Effects of Adding Different Corn Residue Components on Soil and Aggregate Organic Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Soil Sampling Maize Residues Samples
2.3. Incubation Experiment
2.4. Soil Aggregate Fractionation and SOC Analysis
2.5. Data Analysis
3. Results
3.1. Effects of Maize Residue Addition on Soil Aggregate Composition
3.2. SOC Content in Soil
3.3. Effects of Maize Residue Addition on SOC Content in Aggregate
4. Discussion
4.1. Effects of Corn Residue Addition on Soil Aggregate Composition
4.2. Effects of Corn Residue Addition on SOC Content
4.3. Effects of Corn Residue Addition on Soil Aggregate Organic Carbon Content
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Chen, X.; Liu, L.; Li, T.; Dou, Y.; Qiao, J.; Wang, Y.; An, S.; Chang, S. Nitrogen fertilization weakens the linkage between soil carbon and microbial diversity: A global meta analysis. Glob. Change Biol. 2022, 28, 6446–6461. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil organic matter and water retention. Agron. J. 2020, 112, 3265–3277. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Crop residue removal impacts on soil productivity and environmental quality. Crit. Rev. Plant Sci. 2009, 28, 139–163. [Google Scholar] [CrossRef]
- Dai, W.; Huang, Y.; Wu, L.; Zhang, J.; Liu, X.; Wang, Y.; Zhang, H.; Li, Z. Soil organic carbon dynamics shift by incorporating wheat straw in paddy soil in China. J. Environ. Qual. 2023, 52, 960–971. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Wallenstein, M.D.; Boot, C.M.; Denef, K.; Paul, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 2019, 12, 989–994. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, L.; Wang, Q.; Chen, X.; Liu, Y.; Wu, J. Effects of long-term organic amendments on soil organic carbon accumulation in black soil of Northeast China. Soil Tillage Res. 2022, 223, 105441–105451. [Google Scholar]
- Li, Y.; Zhang, X.; Mao, X.; Jin, J.; Chen, X.; Xu, W. Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice-wheat cropping system. Soil Tillage Res. 2017, 165, 121–127. [Google Scholar]
- Wang, J.; Liu, Y. Decomposition characteristics of different maize residue components and their effects on soil organic carbon fractions. JAE 2021, 32, 4153–4160. [Google Scholar]
- Angst, G.; Mueller, K.E.; Nierop, K.G.J.; Simpson, M.J. Controls on labile and stabilized soil organic matter during long-term ecosystem development. Geoderma 2022, 426, 116090. [Google Scholar] [CrossRef]
- Bhadha, J.; Galindo, S.; Dufault, N.; Capasso, J. Capitalizing on Carbon; EDIS: Gainesville, FL, USA, 2023. [Google Scholar]
- Zhang, T.; Li, X.; Wang, J.; Li, Y.; Wang, J.; Xue, Q. Optimizing relative root-zone water depletion thresholds to maximize yield and water productivity of winter wheat using AquaCrop. Agric. Water Manag. 2023, 286, 108391. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wu, Y.; Deng, Z.; Li, Y.; Wang, Y.; Wang, J. Impacts of agricultural land use change on soil aggregate stability and physical protection of organic C. Sci. Total Environ. 2020, 707, 136049. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, X.; Zhang, L.; Qu, R.; Li, J.; Wang, Y. Assessing flood-depth effects on water quality, nutrient uptake, carbon sequestration, and rice yield cultivated on Histosols. Clim. Smart Agric. 2024, 1, 100005. [Google Scholar] [CrossRef]
- Amgain, N.R.; Scholberg, J.M.S.; Davis, J.H.; Gao, Z.; Bhadha, J. Developing soil health scoring indices based on a comprehensive database under different land management practices in Florida. Agrosyst. Geosci. Environ. 2022, 5, e20304. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—A meta-analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y.; Zhang, Y.; Feng, Y.; Zhang, X. Straw application and soil organic carbon change: A meta-analysis. Soil Water Res. 2021, 16, 112–120. [Google Scholar] [CrossRef]
- Song, J.; Luo, Y.; Zhou, X.; Ciais, P.; Peng, S.; Peñuelas, J. Global change and China’s terrestrial carbon sink: A quantitative review of 30 years’ ecosystem manipulative experiments. Ecol. Monogr. 2025, 95, e70005. [Google Scholar] [CrossRef]
- Wang, J.; Liu, L. Effect of long–term plastic film mulching and fertilization on inorganic N distribution and organic N mineral-ization in brown earth. J. Soil Water Conserv. 2006, 20, 107–110. [Google Scholar]
- Kuzyakov, Y.; Friedel, J.K.; Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 2000, 32, 1485–1498. [Google Scholar] [CrossRef]
- Helgason, B.; Walley, F.; Germida, J. No-till soil management increases microbial biomass and alters community profiles in soil aggregates. Appl. Soil Ecol. 2010, 46, 390–397. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, N.; Ge, T.; Kuzyakov, Y.; Wang, Z.; Li, Z.; Tang, Z.; Chen, Y.; Wu, C.; Lou, Y. Soil aggregation regulates distributions of carbon, microbial community, and enzyme activities after 23-year manure amendment. Appl. Soil Ecol. 2017, 111, 65–72. [Google Scholar] [CrossRef]
- Fang, Y.; Singh, B.; Collins, D.; Li, B.; Zhu, J.; Tavakkoli, E. Nutrient supply enhanced wheat residue-carbon mineralization, microbial growth, and microbial carbon-use efficiency when residues were supplied at high rate in contrasting soils. Soil Biol. Biochem. 2018, 126, 168–178. [Google Scholar] [CrossRef]
- Pan, G.; Li, L.; Wu, L.; Zhang, X. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Glob. Change Biol. 2004, 10, 79–92. [Google Scholar] [CrossRef]
- Chen, M.; Liu, X.; Wang, Y.; Li, Y.; Zhang, H. Organic fertilization increased soil organic carbon stability and sequestration by improving aggregate stability and iron oxide transformation in saline-alkaline soil. Plant Soil 2022, 474, 233–249. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Zhang, Y.; Liu, Y.; Feng, Q. Crop yield and soil organic matter after long-term straw return to soil in China. Nutr. Cycl. Agroecosyst. 2015, 102, 371–381. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Duan, N.; Hand, E.; Pheko, M.; Sharma, S.; Emiola, A. Structure-guided discovery of anti-CRISPR and anti-phage defense proteins. Nat. Commun. 2024, 15, 649. [Google Scholar] [CrossRef]
- Bhattacharyya, S.S.; Tomar, R.S.; Jatav, K.; Singh, R.K.; Kumar, A. Soil carbon sequestration–An interplay between soil microbial community and soil organic matter dynamics. Sci. Total Environ. 2022, 815, 152928. [Google Scholar] [CrossRef]
- Totsche, K.U.; Amelung, W.; Gerzabek, M.H.; Guggenberger, G.; Klumpp, E.; Knief, C.; Lehndorff, E.; Mikutta, R.; Peth, S.; Prechtel, A.; et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 2018, 181, 104–136. [Google Scholar] [CrossRef]
- Yudina, A.; Klyueva, V.; Romanenko, K.; Fomin, D. Micro-within macro: How micro-aggregation shapes the soil pore space and water-stability. Geoderma 2022, 415, 115771. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Wallenstein, M.D.; Boot, C.M.; Denef, K.; Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Change Biol. 2013, 19, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef]
- Dai, H.; Chen, Y.; Liu, K.; Shen, Y.; Li, Z.; Sui, P. Water-stable aggregates and carbon accumulation in barren sandy soil depend on organic amendment method: A three year field study. J. Clean. Prod. 2019, 212, 393–400. [Google Scholar] [CrossRef]
- Fan, R.; Du, J.; Liang, A.; Lou, J.; Li, J. Carbon sequestration in aggregates from native and cultivated soils as affected by soil stoichiometry. Biol. Fertil. Soils 2020, 56, 1109–1120. [Google Scholar] [CrossRef]
- Parwada, C.; Van Tol, J. Effects of litter quality on macroaggregates reformation and soil stability in different soil horizons. Environ. Dev. Sustain. 2019, 21, 1321–1339. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Negassa, W.C.; Guber, A.K.; Rivers, M.L. Protection of soil carbon within macro-aggregates depends on intra-aggregate pore characteristics. Sci. Rep. 2015, 5, 16261. [Google Scholar] [CrossRef]
- Pang, D.; Wang, Q.; Li, L.; Wang, Y.; Zhang, J. Changes in soil micro-and macro-aggregate associated carbon storage following straw incorporation. Catena 2020, 190, 104555. [Google Scholar] [CrossRef]
- Duan, N.; Li, L.; Liang, X.; McDearis, R.; Fine, A.K.; Cheng, Z.; Zhuang, J.; Radosevich, M.; Schaeffer, S.M. Composition of soil viral and bacterial communities after long-term tillage, fertilization, and cover cropping management. Appl. Soil Ecol. 2022, 177, 104510. [Google Scholar] [CrossRef]
Item | Soil Organic Carbon (g kg−1) | Total Nitrogen (g kg−1) | Lignin (g kg−1) | C/N |
---|---|---|---|---|
LF | 10.10 | 1.10 | - | 9.18 |
HF | 17.80 | 2.20 | - | 8.09 |
Root | 440.76 | 6.55 | 135.32 | 67.18 |
Stem | 440.08 | 6.45 | 79.02 | 68.22 |
Leaf | 400.80 | 5.70 | 45.78 | 70.32 |
Factor | d.f. | SOC (g kg−1 soil) | Percentage (%) | TOC Aggregate (g kg−1 soil) |
---|---|---|---|---|
Time (T) | 5 | ** | * | * |
Fertility (F) | 1 | *** | * | *** |
Maize (M) | 2 | * | ns | * |
Class (C) | 3 | ns | *** | *** |
T × F | 5 | ** | * | * |
T × M | 10 | *** | * | * |
T × C | 15 | * | *** | *** |
F × M | 2 | *** | ** | * |
F × C | 3 | * | *** | *** |
M × C | 6 | * | ** | *** |
T × F × M | 10 | *** | ** | * |
T × F × C | 15 | ns | ** | *** |
T × M × C | 30 | ns | *** | *** |
F × M × C | 6 | ns | *** | *** |
T × F × M × C | 30 | ns | ** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, N.; Sun, L.; Lu, T.; Zhang, X.; Duan, N.; Wang, W.; Liang, X.; Fan, Y.; Liu, H. Effects of Adding Different Corn Residue Components on Soil and Aggregate Organic Carbon. Agriculture 2025, 15, 1050. https://doi.org/10.3390/agriculture15101050
Xie N, Sun L, Lu T, Zhang X, Duan N, Wang W, Liang X, Fan Y, Liu H. Effects of Adding Different Corn Residue Components on Soil and Aggregate Organic Carbon. Agriculture. 2025; 15(10):1050. https://doi.org/10.3390/agriculture15101050
Chicago/Turabian StyleXie, Ninghui, Liangjie Sun, Tong Lu, Xi Zhang, Ning Duan, Wei Wang, Xiaolong Liang, Yuchuan Fan, and Huiyu Liu. 2025. "Effects of Adding Different Corn Residue Components on Soil and Aggregate Organic Carbon" Agriculture 15, no. 10: 1050. https://doi.org/10.3390/agriculture15101050
APA StyleXie, N., Sun, L., Lu, T., Zhang, X., Duan, N., Wang, W., Liang, X., Fan, Y., & Liu, H. (2025). Effects of Adding Different Corn Residue Components on Soil and Aggregate Organic Carbon. Agriculture, 15(10), 1050. https://doi.org/10.3390/agriculture15101050