Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,302)

Search Parameters:
Keywords = mineral interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1861 KiB  
Article
Clay Nanomaterials Sorbents for Cleaner Water: A Sustainable Application for the Mining Industry
by María Molina-Fernández, Albert Santos Silva, Rodrigo Prado Feitosa, Edson C. Silva-Filho, Josy A. Osajima, Santiago Medina-Carrasco and María del Mar Orta Cuevas
Nanomaterials 2025, 15(15), 1211; https://doi.org/10.3390/nano15151211 (registering DOI) - 7 Aug 2025
Abstract
The increasing shortage of drinking water, driven by reduced rainfall and the intensification of industrial and agricultural activities, has raised justified concerns about the quantity and quality of available water resources. These sectors not only demand high water consumption but also discharge large [...] Read more.
The increasing shortage of drinking water, driven by reduced rainfall and the intensification of industrial and agricultural activities, has raised justified concerns about the quantity and quality of available water resources. These sectors not only demand high water consumption but also discharge large amounts of toxic substances such as organic matter, metal ions and inorganic anions, posing risks to both public health and the environment. This study evaluated the effectiveness of clay-based nanomaterials in the treatment of contaminated industrial wastewater from the mining sector. The materials tested included montmorillonite, high-loading expandable synthetic mica, and their organically functionalized forms (MMT, Mica-Na-4, C18-MMT, and C18-Mica-4). The experimental results show that these clays had minimal impact on the pH of the water, while a notable decrease in the chemical oxygen demand (COD) was observed. Ion chromatography indicated an increase in nitrogen and sulfur compounds with higher oxidation states. Inductively coupled plasma analysis revealed a significant reduction in the calcium concentration and an increase in the sodium concentration, likely due to cation exchange mechanisms. However, the removal of copper and iron was ineffective, possibly due to competitive interactions with other cations in the solution. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed the structural modifications and interlayer spacing changes in the clay materials upon exposure to contaminated water. These findings demonstrate the potential of clay minerals as effective and low-cost materials for the remediation of industrial wastewater. Full article
(This article belongs to the Special Issue Eco-Friendly Nanomaterials: Innovations in Sustainable Applications)
Show Figures

Figure 1

20 pages, 6776 KiB  
Article
Computational Approaches to Assess Flow Rate Efficiency During In Situ Recovery of Uranium: From Reactive Transport to Streamline- and Trajectory-Based Methods
by Maksat Kurmanseiit, Nurlan Shayakhmetov, Daniar Aizhulov, Banu Abdullayeva and Madina Tungatarova
Minerals 2025, 15(8), 835; https://doi.org/10.3390/min15080835 - 6 Aug 2025
Abstract
This study presents a comprehensive computational analysis of flow rate efficiency during uranium extraction via the In Situ Recovery method. Using field data from a deposit located in Southern Kazakhstan, a series of mathematical models were developed to evaluate the distribution and balance [...] Read more.
This study presents a comprehensive computational analysis of flow rate efficiency during uranium extraction via the In Situ Recovery method. Using field data from a deposit located in Southern Kazakhstan, a series of mathematical models were developed to evaluate the distribution and balance of leaching solution. A reactive transport model incorporating uranium dissolution kinetics and acid–rock interactions were utilized to assess the accuracy of both traditional and proposed methods. The results reveal a significant spatial imbalance in sulfuric acid distribution, with up to 239.1 tons of acid migrating beyond the block boundaries. To reduce computational demands while maintaining predictive accuracy, two alternative methods, a streamline-based and a trajectory-based approach were proposed and verified. The streamline method showed close agreement with reactive transport modeling and was able to effectively identify the presence of intra-block reagent imbalance. The trajectory-based method provided detailed insight into flow dynamics but tended to overestimate acid overflow outside the block. Both alternative methods outperformed the conventional approach in terms of accuracy by accounting for geological heterogeneity and well spacing. The proposed methods have significantly lower computational costs, as they do not require solving complex systems of partial differential equations involved in reactive transport simulations. The proposed approaches can be used to analyze the efficiency of mineral In Situ Recovery at both the design and operational stages, as well as to determine optimal production regimes for reducing economic expenditures in a timely manner. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

20 pages, 1014 KiB  
Review
State of the Art on the Interaction of Entomopathogenic Nematodes and Plant Growth-Promoting Rhizobacteria to Innovate a Sustainable Plant Health Product
by Islam Ahmed Abdelalim Darwish, Daniel P. Martins, David Ryan and Thomais Kakouli-Duarte
Crops 2025, 5(4), 52; https://doi.org/10.3390/crops5040052 - 6 Aug 2025
Abstract
Insect pests cause severe damage and yield losses to many agricultural crops globally. The use of chemical pesticides on agricultural crops is not recommended because of their toxic effects on the environment and consumers. In addition, pesticide toxicity reduces soil fertility, poisons ground [...] Read more.
Insect pests cause severe damage and yield losses to many agricultural crops globally. The use of chemical pesticides on agricultural crops is not recommended because of their toxic effects on the environment and consumers. In addition, pesticide toxicity reduces soil fertility, poisons ground waters, and is hazardous to soil biota. Therefore, applications of entomopathogenic nematodes (EPNs) and plant growth-promoting rhizobacteria (PGPR) are an alternative, eco-friendly solution to chemical pesticides and mineral-based fertilizers to enhance plant health and promote sustainable food security. This review focuses on the biological and ecological aspects of these organisms while also highlighting the practical application of molecular communication approaches in developing a novel plant health product. This insight will support this innovative approach that combines PGPR and EPNs for sustainable crop production. Several studies have reported positive interactions between nematodes and bacteria. Although the combined presence of both organisms has been shown to promote plant growth, the molecular interactions between them are still under investigation. Integrating molecular communication studies in the development of a new product could help in understanding their relationships and, in turn, support the combination of these organisms into a single plant health product. Full article
Show Figures

Figure 1

17 pages, 251 KiB  
Article
Proximate Composition, Physicochemical Properties and Concentration of Selected Minerals in Edible Giblets of Geese
by Dariusz Kokoszyński, Arkadiusz Nędzarek, Joanna Żochowska-Kujawska, Marek Kotowicz, Marcin Wegner, Karol Włodarczyk, Dorota Cygan-Szczegielniak, Barbara Biesiada-Drzazga and Marcin Witkowski
Foods 2025, 14(15), 2742; https://doi.org/10.3390/foods14152742 - 6 Aug 2025
Abstract
The purpose of this study was to determine the effect of breed and sex (3 × 2) on the basic chemical composition, concentration of some minerals, and physicochemical properties of edible giblets of farm geese. The study material consisted of edible giblets (livers, [...] Read more.
The purpose of this study was to determine the effect of breed and sex (3 × 2) on the basic chemical composition, concentration of some minerals, and physicochemical properties of edible giblets of farm geese. The study material consisted of edible giblets (livers, gizzards, hearts) obtained from 42 geese from three Polish native breeds (Rypin, Suwałki, Kartuzy) at 220 weeks of age. Edible giblets were obtained during goose evisceration from seven males and seven females of each breed. Each bird was an experimental unit. Goose breed and sex had a significant effect on the chemical composition and physicochemical properties of the edible giblets. Rypin geese had higher (p < 0.05) intramuscular fat content in the gizzard and heart, as well as higher protein content in the heart and lower water content in the gizzard, compared to Kartuzy and Suwałki geese. Kartuzy geese, in turn, had higher content of water in the heart, and higher concentrations of phosphorus, calcium, iron, manganese, sodium, and chromium in the liver, compared to Rypin and Suwałki geese. In turn, Suwałki geese had higher concentrations of phosphorus in the gizzard, and potassium, phosphorus, copper, and iron in the heart compared to the hearts of Rypin and Suwałki geese, while Kartuzy and Suwałki geese higher concentrations of sodium, magnesium, zinc, and manganese in hearts than the hearts of Rypin geese. In these studies, the highest lightness (L*) was observed in the liver and heart of Rypin geese, the lowest yellowness (b*) was observed in the gizzard of Suwałki geese, and the highest pH24 and EC24 were observed in the heart of Kartuzy geese. Regardless of breed, males had higher protein, collagen, and intramuscular fat contents in the heart, a higher water content in the gizzard, higher concentrations of potassium, and sodium in the liver and gizzard, copper in the heart and liver, and phosphorus in the gizzard, and less water in the heart and zinc in the liver, as well as higher (p < 0.05) concentrations of iron in the liver and heart compared with females. The breed by sex interaction was significant for intramuscular fat and water content in the gizzard and heart, and protein content in the heart. Significant differences were also noted for EC24 in the liver and heart, yellowness of the gizzard, and concentrations of most labeled minerals in edible giblets. The obtained results indicate that the nutritional value and suitability of edible goose giblets for the poultry industry vary depending on breed and sex. Due to the limited research on the chemical composition and physicochemical properties of goose giblets, further research in this area is necessary in the future. Full article
22 pages, 2988 KiB  
Article
Effect of Biostimulant Formulation on Yield, Quality, and Nitrate Accumulation in Diplotaxis tenuifolia Cultivars Under Different Weather Conditions
by Alessio Vincenzo Tallarita, Rachael Simister, Lorenzo Vecchietti, Eugenio Cozzolino, Vasile Stoleru, Otilia Cristina Murariu, Roberto Maiello, Giuseppe Cozzolino, Stefania De Pascale and Gianluca Caruso
Appl. Sci. 2025, 15(15), 8620; https://doi.org/10.3390/app15158620 - 4 Aug 2025
Viewed by 81
Abstract
Perennial wall rocket (Diplotaxis tenuifolia L.—DC.) exhibits genotype-dependent responses to biostimulant applications, which have not yet been deeply investigated. A two-year greenhouse factorial experiment was carried out to assess the interactions between five cultivars (Mars, Naples, Tricia, Venice, and Olivetta), three biostimulant [...] Read more.
Perennial wall rocket (Diplotaxis tenuifolia L.—DC.) exhibits genotype-dependent responses to biostimulant applications, which have not yet been deeply investigated. A two-year greenhouse factorial experiment was carried out to assess the interactions between five cultivars (Mars, Naples, Tricia, Venice, and Olivetta), three biostimulant formulations (Cystoseira tamariscifolia L. extract; a commercial legume-derived protein hydrolysate, “Dynamic”; and Spirulina platensis extract) plus an untreated control, and three crop cycles (autumn, autumn–winter, and winter) on leaf yield and dry matter, organic acids, colorimetric parameters, hydrophilic and lipophilic antioxidant activities, nitrate concentration, nitrogen use efficiency, and mineral composition, using a split plot design with three replicates. Protein hydrolysate significantly enhanced yield and nitrogen use efficiency in Mars (+26%), Naples (+25.6%), Tricia (+25%), and Olivetta (+26%) compared to the control, while Spirulina platensis increased the mentioned parameters only in Venice (+36.2%). Nitrate accumulation was reduced by biostimulant application just in Venice, indicating genotype-dependent nitrogen metabolism responses. The findings of the present research demonstrate that the biostimulant efficacy in perennial wall rocket is mainly ruled by genotypic factors, and the appropriate combinations between the two mentioned experimental factors allow for optimization of leaf yield and quality while maintaining nitrate concentration under the regulation thresholds. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

15 pages, 744 KiB  
Article
Investigation of Effects of Low Ruminal pH Values on Serum Concentrations of Macrominerals, Trace Elements, and Vitamins and Oxidative Status of Dairy Cows
by Panagiotis D. Katsoulos, Bengü Bilgiç, Duygu Tarhan, Fatma Ateş, Suat Ekin, Süleyman Kozat, Banu Dokuzeylül, Mehmet Erman Or, Emmanouil Kalaitzakis, Georgios E. Valergakis and Nikolaos Panousis
Ruminants 2025, 5(3), 35; https://doi.org/10.3390/ruminants5030035 - 2 Aug 2025
Viewed by 375
Abstract
Due to the feeding system (high-concentrate diet) during the early lactation stage, ruminal pH in dairy cows follows a diurnal pattern and can remain below the critical level of 5.5 for extended periods of the day. This study aimed to evaluate the effect [...] Read more.
Due to the feeding system (high-concentrate diet) during the early lactation stage, ruminal pH in dairy cows follows a diurnal pattern and can remain below the critical level of 5.5 for extended periods of the day. This study aimed to evaluate the effect of low ruminal pH on blood concentrations of certain macrominerals, trace minerals, and fat-soluble vitamins and on the oxidative status of dairy cows during the first half of lactation. Fifty-three randomly selected lactating Holstein cows were used; blood and ruminal fluid samples were collected from all cows on days 30, 90 and 150 of lactation. Blood samples were obtained via coccygeal venipuncture, while the ruminal fluid was obtained by rumenocentesis and the pH was measured immediately after collection. Using a threshold pH of 5.5, samples were classified as normal (pH > 5.5) or low pH (pH ≤ 5.5). Serum concentrations of Ca, Mg, K, Cr, Mn, Zn, Se, and vitamins A, D3, E, and K were not significantly affected by ruminal pH, either by days in milk or by their interaction (p > 0.05). Plasma malondialdehyde and reduced glutathione followed the same trend (p > 0.05). Copper concentration was significantly higher (p < 0.05), and Fe concentration tended to be higher in cows with low pH compared to those with normal pH (p = 0.052). On day 150 of lactation, Cu, Fe, and Co concentrations were significantly higher in low-pH cows compared to normal-pH cows (p < 0.05). Low ruminal pH is associated with significant changes in serum concentrations of copper, iron, and cobalt but has no significant effect on the oxidative status of the animals or on the serum concentrations of the macro elements and fat-soluble vitamins studied. Full article
Show Figures

Figure 1

21 pages, 6621 KiB  
Article
Ecological Restoration Reshapes Ecosystem Service Interactions: A 30-Year Study from China’s Southern Red-Soil Critical Zone
by Gaigai Zhang, Lijun Yang, Jianjun Zhang, Chongjun Tang, Yuanyuan Li and Cong Wang
Forests 2025, 16(8), 1263; https://doi.org/10.3390/f16081263 - 2 Aug 2025
Viewed by 235
Abstract
Situated in the southern hilly-mountain belt of China’s “Three Zones and Four Belts Strategy”, Gannan region is a critical ecological shelter belt for the Ganjiang River. Decades of intensive mineral extraction and irrational agricultural development have rendered it into an ecologically fragile area. [...] Read more.
Situated in the southern hilly-mountain belt of China’s “Three Zones and Four Belts Strategy”, Gannan region is a critical ecological shelter belt for the Ganjiang River. Decades of intensive mineral extraction and irrational agricultural development have rendered it into an ecologically fragile area. Consequently, multiple restoration initiatives have been implemented in the region over recent decades. However, it remains unclear how relationships among ecosystem services have evolved under these interventions and how future ecosystem management should be optimized based on these changes. Thus, in this study, we simulated and assessed the spatiotemporal dynamics of five key ESs in Gannan region from 1990 to 2020. Through integrated correlation, clustering, and redundancy analyses, we quantified ES interactions, tracked the evolution of ecosystem service bundles (ESBs), and identified their socio-ecological drivers. Despite a 31% decline in water yield, ecological restoration initiatives drove substantial improvements in key regulating services: carbon storage increased by 6.9 × 1012 gC while soil conservation rose by 4.8 × 108 t. Concurrently, regional habitat quality surged by 45% in mean scores, and food production increased by 2.1 × 105 t. Critically, synergistic relationships between habitat quality, soil retention, and carbon storage were progressively strengthened, whereas trade-offs between food production and habitat quality intensified. Further analysis revealed that four distinct ESBs—the Agricultural Production Bundle (APB), Urban Development Bundle (UDB), Eco-Agriculture Transition Bundle (ETB), and Ecological Protection Bundle (EPB)—were shaped by slope, forest cover ratio, population density, and GDP. Notably, 38% of the ETB transformed into the EPB, with frequent spatial interactions observed between the APB and UDB. These findings underscore that future ecological restoration and conservation efforts should implement coordinated, multi-service management mechanisms. Full article
Show Figures

Figure 1

29 pages, 4812 KiB  
Article
Geochemical Assessment of Long-Term CO2 Storage from Core- to Field-Scale Models
by Paa Kwesi Ntaako Boison, William Ampomah, Jason D. Simmons, Dung Bui, Najmudeen Sibaweihi, Adewale Amosu and Kwamena Opoku Duartey
Energies 2025, 18(15), 4089; https://doi.org/10.3390/en18154089 - 1 Aug 2025
Viewed by 190
Abstract
Numerical simulations enable us to couple multiphase flow and geochemical processes to evaluate how sequestration impacts brine chemistry and reservoir properties. This study investigates these impacts during CO2 storage at the San Juan Basin CarbonSAFE (SJB) site. The hydrodynamic model was calibrated [...] Read more.
Numerical simulations enable us to couple multiphase flow and geochemical processes to evaluate how sequestration impacts brine chemistry and reservoir properties. This study investigates these impacts during CO2 storage at the San Juan Basin CarbonSAFE (SJB) site. The hydrodynamic model was calibrated through history-matching, utilizing data from saltwater disposal wells to improve predictive accuracy. Core-scale simulations incorporating mineral interactions and equilibrium reactions validated the model against laboratory flow-through experiments. The calibrated geochemical model was subsequently upscaled into a field-scale 3D model of the SJB site to predict how mineral precipitation and dissolution affect reservoir properties. The results indicate that the majority of the injected CO2 is trapped structurally, followed by residual trapping and dissolution trapping; mineral trapping was found to be negligible in this study. Although quartz and calcite precipitation occurred, the dissolution of feldspars, phyllosilicates, and clay minerals counteracted these effects, resulting in a minimal reduction in porosity—less than 0.1%. The concentration of the various ions in the brine is directly influenced by dissolution/precipitation trends. This study provides valuable insights into CO2 sequestration’s effects on reservoir fluid dynamics, mineralogy, and rock properties in the San Juan Basin. It highlights the importance of reservoir simulation in assessing long-term CO2 storage effectiveness, particularly focusing on geochemical interactions. Full article
Show Figures

Figure 1

16 pages, 1981 KiB  
Article
Computational Design of Mineral-Based Materials: Iron Oxide Nanoparticle-Functionalized Polymeric Films for Enhanced Public Water Purification
by Iustina Popescu, Alina Ruxandra Caramitu, Adriana Mariana Borș, Mihaela-Amalia Diminescu and Liliana Irina Stoian
Polymers 2025, 17(15), 2106; https://doi.org/10.3390/polym17152106 - 31 Jul 2025
Viewed by 285
Abstract
Heavy metal contamination in natural waters and soils poses a significant environmental challenge, necessitating efficient and sustainable water treatment solutions. This study presents the computational design of low-density polyethylene (LDPE) films functionalized with iron oxide (Fe3O4) nanoparticles (NPs) for [...] Read more.
Heavy metal contamination in natural waters and soils poses a significant environmental challenge, necessitating efficient and sustainable water treatment solutions. This study presents the computational design of low-density polyethylene (LDPE) films functionalized with iron oxide (Fe3O4) nanoparticles (NPs) for enhanced water purification applications. Composite materials containing 5%, 10%, and 15% were synthesized and characterized in terms of adsorption efficiency, surface morphology, and reusability. Advanced molecular modeling using BIOVIA Pipeline was employed to investigate charge distribution, functional group behaviour, and atomic-scale interactions between polymer chains and metal ions. The computational results revealed structure–property relationships crucial for optimizing adsorption performance and understanding geochemically driven interaction mechanisms. The LDPE/Fe3O4 composites demonstrated significant removal efficiency of Cu2+ and Ni2+ ions, along with favourable mechanical properties and regeneration potential. These findings highlight the synergistic role of mineral–polymer interfaces in water remediation, presenting a scalable approach to designing multifunctional polymeric materials for environmental applications. This study contributes to the growing field of polymer-based adsorbents, reinforcing their value in sustainable water treatment technologies and environmental protection efforts. Full article
(This article belongs to the Special Issue Polymer-Based Coatings: Principles, Development and Applications)
Show Figures

Graphical abstract

17 pages, 3112 KiB  
Article
Impacts of Conservation Tillage on Soil Organic Carbon Mineralization in Eastern Inner Mongolia
by Boyu Liu, Jianquan Wang, Dian Jin and Hailin Zhang
Agronomy 2025, 15(8), 1847; https://doi.org/10.3390/agronomy15081847 - 30 Jul 2025
Viewed by 224
Abstract
Soil organic carbon (SOC) mineralization plays the critical role of regulating carbon sequestration potential. This process is strongly influenced by agricultural practices, particularly tillage regimes and straw management. However, the complex interactions between tillage methods, straw types, and application rates in terms of [...] Read more.
Soil organic carbon (SOC) mineralization plays the critical role of regulating carbon sequestration potential. This process is strongly influenced by agricultural practices, particularly tillage regimes and straw management. However, the complex interactions between tillage methods, straw types, and application rates in terms of SOC dynamics, especially in semi-arid agroecosystems like eastern Inner Mongolia, remain poorly understood. In this study, we assessed the combined effects of no tillage (NT) vs. rotary tillage (RT), three straw types (maize/MS, wheat/WS, and oilseed rape/OS), and three application rates (0.4%/low, 0.8%/medium, and 1.2%/high) on SOC concentration and mineralization using controlled laboratory incubation with soils from long-term plots. The key findings revealed that NT significantly increased the SOC concentration in the topsoil (0–20 cm) by an average of 14.5% compared to that in the RT. Notably, combining NT with medium-rate wheat straw (0.8%) resulted in the achievement of the highest SOC accumulation (28.70 g/kg). SOC mineralization increased with straw inputs, exhibiting significant straw type × rate interactions. Oilseed rape straw showed the highest specific mineralization rate (33.9%) at low input, while maize straw mineralized fastest under high input with RT. Therefore, our results demonstrate that combining NT with either 0.8% wheat straw or 1.2% maize straw represents an optimal application strategy, as the SOC concentration is enhanced by 12–18% for effective carbon sequestration in this water-limited semi-arid region. Therefore, optimizing SOC sequestration requires the integration of appropriate crop residue application rates and tillage methods tailored to different cropping systems. Full article
Show Figures

Figure 1

17 pages, 3206 KiB  
Article
Inverse Punicines: Isomers of Punicine and Their Application in LiAlO2, Melilite and CaSiO3 Separation
by Maximilian H. Fischer, Ali Zgheib, Iliass El Hraoui, Alena Schnickmann, Thomas Schirmer, Gunnar Jeschke and Andreas Schmidt
Separations 2025, 12(8), 202; https://doi.org/10.3390/separations12080202 - 30 Jul 2025
Viewed by 159
Abstract
The transition to sustainable energy systems demands efficient recycling methods for critical raw materials like lithium. In this study, we present a new class of pH- and light-switchable flotation collectors based on isomeric derivatives of the natural product Punicine, termed inverse Punicines. [...] Read more.
The transition to sustainable energy systems demands efficient recycling methods for critical raw materials like lithium. In this study, we present a new class of pH- and light-switchable flotation collectors based on isomeric derivatives of the natural product Punicine, termed inverse Punicines. These amphoteric molecules were synthesized via a straightforward four-step route and structurally tuned for hydrophobization by alkylation. Their performance as collectors was evaluated in microflotation experiments of lithium aluminate (LiAlO2) and silicate matrix minerals such as melilite and calcium silicate. Characterization techniques including ultraviolet-visible (UV-Vis), nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy as well as contact angle, zeta potential (ζ potential) and microflotation experiments revealed strong pH- and structure-dependent interactions with mineral surfaces. Notably, N-alkylated inverse Punicine derivatives showed high flotation yields for LiAlO2 at pH of 11, with a derivative possessing a dodecyl group attached to the nitrogen as collector achieving up to 86% recovery (collector conc. 0.06 mmol/L). Preliminary separation tests showed Li upgrading from 5.27% to 6.95%. Radical formation and light-response behavior were confirmed by ESR and flotation tests under different illumination conditions. These results demonstrate the potential of inverse Punicines as tunable, sustainable flotation reagents for advanced lithium recycling from complex slag systems. Full article
(This article belongs to the Special Issue Application of Green Flotation Technology in Mineral Processing)
Show Figures

Graphical abstract

19 pages, 4297 KiB  
Article
Bioactivity of Glass Carbomer Versus Conventional GICs in Sound Enamel and Dentine: A 12-Month SEM-EDS Study
by Dubravka Turjanski, Suzana Jakovljević, Dragutin Lisjak, Petra Bučević Sojčić, Fran Glavina, Kristina Goršeta and Domagoj Glavina
Materials 2025, 18(15), 3580; https://doi.org/10.3390/ma18153580 - 30 Jul 2025
Viewed by 192
Abstract
Glass ionomer cements (GICs) are bioactive restorative materials valued for their sustained ion release and remineralisation capacity. However, their long-term interactions with sound enamel and dentine remain underexplored. This 12-month in vitro study aimed to evaluate microstructural and compositional changes in sound dental [...] Read more.
Glass ionomer cements (GICs) are bioactive restorative materials valued for their sustained ion release and remineralisation capacity. However, their long-term interactions with sound enamel and dentine remain underexplored. This 12-month in vitro study aimed to evaluate microstructural and compositional changes in sound dental tissues adjacent to four GICs—Ketac Universal, Fuji IX and Equia Forte Fil (conventional GICs) and the advanced Glass Carbomer (incorporating hydroxyapatite nanoparticles)—using field-emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS). Glass Carbomer uniquely formed hydroxyapatite nanoparticles and mineralised regions indicative of active biomineralisation—features not observed with conventional GICs. It also demonstrated greater fluoride uptake into dentine and higher silicon incorporation in both enamel and dentine. Conventional GICs exhibited filler particle dissolution and mineral deposition within the matrix over time; among them, Equia Forte released the most fluoride while Fuji IX released the most strontium. Notably, ion uptake was consistently higher in dentine than in enamel for all materials. These findings indicate that Glass Carbomer possesses superior bioactivity and mineralising potential which may contribute to the reinforcement of sound dental tissues and the prevention of demineralisation. However, further in vivo studies are required to confirm these effects under physiological conditions. Full article
(This article belongs to the Special Issue Antibacterial Dental Materials)
Show Figures

Graphical abstract

18 pages, 3967 KiB  
Article
A Thorough Investigation of the Mechanism of theAntagonistic Effect Between Phosphorus and Basic Oxide-Forming Minerals as Flame Retardants of PolymericComposite Coatings
by Evangelia Mitropoulou, Georgios N. Mathioudakis, Amaia Soto Beobide, Athanasios Porfyris, Vassilios Dracopoulos, Kerim Kılınç, Theodosios Chatzinikolaou, Deniz Savci, Cem Gunesoglu, Joannis Kallitsis and George A. Voyiatzis
Coatings 2025, 15(8), 886; https://doi.org/10.3390/coatings15080886 - 30 Jul 2025
Viewed by 274
Abstract
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising [...] Read more.
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising alternatives. Despite this, their combined use is neither straightforward nor guaranteed to be effective. This study scrutinizes the interactions between these two classes of flame retardants (FR) through a systematic analysis aimed at elucidating the antagonistic pathways that arise from their coexistence. Specifically, this study focuses on two inorganic fillers, mineral huntite and chemically precipitated magnesium hydroxide, both of which produce basic oxides upon thermal decomposition. These fillers were incorporated into a poly(butylene terephthalate) (PBT) matrix to be utilized as advanced-mattress FR coating fabric and were subjected to a series of flammability tests. The pyrolysis products of the prepared polymeric composite compounds were isolated and thoroughly characterized using a combination of analytical techniques. Thermogravimetric analysis (TGA) and differential thermogravimetric analysis (dTGA) were employed to monitor decomposition behavior, while the char residues collected at different pyrolysis stages were examined spectroscopically, using FTIR-ATR and Raman spectroscopy, to identify their structure and the chemical reactions that led to their formation. X-ray diffraction (XRD) experiments were also conducted to complement the spectroscopic findings in the chemical composition of the resulting char residues and to pinpoint the different species that constitute them. The morphological changes of the char’s structure were monitored by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). Finally, the Limited Oxygen Index (LOI) and UL94 (vertical sample mode) methods were used to assess the relative flammability of the samples, revealing a significant drop in flame retardancy when both types of flame retardants are present. This reduction is attributed to the neutralization of acidic phosphorus species by the basic oxides generated during the decomposition of the basic inorganic fillers, as confirmed by the characterization techniques employed. These findings underscore the challenge of combining organophosphorus with popular flame-retardant classes such as mineral or basic metal flame retardants, offering insight into a key difficulty in formulating next-generation halogen-free flame-retardant composite coatings. Full article
(This article belongs to the Special Issue Innovative Flame-Retardant Coatings for High-Performance Materials)
Show Figures

Figure 1

15 pages, 2361 KiB  
Article
Geochemical Characteristics of the Hida Granitoids in the Unazuki and Katakaigawa Areas, Central Japan
by Kazuki Oishi, Rui Kuwahara, Kazuya Shimooka and Motohiro Tsuboi
Geosciences 2025, 15(8), 285; https://doi.org/10.3390/geosciences15080285 - 29 Jul 2025
Viewed by 270
Abstract
The Hida Belt in central Japan is a key geological unit for understanding the crustal growth of the Eurasian continent in the Mesozoic. However, while previous studies have focused primarily on geochronology, the geochemical characteristics of its rocks and minerals remain largely unexplored. [...] Read more.
The Hida Belt in central Japan is a key geological unit for understanding the crustal growth of the Eurasian continent in the Mesozoic. However, while previous studies have focused primarily on geochronology, the geochemical characteristics of its rocks and minerals remain largely unexplored. This study investigates the geochemical characteristics and magmatic processes of the Hida granitoids, including adakitic rocks, distributed in the Unazuki and Katakaigawa areas. Whole-rock major oxides and trace elements, as well as Rb-Sr isotopes, were analyzed. Based on Rb–Sr isotopic compositions, the Hida granitoids are classified into two types. The younger and older granitoids in the Unazuki area, categorized as Type I, exhibit a narrow range of isotopic ratios, whereas the older granitoids in the Katakaigawa area, classified as Type II, display significantly higher values than those of Type I. The geochemical data suggest that the adakitic rocks in the older granitoids originated from interaction with alkali-rich melts or fluids, while those in the younger granitoids were derived from hydrous felsic magmas sourced from subducted oceanic crust. These findings provide new insights into the formation and evolution of granitic magmatism in the Hida Belt. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

36 pages, 1502 KiB  
Review
A Critical Review on the Role of Lactic Acid Bacteria in Sourdough Nutritional Quality: Mechanisms, Potential, and Challenges
by Youssef Mimoune Reffai and Taoufiq Fechtali
Appl. Microbiol. 2025, 5(3), 74; https://doi.org/10.3390/applmicrobiol5030074 - 29 Jul 2025
Viewed by 345
Abstract
Sourdough fermentation, driven by the biochemical activity of lactic acid bacteria (LAB), presents a scientifically promising approach to addressing nutritional limitations in cereal-based staples. This review critically examines both the underlying mechanisms by which LAB enhance the nutritional profile of sourdough and the [...] Read more.
Sourdough fermentation, driven by the biochemical activity of lactic acid bacteria (LAB), presents a scientifically promising approach to addressing nutritional limitations in cereal-based staples. This review critically examines both the underlying mechanisms by which LAB enhance the nutritional profile of sourdough and the translational challenges in realizing these benefits. Key improvements explored include enhanced mineral bioavailability (e.g., up to 90% phytate reduction), improved protein digestibility, an attenuated glycemic response (GI ≈ 54 vs. ≈75 for conventional bread), and the generation of bioactive compounds. While in vitro and animal studies extensively demonstrate LAB’s potential to reshape nutrient profiles (e.g., phytate hydrolysis improving iron absorption, proteolysis releasing bioactive peptides), translating these effects into consistent human health outcomes proves complex. Significant challenges hinder this transition from laboratory to diet, including the limited bioavailability of LAB-derived metabolites, high strain variability, and sensitivity to fermentation conditions. Furthermore, interactions with the food matrix and host-specific factors, such as gut microbiota composition, contribute to inconsistent findings. This review highlights methodological gaps, particularly reliance on in vitro or animal models, and the lack of long-term, effective human trials. Although LAB hold significant promise for nutritional improvements in sourdough, translating these findings to validated human benefits necessitates continued efforts in mechanism-driven strain optimization, the standardization of fermentation processes, and rigorous human studies. Full article
Show Figures

Graphical abstract

Back to TopTop