, Q.; Pan, H.; Gao, Y.; Lv, X. The Impact of the Mesoscale Ocean Variability on the Estimation of Tidal Harmonic Constants Based on Satellite Altimeter Data in the South China Sea. Remote Sens. 2021, 13, 2736. [Google Scholar] [CrossRef]
- Devlin, A.; Jay, D.; Talke, S.; Zaron, E. Can tidal perturbations associated with sea level variations in the western Pacific Ocean be used to understand future effects of tidal evolution? Ocean Dyn. 2014, 64, 1093–1120. [Google Scholar] [CrossRef] [Green Version]
- Ray, R.D. On Tidal Inference in the Diurnal Band. J. Atmos. Ocean. Technol. 2017, 34, 437–446. [Google Scholar] [CrossRef]
- Nguyen, N.M.; Marchesiello, P.; Lyard, F.; Ouillon, S.; Cambon, G.; Allain, D.; Dinh, U.V. Tidal characteristics of the Gulf of Tonkin. Cont. Shelf Res. 2014, 91, 37–56. [Google Scholar]
Constituents | f |
---|---|
M2/N2 | 1.0004 − 0.0373cos(N) + 0.0003cos(2N) |
S2 | 1 |
K1 | 1.0060 + 0.1150cos(N) − 0.0088cos(2N) + 0.0006cos(3N) |
K2 | 1.0241 + 0.2863cos(N) + 0.0083cos(2N) − 0.0015cos(3N) |
O1/Q1 | 1.0089 + 0.1871cos(N) − 0.0147cos(2N) + 0.0014cos(3N) |
Tidal Constituent | Doodson Numbers | Frequency (h−1) | Alias Period (Days) |
---|---|---|---|
Mn | 0 0 0 0 1 0 | 0.000006129 | - |
Sa | 0 0 1 0 0-1 | 0.000114074 | - |
Ssa | 0 0 2 0 0 0 | 0.000228159 | - |
Mf | 0 2 0 0 0 0 | 0.003050092 | 36.168 |
Q1n | 1-2 0 1-1 0 | 0.037212374 | 68.682 |
Q1 | 1-2 0 1 0 0 | 0.037218503 | 69.383 |
O1n | 1-1 0 0-1 0 | 0.038724526 | 46.015 |
O1 | 1-1 0 0 0 0 | 0.038730654 | 45.706 |
P1 | 1 1-2 0 0 0 | 0.041552587 | 88.925 |
K1 | 1 1 0 0 0 0 | 0.041780746 | 173.322 |
K1n | 1 1 0 0 1 0 | 0.041786875 | 177.856 |
J1 | 1 2 0-1 0 0 | 0.043292898 | 32.763 |
N2n | 2-1 0 1-1 0 | 0.078993120 | 49.190 |
N2 | 2-1 0 1 0 0 | 0.078999249 | 49.548 |
NU2 | 2-2 2 0 0 0 | 0.079201620 | 65.251 |
M2n | 2 0 0 0-1 0 | 0.080505272 | 62.648 |
M2 | 2 0 0 0 0 0 | 0.080511401 | 62.076 |
MKS2 | 2 0 2 0 0 0 | 0.080739560 | 46.328 |
S2 | 2 2-2 0 0 0 | 0.083333333 | 58.772 |
K2 | 2 2 0 0 0 0 | 0.083561492 | 86.661 |
K2n | 2 2 0 0 1 0 | 0.083567624 | 87.780 |
SK3 | 3 3-2 0 0 0 | 0.125114080 | 43.889 |
M4 | 4 0 0 0 0 0 | 0.161022801 | 31.038 |
2MS6 | 6 2-2 0 0 0 | 0.244356135 | 65.775 |
2MK6 | 6 2 0 0 0 0 | 0.244584294 | 48.358 |
Ssa | Q1 | O1 | P1 | K1 | N2 | M2 | S2 | K2 | |
---|---|---|---|---|---|---|---|---|---|
Sa | 1.00 | 0.23 | 0.14 | 0.32 | 0.90 | 0.16 | 0.20 | 0.19 | 0.31 |
Ssa | 0.31 | 0.17 | 0.47 | 9.18 | 0.19 | 0.26 | 0.24 | 0.45 | |
Q1 | 0.37 | 0.86 | 0.32 | 0.47 | 1.63 | 1.05 | 0.95 | ||
O1 | 0.26 | 0.17 | 1.63 | 0.47 | 0.56 | 0.27 | |||
P1 | 0.50 | 0.31 | 0.56 | 0.47 | 9.18 | ||||
K1 | 0.19 | 0.27 | 0.24 | 0.47 | |||||
N2 | 0.67 | 0.86 | 0.32 | ||||||
M2 | 2.97 | 0.60 | |||||||
S2 | 0.50 |
Constituents | M2 | N2 | K2 | K1 | O1 | Q1 |
---|---|---|---|---|---|---|
Theoretical | 3.73 | 3.73 | 28.63 | 11.5 | 18.7 | 18.7 |
Beihai | 10.4 ± 0.2 | 13.6 ± 1.4 | 14.5 ± 0.4 | 8.2 ± 0.1 | 16.0 ± 0.2 | 17.4 ± 0.8 |
Dongfang | 8.5 ± 0.1 | 9.7 ± 1.1 | 16.6 ± 0.5 | 8.0 ± 0.1 | 15.9 ± 0.2 | 17.5 ± 0.7 |
Haikou | 11.1 ± 0.2 | 10.5 ± 2.4 | 18.4 ± 0.4 | 9.9 ± 0.1 | 17.2 ± 0.2 | 18.3 ± 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, H.; Devlin, A.T.; Xu, T.; Lv, X.; Wei, Z. Anomalous 18.61-Year Nodal Cycles in the Gulf of Tonkin Revealed by Tide Gauges and Satellite Altimeter Records. Remote Sens. 2022, 14, 3672. https://doi.org/10.3390/rs14153672
Pan H, Devlin AT, Xu T, Lv X, Wei Z. Anomalous 18.61-Year Nodal Cycles in the Gulf of Tonkin Revealed by Tide Gauges and Satellite Altimeter Records. Remote Sensing. 2022; 14(15):3672. https://doi.org/10.3390/rs14153672
Chicago/Turabian StylePan, Haidong, Adam Thomas Devlin, Tengfei Xu, Xianqing Lv, and Zexun Wei. 2022. "Anomalous 18.61-Year Nodal Cycles in the Gulf of Tonkin Revealed by Tide Gauges and Satellite Altimeter Records" Remote Sensing 14, no. 15: 3672. https://doi.org/10.3390/rs14153672
APA StylePan, H., Devlin, A. T., Xu, T., Lv, X., & Wei, Z. (2022). Anomalous 18.61-Year Nodal Cycles in the Gulf of Tonkin Revealed by Tide Gauges and Satellite Altimeter Records. Remote Sensing, 14(15), 3672. https://doi.org/10.3390/rs14153672