Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = mineral-protected organic carbon in soil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3385 KB  
Article
The Influence of Seasonal Freeze–Thaw in Northeast China on Greenhouse Gas Emissions and Microbial Community Structure in Peat Soil
by Yanru Gong, Tao Yang, Jiawen Yan and Xiaofei Yu
Water 2025, 17(16), 2395; https://doi.org/10.3390/w17162395 - 13 Aug 2025
Viewed by 622
Abstract
Peat soil is a significant global carbon storage pool, accounting for one-third of the global soil carbon pool. Its greenhouse gas emissions have a significant impact on climate change. Seasonal freeze–thaw cycles are common natural phenomena in high-latitude and high-altitude regions. They significantly [...] Read more.
Peat soil is a significant global carbon storage pool, accounting for one-third of the global soil carbon pool. Its greenhouse gas emissions have a significant impact on climate change. Seasonal freeze–thaw cycles are common natural phenomena in high-latitude and high-altitude regions. They significantly affect the mineralization of soil organic carbon and greenhouse gas emissions by altering the physical structure, moisture conditions, and microbial communities of the soil. In this study, through the construction of an indoor simulation experiment of the typical freeze–thaw cycle models in spring and autumn in the Greater Xing‘an Range region of China and the Jinchuan peatland of Jilin Longwan National Nature Reserve, the physicochemical properties, greenhouse gas emission fluxes, microbial community structure characteristics, and key metabolic pathways of peat soils in permafrost and seasonally frozen ground areas were determined. The characteristics of greenhouse gas emissions and their influencing mechanisms for peat soil in northern regions under different freeze–thaw conditions were explored. The research found that the freeze–thaw cycle significantly changed the chemical properties of peat soil and significantly affected the emission rates of CO2, CH4, and N2O. It also clarified the interaction relationship between soil’s physicochemical properties (such as dissolved organic carbon (DOC), dissolved organic nitrogen (DON), ammonium nitrogen (NH4+), soil organic carbon (SOC), etc.) and the structure and metabolic function of microbial communities. It is of great significance for accurately assessing the role of peatlands in the global carbon cycle and formulating effective ecological protection and management strategies. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

17 pages, 2039 KB  
Article
Long-Term Conservation Tillage Increases Soil Organic Carbon Stability by Modulating Microbial Nutrient Limitations and Aggregate Protection
by Zixuan Han, Xueping Wu, Huizhou Gao, Angyuan Jia and Qiqi Gao
Agronomy 2025, 15(7), 1571; https://doi.org/10.3390/agronomy15071571 - 27 Jun 2025
Cited by 2 | Viewed by 1020
Abstract
Increasing soil organic carbon (SOC) storage is essential for improving soil fertility and mitigating climate change. The priming effect, which is regulated by physical, chemical and microbial interactions, plays a pivotal role in SOC turnover. However, the fate of both native and newly [...] Read more.
Increasing soil organic carbon (SOC) storage is essential for improving soil fertility and mitigating climate change. The priming effect, which is regulated by physical, chemical and microbial interactions, plays a pivotal role in SOC turnover. However, the fate of both native and newly added carbon under different tillage regimes remains unclear. To address this gap, a 13C-glucose labelling incubation experiment was conducted to assess SOC mineralization and priming effects under long-term tillage practices, including subsoiling with straw mulching (ST), no tillage with straw mulching (NT), and conventional tillage with straw removal (CT). The results demonstrated that conservation tillage (NT and ST) significantly reduced total SOC mineralization and glucose-derived CO2 release compared to CT. Notably, the priming effect under CT was 19.5% and 24.7% higher than under NT and ST, respectively. In the early incubation stage, positive priming was primarily driven by microbial co-metabolism, while during days 1–31, microbial stoichiometric decomposition dominated the process. In addition, NT and ST treatments significantly increased the proportion of >250 μm aggregates and their associated carbon and nitrogen contents, thereby enhancing aggregate stability and physical protection of SOC. The priming effect observed under conservation tillage was strongly negatively related to aggregate stability and aggregate associated carbon content, whereas it was positively related to the β-glucosidase/Peroxidase ratio (BG/PER) and the subtraction value between carbon/nitrogen (RC:N) and the carbon–nitrogen imbalance of the available resources (TERC:N). Overall, our findings highlight that conservation tillage enhances SOC stability not only by improving soil physical structure but also by alleviating microbial stoichiometric constraints, offering a synergistic pathway for carbon retention and climate-resilient soil management. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

19 pages, 1658 KB  
Article
Long-Term Effects of Forest Management on Boreal Forest Soil Organic Carbon
by Holly D. Deighton, F. Wayne Bell and Zoë Lindo
Forests 2025, 16(6), 902; https://doi.org/10.3390/f16060902 - 28 May 2025
Cited by 1 | Viewed by 843
Abstract
Boreal forests have historically been regarded as some of the largest terrestrial carbon (C) sinks. However, increased soil organic matter (SOM) decomposition due to forest harvesting and post-harvest silviculture (e.g., site preparation, planting, and managing for competing vegetation) may exacerbate the effects of [...] Read more.
Boreal forests have historically been regarded as some of the largest terrestrial carbon (C) sinks. However, increased soil organic matter (SOM) decomposition due to forest harvesting and post-harvest silviculture (e.g., site preparation, planting, and managing for competing vegetation) may exacerbate the effects of climate warming and shift boreal forests from being C sinks to C sources. We used an established stand-scale, fully replicated, experimental study to identify how two levels of forest management (harvesting = Harvest Only, and harvesting with post-harvest silviculture = Harvest Plus) influence SOC dynamics at three boreal forest sites varying in soil texture. Each site was surveyed for forest floor (litter and F/H horizons) and mineral soils pre-harvest (0) and 5, 14, and 20 years post-harvest. We predicted that sites harvested and left to revegetate naturally would have the lowest SOC stocks after 20 years, as sites that were planted and managed for competing vegetation would recover faster and contribute to a larger nutrient pool, and that the sand-dominated site would have the largest SOC losses following harvest due to the inherently lower ability of sand soils to chemically and/or physically protect SOC from decomposition following harvest. Over a 20-year period, both forest management treatments generally resulted in reduced total (litter, F/H, and mineral horizon) SOC stocks compared with the control: the Harvest Only treatment reduced overall SOC stocks by 15% at the silt-dominated site and 31% at the clay-dominated site but increased overall SOC stocks by 4% at the sand-dominated site, whereas the Harvest Plus treatment reduced overall SOC stocks by 32% at the sand- and silt-dominated sites and 5% at the clay-dominated site. This suggests that harvesting and leaving plots to revegetate naturally on sand-dominated sites and harvesting followed by post-harvest silviculture on clay-dominated sites may minimize total SOC losses at similar sites, though a full replicated field experiment is needed to test this hypothesis. Most treatment effects in this study were observed only in the second decade post-harvest (14 and 20 years post-harvest), highlighting the importance of long-term field experiments on the effects of forest harvesting and post-harvest silviculture. This research improves our understanding of the relationship between C dynamics, forest management, and soil texture, which is integral for developing sustainable management strategies that optimize C sequestration and contribute to the resilience of boreal forest ecosystems in the face of climate change. Full article
Show Figures

Figure 1

17 pages, 1527 KB  
Review
Mechanisms Behind the Soil Organic Carbon Response to Temperature Elevations
by Yonglin Wu, Haitao Li, Xinran Liang, Ming Jiang, Siteng He and Yongmei He
Agriculture 2025, 15(11), 1118; https://doi.org/10.3390/agriculture15111118 - 22 May 2025
Cited by 1 | Viewed by 1326
Abstract
Soil organic carbon (SOC) represents the most dynamic component of the soil carbon pool and is pivotal in the global carbon cycle. Global temperature rise and increasing drought severity are now indisputable realities, making soil organic carbon cycling under climate warming a critical [...] Read more.
Soil organic carbon (SOC) represents the most dynamic component of the soil carbon pool and is pivotal in the global carbon cycle. Global temperature rise and increasing drought severity are now indisputable realities, making soil organic carbon cycling under climate warming a critical research priority. This review elucidates the mechanism of the SOC response to temperature increase in terms of both extrinsic and intrinsic factors. The extrinsic factors are temperature elevation methods, rainfall, and land use. Different methods of temperature increase have their own unique advantages and disadvantages. Indoor warming methods exclude other factors, making temperature the only variable, but tend to ignore carbon inputs. In situ field warming and soil displacement methods help researchers explore the response of the complete ecosystem carbon cycle to temperature increase but cannot exclude the interference of factors such as rainfall. Elevated rainfall mitigates the adverse effects of elevated temperatures on organic carbon sequestration. In addition, the response of SOC to temperature elevations vary among different land use types. The temperature sensitivity of SOC is higher in peatland (high organic matter) alpine meadows (colder regions). The intrinsic factors that affect the response of SOC to elevated temperatures are SOC components, microorganisms, SOC temperature sensitivity, and SOC stability. The SOC decomposition rate is influenced by variations in the ratios of decomposable (easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), and microbial biomass carbon (MBC)) and stabilizing (inert organic carbon (IOC), alkyl carbon, and aromatic carbon) SOC to total organic carbon (TOC). Furthermore, temperature elevations also affect the soil microenvironment, resulting in microbial community reorganization such as changes in bacterial and fungal ratios and abundance. At the same time, soil aggregates, clay minerals, and iron and aluminum oxides protect the SOC, making it difficult to be utilized by microbial decomposition. The systematic clarification of the mechanism behind the SOC response to higher temperatures is crucial for accurately predicting and modeling global carbon cycles and effectively responding to the loss of SOC pools due to global temperature elevations. Full article
Show Figures

Figure 1

14 pages, 2948 KB  
Article
Effects of Adding Different Corn Residue Components on Soil and Aggregate Organic Carbon
by Ninghui Xie, Liangjie Sun, Tong Lu, Xi Zhang, Ning Duan, Wei Wang, Xiaolong Liang, Yuchuan Fan and Huiyu Liu
Agriculture 2025, 15(10), 1050; https://doi.org/10.3390/agriculture15101050 - 12 May 2025
Viewed by 779
Abstract
Soil organic carbon (SOC) plays a vital role in maintaining soil fertility and ecosystem sustainability, with crop residues serving as a key carbon input. However, how different maize residue components influence SOC stabilization across aggregate sizes and fertility levels remains poorly understood. This [...] Read more.
Soil organic carbon (SOC) plays a vital role in maintaining soil fertility and ecosystem sustainability, with crop residues serving as a key carbon input. However, how different maize residue components influence SOC stabilization across aggregate sizes and fertility levels remains poorly understood. This study investigated the effects of maize roots, stems, and leaves on SOC dynamics and aggregate-associated carbon under low- and high-fertility Brown Earth soils through a 360-day laboratory incubation. Results revealed that residue incorporation induced an initial increase in SOC, followed by a gradual decline due to microbial mineralization, yet maintained net carbon retention. In low-fertility soil, leaf residues led to the highest SOC content (12.08 g kg−1), whereas root residues were most effective under high-fertility conditions (18.93 g kg−1). Residue addition enhanced macroaggregate (>0.25 mm) formation while reducing microaggregate fractions, with differential patterns of SOC distribution across aggregate sizes. SOC initially accumulated in 0.25–2 mm aggregates but gradually shifted to >2 mm and <0.053 mm fractions over time. Root residues favored stabilization in high-fertility soils via mineral association, while stem and leaf residues promoted aggregate-level carbon protection in low-fertility soils. These findings highlight the interactive roles of residue type and soil fertility in regulating SOC sequestration pathways. Full article
Show Figures

Figure 1

18 pages, 1355 KB  
Article
The Significance of Herbicide–Humin Interactions in Sustainable Agroecosystems
by Maria Jerzykiewicz, Irmina Ćwieląg-Piasecka, Jerzy Weber, Aleksandra Ukalska-Jaruga, Elżbieta Jamroz, Andrzej Kocowicz, Magdalena Debicka, Jakub Bekier, Lilla Mielnik, Romualda Bejger, Magdalena Banach-Szott and Agnieszka Grabusiewicz
Sustainability 2025, 17(8), 3449; https://doi.org/10.3390/su17083449 - 12 Apr 2025
Viewed by 599
Abstract
Humin, as the most stable fraction in soil organic matter, determines possibility of sustainable environmental development by influencing, among other things, the binding and migration of different chemicals in soil. The aim of this paper was to determine changes in the properties of [...] Read more.
Humin, as the most stable fraction in soil organic matter, determines possibility of sustainable environmental development by influencing, among other things, the binding and migration of different chemicals in soil. The aim of this paper was to determine changes in the properties of humins after interaction with three selected active substances of herbicides differing in structure and chemical properties (pendimethalin, metazachlor, and flufenacet) and two different commercial products. In accordance with OECD 106 guidelines, humins isolated from eight different soils were saturated with herbicide compounds under study. As humin is a non-hydrolyzable organic carbon fraction, solid state research techniques (elemental analysis, NMR, FTIR, EPR, and UV-Vis) were applied. The results clearly showed that the interaction between humin and herbicides increases the concentration of oxygen-containing groups and the internal oxidation (ω) in humin. For all investigated humins, a reduction in radical concentration was observed. Radicals in humins were not completely quenched; a certain concentration of radicals with unchanged structure always remained in the samples. Other spectroscopic analyses showed no significant changes in the structure of pesticide-saturated and non-saturated humins. This suggests that sorption of the studied compounds occurs on the humins only as a result of the interaction of physical forces on the surface of the studied organic matter fraction. Thus, interaction with the studied herbicides occurs as a surface phenomenon, and the inner core remains protected by the condensed structure and/or strong binding to the clay minerals. Full article
Show Figures

Figure 1

23 pages, 5520 KB  
Article
Multivariate Insight into Soil Organic Matter Dynamics in Subarctic Abandoned Farmland by the Chronosequence Approach
by Timur Nizamutdinov, Sizhong Yang, Xiaodong Wu, Vladislav Gurzhiy and Evgeny Abakumov
Agronomy 2025, 15(4), 893; https://doi.org/10.3390/agronomy15040893 - 3 Apr 2025
Viewed by 885
Abstract
Agricultural land abandonment is a widespread phenomenon found in many regions of the world. There are many studies on post-agricultural changes in temperate, arid, semi-arid regions, etc., but studies of such soils in boreal or Arctic conditions are rare. Our study aims to [...] Read more.
Agricultural land abandonment is a widespread phenomenon found in many regions of the world. There are many studies on post-agricultural changes in temperate, arid, semi-arid regions, etc., but studies of such soils in boreal or Arctic conditions are rare. Our study aims to fill the gaps in research on the processes of post-agricultural soil transformation, with a focus on the harsh climatic conditions of the Arctic and Subarctic regions. Parameters of soil organic matter (SOM) are largely reflected in the quality of soil, and this study investigates the dynamics of SOM properties in Subarctic agricultural soils in process of post-agrogenic transformation and long-term fertilization. Using a chronosequence approach (0–25 years of abandonment) and a reference site with over 90 years of fertilization, we performed elemental (CHN-O) analysis, solid-state 13C NMR spectroscopy of SOM, PXRD of soil and parent material, and multivariate statistical analysis to identify the connections between SOM composition and other soil properties. The results revealed transient increases in soil organic carbon (SOC) during early abandonment (5–10 years; 3.75–4.03%), followed by significant declines after 25 years (2.15–2.27%), driven by mineralization in quartz-dominated soils lacking reactive minerals for organo-mineral stabilization. The reference site (the Yamal Agricultural Station) maintained stable SOC (3.58–3.83%) through long-term organic inputs, compensating for poor mineralogical protection. 13C NMR spectroscopy highlighted shifts from labile alkyl-C (40.88% in active fields) to oxidized O-alkyl-C (21.6% in late abandonment) and lignin-derived aryl-C (15.88% at middle abandonment), reflecting microbial processing and humification. Freeze–thaw cycles and quartz dominance mineralogy exacerbated SOM vulnerability, while fertilization sustained alkyl-C (39.61%) and balanced C:N (19–20) ratios. Principal Component Analysis linked SOC loss to declining nutrient retention and showed SOM to be reliant on physical occlusion and biochemical recalcitrance, both vulnerable to Subarctic freeze–thaw cycles that disrupt aggregates. These findings underscore the fragility of SOM in Subarctic agroecosystems, emphasizing the necessity of organic amendments to counteract limitations of poor mineralogical composition and climatic stress. Full article
(This article belongs to the Special Issue Soil Organic Matter and Tillage)
Show Figures

Figure 1

14 pages, 1555 KB  
Article
Effect of Agricultural Management Intensity on the Organic Carbon Fractions and Biological Properties of a Volcanic-Ash-Derived Soil
by Camila Aravena, Susana R. Valle, Rodrigo Vergara, Mauricio González Chang, Oscar Martínez, John Clunes, Belén Caurapán and Joel Asenjo
Sustainability 2025, 17(6), 2704; https://doi.org/10.3390/su17062704 - 18 Mar 2025
Cited by 2 | Viewed by 1035
Abstract
Intensive agricultural management affects the physical, chemical, and biological properties of soil, potentially contributing to a decrease in soil carbon storage. In this study, the effects of soil management intensity on soil organic carbon (SOC) content and its labile fractions, i.e., water-soluble organic [...] Read more.
Intensive agricultural management affects the physical, chemical, and biological properties of soil, potentially contributing to a decrease in soil carbon storage. In this study, the effects of soil management intensity on soil organic carbon (SOC) content and its labile fractions, i.e., water-soluble organic carbon (OC-sol) and permanganate oxidizable carbon (POXC), were evaluated in a volcanic-ash-derived soil (Andisol) with a very high soil organic matter (SOM) content (>20%). These indicators were associated with water-stable aggregates (WSAs) and biological indicators, namely, earthworm density, cellulase activity, and autoclaved-citrate-extractable (ACE) proteins, related to the decomposition of SOM and its physical protection. The conditions evaluated were secondary native forest (SF), naturalized grassland (NG), no-till (NT), and conventional tillage (CT), considering the last item to be representative of a higher agriculture management intensity. Soil samples were collected by horizon. The SF and NG soil showed higher contents of SOC, OC-sol, and POXC. When comparing the evaluated annual cropping systems, NT showed higher values than CT (p < 0.05) in the first horizon (Hz1), while similar values were found at deeper horizons. The highest cellulase activity, ACE protein levels, and earthworm densities were found in NG and SF. NT also showed significantly higher levels of the aforementioned factors than CT (p < 0.05). A positive and significant relationship was found between the SOC content and WSA (R2 = 0.76; p < 0.05) in the whole profile and between POXC and WSA for Hz1 (R2 = 0.67; p < 0.05). Soil C storage was affected by the intensity of agricultural management, mainly because of the effect of tillage on structural stability, considering that biological activity synthesizes compounds such as enzymes and proteins that react and adhere to the mineral fraction affecting aggregate stability. The C content stored in the soil is consequently a key indicator with which to regulate SOM and protect SOC. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

12 pages, 1232 KB  
Article
Biochar Application and Mowing Independently and Interactively Influence Soil Enzyme Activity and Carbon Sequestration in Karst and Red Soils in Southern China
by Wenjia Luo, Daniel F. Petticord, Shiwen Zhu, Shaowu Zhu, Yuanlong Wu, Xun Yi, Xinyue Wang, Yili Guo and Xuxin Song
Agronomy 2025, 15(1), 252; https://doi.org/10.3390/agronomy15010252 - 20 Jan 2025
Cited by 1 | Viewed by 1733
Abstract
Soil organic carbon (SOC), a critical component of the global carbon cycle, represents the largest terrestrial carbon reservoir, and is thus a major component of influencing climate regulation and ecosystem health. Grasslands store substantial carbon in their soils, but this carbon reservoir is [...] Read more.
Soil organic carbon (SOC), a critical component of the global carbon cycle, represents the largest terrestrial carbon reservoir, and is thus a major component of influencing climate regulation and ecosystem health. Grasslands store substantial carbon in their soils, but this carbon reservoir is easily degraded by both grazing and mowing, particularly in vulnerable karst landscapes. This study investigates the potential of biochar, a carbon-rich soil amendment, as a management tool to maintain SOC or mitigate the degradation of SOC during mowing in karst grasslands in Southern China, using both red acidic and calcareous soils as experimental variables. T SOC fractions, soil enzyme activities, and soil pH were measured to determine the effect of mowing and biochar application on carbon stability and microbial activity. Consistent with expectations, mowing increases belowground biomass and promotes carbon loss through increased microbial activity, particularly in calcareous soils where mowing also decreases soil pH, increasing acidity and reducing the stability of Ca–carbon complexes. Biochar, however, counteracted these effects, increasing both particulate organic carbon (POC) and mineral-associated organic carbon (MAOC), especially in red soils where the addition of biochar greatly increased soil pH (from 5.4 to 6.33) (an effect not observed in the already-alkaline karst soils). Enzyme activities related to carbon degradation, such as β-D-Glucosidase and peroxidase, increased in biochar-amended soils (β-D-Glucosidase increased from 12.77 to 24.53 nmol/g/h and peroxidase increased from 1.1 to 2.36 mg/g/2h), each of which contribute to the degradation of carbon containing organic matter so that it may be ultimately stored in more recalcitrant forms. Mowing led to reduced polyphenol oxidase activity, but the presence of biochar mitigated these losses, protecting SOC pools (increased from 0.03 to 0.79 mg/g/2h). This study highlights biochar as an effective tool for enhancing SOC stability in karst grasslands, particularly in acidic soils, and suggests that integrating biochar into mowing regimes may optimize carbon sequestration while reducing fire risk. These findings offer valuable theoretical guidance for developing sustainable land management in sensitive ecosystems. Full article
Show Figures

Figure 1

12 pages, 2307 KB  
Article
The Impact of Soil Dry–Wet Cycles on the Mineralization of Soil Organic Carbon and Total Nitrogen in Check Dams of the Loess Plateau
by Zechao Gao, Peng Shi, Lulu Bai, Zhiqiang Min, Duoxun Xu, Bo Wang and Lingzhou Cui
Water 2024, 16(22), 3274; https://doi.org/10.3390/w16223274 - 14 Nov 2024
Viewed by 1449
Abstract
Frequent soil drying and wetting cycles significantly affect the mineralization processes of soil organic carbon (SOC) and total nitrogen (STN), impacting soil quality and contributing to nutrient loss. However, the effects of these dry–wet cycles on SOC and STN mineralization in dam soil [...] Read more.
Frequent soil drying and wetting cycles significantly affect the mineralization processes of soil organic carbon (SOC) and total nitrogen (STN), impacting soil quality and contributing to nutrient loss. However, the effects of these dry–wet cycles on SOC and STN mineralization in dam soil are not well understood. This study simulated four consecutive wet–dry cycles under five soil moisture gradients of 0% (CK), 5%, 10%, 15%, and 100%, and 100%, across four cycles of 7, 14, 21, and 28 days, to investigate the effects on soil aggregates, enzyme activities, and the mineralization of SOC and STN. The results indicated that soil enzyme activity peaked after two dry–wet cycles and then began to decline. The dry–wet cycles reduced the proportion of soil macro-aggregates while also decreasing the proportions of small and micro-aggregates. In contrast, the 100% treatment conditions exhibited the opposite effect. Dry–wet cycles enhanced the mineralization rates of SOC and STN, with the average mineralization rates under the 10% soil moisture content being the highest—1.78 and 2.38 times greater than the CK treatment for SOC and STN, respectively. The impact of dry–wet cycles on SOC and STN mineralization through the enzyme pathway was greater than through the aggregate pathway. These research findings provide theoretical insights and scientific references for the efficient operation and ecological protection of sedimentation dams in the Loess Plateau. Full article
(This article belongs to the Special Issue Soil Erosion and Soil and Water Conservation)
Show Figures

Figure 1

16 pages, 3257 KB  
Article
Synergistic Promotion of Particulate and Mineral-Associated Organic Carbon Within Soil Aggregates After 10 Years of Organic Fertilization in Wheat-Maize Systems
by Jing Li, Huijun Wu, Xiaojun Song, Shengping Li, Xueping Wu, Ya Han, Zhiping Liu, Na Yang, Ke Wang, Zhiguo Yang and Jiancheng Zhang
Land 2024, 13(10), 1722; https://doi.org/10.3390/land13101722 - 20 Oct 2024
Viewed by 1685
Abstract
How different fertilization practices modify soil organic carbon (SOC) sequestration is still unclear. Our study aimed to evaluate the changes in SOC stocks and their physical fractions after 10 years of organic and inorganic fertilization. Five treatments were established under a wheat-maize system [...] Read more.
How different fertilization practices modify soil organic carbon (SOC) sequestration is still unclear. Our study aimed to evaluate the changes in SOC stocks and their physical fractions after 10 years of organic and inorganic fertilization. Five treatments were established under a wheat-maize system in Northern China: control (CK), chemical fertilizer (F), straw plus chemical fertilizer (SF), manure plus chemical fertilizer (MF), and straw and manure plus chemical fertilizer (SMF). The results showed that the SOC sequestration rate at 0–20 cm depth decreased in the following order: SMF (1.36 Mg C/ha/yr) > MF (1.13 Mg C/ha/yr) > SF (0.72 C/ha/yr) > F (0.15 Mg C/ha/yr) > CK (−0.25 Mg C/ha/yr). The values indicated that straw returning and manure application were important measures to achieve the “4 per 1000” target, and the application of manure was a more effective strategy. The high input of chemical fertilizer only maintained the initial SOC level and was not a powerful C-farming practice. A minimum input of 4.93 Mg C/ha/yr was required to keep the initial SOC storage. The SOC associated with small macroaggregate (0.25–2 mm) was the most sensitive indicator for the changes of bulk SOC. In addition, the accumulation of SOC under SMF, MF, and SF treatments mainly occurred in the occluded particulate organic C (oPOC) in small macroaggregates, indicating that the physical protection of macroaggregates played a predominant role in SOC sequestration. The SMF, MF, and SF treatments also displayed higher mineral organic C (mSOC) in soil aggregates than the CK and F treatments. A transformation of oPOC towards the mSOC fraction indicated that exogenous C further shifted into stable C pools under the physical protection of soil aggregates. In conclusion, these findings confirmed the important role of straw returning and manure application in SOC accumulation and stabilization, highlighting that a combination strategy of straw + manure + chemical fertilizer had the best effect. Full article
Show Figures

Figure 1

18 pages, 1654 KB  
Article
Key Microorganisms Influencing Mineral-Protected Organic Carbon Formation in Soils with Exogenous Carbon Addition
by Limin Zhang, Yuanhong Luo, Yang Wang, Chengfu Zhang, Guojun Cai, Weici Su and Lifei Yu
Agronomy 2024, 14(10), 2333; https://doi.org/10.3390/agronomy14102333 - 10 Oct 2024
Cited by 2 | Viewed by 1335
Abstract
The formation of mineral-protected organic carbon (MPOC) is a vital process for soil organic carbon (SOC) accumulation and stabilization, influenced by factors such as exogenous carbon (C) input and soil microorganisms. However, the dynamics of MPOC and soil microorganisms following exogenous C input, [...] Read more.
The formation of mineral-protected organic carbon (MPOC) is a vital process for soil organic carbon (SOC) accumulation and stabilization, influenced by factors such as exogenous carbon (C) input and soil microorganisms. However, the dynamics of MPOC and soil microorganisms following exogenous C input, and the key microorganisms driving MPOC formation, remain poorly understood. To address this, we conducted exogenous C addition culture experiments to investigate changes in MPOC and soil microorganisms and identify the primary microorganisms influencing MPOC formation. We observed that the MPOC content in treated soils increased over time, ranging from 0.43 to 2.06 g kg−1. MPOC showed a significant positive correlation with soil bacterial diversity and a significant negative correlation with fungal diversity. Soil samples contained 248 bacterial families and 189 fungal genera, with Oxalobacteraceae (7.42%) and unclassified_k__Fungi (24.82%) being the most abundant, respectively. Using FAPROTAX and FunGuild ecological function prediction methods, we analyzed soil bacteria and fungi functional profiles and abundances. We identified the main bacterial families influencing MPOC formation as Microbacteriaceae, Mycobacteriaceae, Pseudomonadaceae, Streptomycetaceae, and Xanthomonadaceae. The primary fungal genera were Cylindrocarpon, Leohumicola, Metarhizium, Neobulgaria, Neopestalotiopsis, Olpidium, and Tetracladium. These findings provide theoretical support for understanding microbial regulation mechanisms in soil C sequestration and emission reduction. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

22 pages, 1732 KB  
Article
Physicochemical Characterization of Broiler Poultry Litter from Commercial Broiler Poultry Operation in Semiarid Tropics of India
by Thirunavukkarasu Maruthamuthu, Sivakumar Karuppusamy, Ramesh Veeramalai, Murali Nagarajan, Purushothaman Manika Ragavan, Mahimairaja Santiago, Bharathy Nallathambi, Anandha Prakash Singh Dharmalingam, Karthika Radhakrishnan, Ajaykumar Ramasamy, Shri Rangasami Silambiah Ramasamy and Thriruvenkadan Aranganoor Kannan
Agriculture 2024, 14(10), 1708; https://doi.org/10.3390/agriculture14101708 - 29 Sep 2024
Cited by 1 | Viewed by 2804
Abstract
This study characterized the physicochemical properties of broiler poultry litter (BPL) produced from intensively reared commercial broilers that were collected from 110 commercial poultry farms at the end of the production cycle (sixth week). A further 20 samples were collected from the end [...] Read more.
This study characterized the physicochemical properties of broiler poultry litter (BPL) produced from intensively reared commercial broilers that were collected from 110 commercial poultry farms at the end of the production cycle (sixth week). A further 20 samples were collected from the end use point where BPL was utilized as a soil amendment by the farmers after a period of storage for improving poultry litter management practices, developing new litter treatment technologies, or enhancing its use as a sustainable resource. The dry matter (DM), moisture, ash, organic matter (OM), and organic carbon (OC) from the manure samples were 83.04, 16.96, 27.08, 72.92, and 42.39%, respectively. The pH, electrical conductivity (EC) (dS m−1), and Kjeldahl nitrogen (N) were 8.43, 5.74, and 24.2 g kg−1, respectively. The BPL from the cement floor had higher levels of P and K than the mud floor. The correlation studies revealed that the OM, C, N, and Zn had significant positive correlations; pH, moisture, and ash had positive correlations; and EC, DM, and Ca had positive correlations. The EC level of BPL negatively correlated with pH, Fe, and Mn. The N content was found to have a highly significant (p < 0.01) positive correlation with the OM, OC, Ca, and Zn content of BPL, and it was found to have a highly significant (p < 0.01) negative correlation with the ash content, pH, and K content of BPL. The P content of BPL showed a positive correlation (p < 0.01) with the K content and a negative correlation with the Zn (p < 0.05) and Fe (p < 0.01) contents of BPL. Zn was found to be negatively (p < 0.01) correlated with the ash content; the pH; and the K, Fe, and P content of BPL. According to the findings of this study, BPL as such at the end of the production cycle is rich in OM, nitrogen, macrominerals, and microminerals; however, at the point of utility (after a period of storage of 4 to 6 months), there was a loss of OM, N, and mineral concentrations, highlighting the importance of proper storage and composting. Overall, this study on the physicochemical properties of broiler poultry litter is crucial for improving agricultural practices, protecting the environment, and preserving the health and safety of human beings and livestock. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

15 pages, 4907 KB  
Article
Biochar and Straw Amendments over a Decade Divergently Alter Soil Organic Carbon Accumulation Pathways
by Kunjia Lei, Wenxia Dai, Jing Wang, Zhenwang Li, Yi Cheng, Yuji Jiang, Weiqin Yin, Xiaozhi Wang, Xiaodong Song and Quan Tang
Agronomy 2024, 14(9), 2176; https://doi.org/10.3390/agronomy14092176 - 23 Sep 2024
Cited by 11 | Viewed by 2786
Abstract
Exogenous organic carbon (C) inputs and their subsequent microbial and mineral transformation affect the accumulation process of soil organic C (SOC) pool. Nevertheless, knowledge gaps exist on how different long-term forms of crop straw incorporation (direct straw return or pyrolyzed to biochar) modifies [...] Read more.
Exogenous organic carbon (C) inputs and their subsequent microbial and mineral transformation affect the accumulation process of soil organic C (SOC) pool. Nevertheless, knowledge gaps exist on how different long-term forms of crop straw incorporation (direct straw return or pyrolyzed to biochar) modifies SOC composition and stabilization. This study investigated, in a 13-year long-term field experiment, the functional fractions and composition of SOC and the protection of organic C by iron (Fe) oxide minerals in soils amended with straw or biochar. Under the equal C input, SOC accumulation was enhanced with both direct straw return (by 43%) and biochar incorporation (by 85%) compared to non-amended conventional fertilization, but by different pathways. Biochar had greater efficiency in increasing SOC through stable exogenous C inputs and inhibition of soil respiration. Moreover, biochar-amended soils contained 5.0-fold greater SOCs in particulate organic matter (POM) and 1.2-fold more in mineral-associated organic matter (MAOM) relative to conventionally fertilized soils. Comparatively, although the magnitude of the effect was smaller, straw-derived OC was preserved preferentially the most in the MAOM. Straw incorporation increased the soil nutrient content and stimulated the microbial activity, resulting in greater increases in microbial necromass C accumulation in POM and MAOM (by 117% and 43%, respectively) compared to biochar (by 72% and 18%). Moreover, straw incorporation promoted poorly crystalline (Feo) and organically complexed (Fep) Fe oxides accumulation, and both were significantly and positively correlated with MAOM and SOC. The results address the decadal-scale effects of biochar and straw application on the formation of the stable organic C pool in soil, and understanding the causal mechanisms can allow field practices to maximize SOC content. These results are of great implications for better predicting and accurately controlling the response of SOC pools in agroecosystems to future changes and disturbances and for maintaining regional C balance. Full article
Show Figures

Figure 1

12 pages, 6504 KB  
Article
Abandonment Leads to Changes in Forest Structural and Soil Organic Carbon Stocks in Moso Bamboo Forests
by Yaowen Xu, Jiejie Jiao, Chuping Wu, Ziqing Zhao, Xiaogai Ge, Ge Gao, Yonghui Cao and Benzhi Zhou
Plants 2024, 13(16), 2301; https://doi.org/10.3390/plants13162301 - 19 Aug 2024
Cited by 2 | Viewed by 1648
Abstract
The important role of soil carbon pools in coping with climate change has become widely recognized. Moso bamboo (Phyllostachys pubescens) is an economically important bamboo species in South China; however, owing to factors such as rising labor costs and increasingly stringent [...] Read more.
The important role of soil carbon pools in coping with climate change has become widely recognized. Moso bamboo (Phyllostachys pubescens) is an economically important bamboo species in South China; however, owing to factors such as rising labor costs and increasingly stringent environmental policies, Moso bamboo forests have recently been abandoned. The present study aimed to investigate the effects of abandonment on structural factors and soil organic carbon (SOC) stocks in Moso bamboo forests. We investigated Moso bamboo forests subjected to intensive management or abandonment for different durations and measured forest structural characteristics, mineral properties, soil nutrients, and other soil properties. Although abandonment did not significantly affect the height and diameter at breast height, it increased culm densities, biomass, and SOC stocks. The drivers of SOC stocks depended on soil depth and were mainly controlled by carbon decomposition mediated by soil properties. In the topsoil, mineral protection and soil total nitrogen (TN) exerted significant effects on SOC stocks; in the subsoil, soil TN was the main driver of SOC stocks. As the controlling factors of SOC stocks differed between the subsoil and topsoil, more attention should be paid to the subsoil. Overall, these findings refine our understanding of the structural characteristics and SOC stocks associated with Moso bamboo forest abandonment, serving as a reference for the follow-up management of these forests. Full article
Show Figures

Figure 1

Back to TopTop