Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,089)

Search Parameters:
Keywords = mineral characterization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3081 KB  
Article
Reservoir Characteristics and Shale Oil Enrichment of Shale Laminae in the Chang 7 Member, Ordos Basin
by Mengying Li, Wenzheng Li, Mingfeng Gu, Songtao Wu, Pengwan Wang, Yuce Wang, Quanbin Cao, Zhehang Xu and Yi Hao
Energies 2025, 18(20), 5342; https://doi.org/10.3390/en18205342 - 10 Oct 2025
Abstract
The laminae of lacustrine shale in China have been systematically identified and characterized by a combination of core/slice observations, mineral compositions, geochemical analysis, pore structure characterization, and oil-bearing evaluation. The shale of the Chang 7 Member, Yanchang Formation, Ordos Basin was examined as [...] Read more.
The laminae of lacustrine shale in China have been systematically identified and characterized by a combination of core/slice observations, mineral compositions, geochemical analysis, pore structure characterization, and oil-bearing evaluation. The shale of the Chang 7 Member, Yanchang Formation, Ordos Basin was examined as an example in the study. Four types of laminae are developed in the Chang 7 Member, including felsic laminae (FQL), clay laminae (CLL), organic matter laminae (OML), and tuff laminae (TUL). The shale reservoirs exhibit significant heterogeneity. Of these, FQL and TUL have superior reservoir characteristics. The pore diameter of TUL is primarily composed of micrometer-sized secondary pores that are generated during the diagenesis process, while mesopore and macropore development are dominant in FQL. The main source laminae in the Chang 7 Member of the Ordos Basin are the OML and CLL, while the main reservoir laminae are the FQL and TUL. Some of the hydrocarbons produced by hydrocarbon generation are stored in the pore space inside the laminae, while the majority migrate to the inorganic pores of the adjacent FQL and TUL. It confirms that OML and CLL afford abundant shale oil, the combination of organic pores and inorganic pores in FQL and TUL serve as reservoir space, and the “clay generation-siliceous reservoir” shale oil enrichment model is established in the Chang 7 Member of Ordos Basin. Full article
30 pages, 1600 KB  
Review
Integration of Multi-Scale Predictive Tools of Bone Fragility: A Structural and Material Property Perspective
by Muhammad Ateeq, Laura Maria Vergani and Federica Buccino
Materials 2025, 18(19), 4639; https://doi.org/10.3390/ma18194639 - 9 Oct 2025
Abstract
Bone fragility represents a significant global health burden, characterized by the deterioration of bone strength, increased brittleness, and heightened fracture susceptibility. Osteoporosis substantially elevates the risk of fragility fractures, the principal clinical manifestation of the disease. Current diagnostic approaches, including biomedical imaging, bone [...] Read more.
Bone fragility represents a significant global health burden, characterized by the deterioration of bone strength, increased brittleness, and heightened fracture susceptibility. Osteoporosis substantially elevates the risk of fragility fractures, the principal clinical manifestation of the disease. Current diagnostic approaches, including biomedical imaging, bone strength assessment, and bone mineral density measurement, are closely linked to identifying bone fragility through various predictive models and tools. Although numerous studies have employed predictors to characterize fragility fractures, few have comprehensively examined the morpho-structural features of bone across multiple hierarchical scales, limiting the ability to fully elucidate the underlying mechanisms of bone fragility. This review summarizes recent advancements in predictive modeling and novel diagnostic tools, focusing on multiscale approaches for assessing bone fragility. We critically evaluate the translational potential of these tools for the early detection of fragility fractures and their clinical application in mitigating fracture risk. Moreover, this study discusses the integration of multiscale predictive methodologies, which promise to enhance early-stage bone fragility detection and potentially prevent severe fractures through timely intervention. Finally, the study reflects on current research limitations, addressing the challenges associated with multiscale predictive modeling of bone fragility, and proposes future directions to refine these tools to improve the accuracy and utility of fragility fracture prediction and prevention strategies. Full article
(This article belongs to the Special Issue Modelling of Deformation Characteristics of Materials or Structures)
Show Figures

Figure 1

20 pages, 7109 KB  
Article
Assessments on the Potential Use of Rhyolite Filler as a Soil Remineralizer in Agroecological Practices in the Fourth Colony of Italian Immigration, Rio Grande do Sul, Brazil
by João Pedro Foletto and Augusto Nobre
Sustainability 2025, 17(19), 8955; https://doi.org/10.3390/su17198955 - 9 Oct 2025
Abstract
This study examined the application of rhyolite filler in agroecological farming systems in the Fourth Colony of Italian Immigration (Quarta Colônia de Imigração Italiana), Rio Grande do Sul, Brazil. The aim was to explore sustainable alternatives to synthetic fertilizers in line with organic [...] Read more.
This study examined the application of rhyolite filler in agroecological farming systems in the Fourth Colony of Italian Immigration (Quarta Colônia de Imigração Italiana), Rio Grande do Sul, Brazil. The aim was to explore sustainable alternatives to synthetic fertilizers in line with organic agriculture principles. The region’s designation as the Quarta Colônia UNESCO Global Geopark reinforces the relevance of this initiative. The research involved petrographic characterization, incubation experiments, and chemical analyses of rhyolite samples. Incubation tests with pigeon pea and elephant grass assessed combinations of rock filler and poultry litter. The results showed that rhyolite filler supported plant growth, especially with poultry litter, which supplies nitrogen and microorganisms that accelerate mineral weathering. Petrographic observations indicated that elephant grass promoted stronger mineral alteration, likely due to its dense fibrous roots and substrate interaction. Chemical analyses confirmed the rhyolite’s quartz content and trace elements remain within safety limits defined by Brazilian legislation on soil remineralizers. The K2O content and the base sum (CaO, MgO, and K2O) also complied with minimum legal requirements. Beyond mineralogical and chemical aspects, the study emphasized the economic feasibility of using locally sourced rock fillers, offering lower costs than synthetic fertilizers and supporting sustainable, resilient agroecological systems. Full article
Show Figures

Figure 1

17 pages, 9364 KB  
Article
Experimental Study on Mechanical Properties of Rock Formations After Water Injection and Optimization of High-Efficiency PDC Bit Sequences
by Yusheng Yang, Qingli Zhu, Jingguang Sun, Dong Sui, Shuan Meng and Changhao Wang
Processes 2025, 13(10), 3204; https://doi.org/10.3390/pr13103204 - 9 Oct 2025
Abstract
The deterioration of rocks’ mechanical properties during the late stage of water injection development significantly reduces the rock-breaking efficiency of PDC bits. In this study, X-ray diffraction mineral composition analysis and triaxial compression mechanics tests were used to systematically characterize the weakening mechanism [...] Read more.
The deterioration of rocks’ mechanical properties during the late stage of water injection development significantly reduces the rock-breaking efficiency of PDC bits. In this study, X-ray diffraction mineral composition analysis and triaxial compression mechanics tests were used to systematically characterize the weakening mechanism of water injection on reservoir rocks. Based on an analysis of mechanical experimental characteristics, this study proposes a multi-scale collaborative optimization method: establish a single tooth–rock interaction model at the micro-scale through finite element simulation to optimize geometric cutting parameters; at the macro scale, adopt a differential bit design scheme. By comparing and analyzing the rock-breaking energy consumption characteristics of four-blade and five-blade bits, the most efficient rock-breaking configuration can be optimized. Based on Fluent simulation on the flow field scale, the nozzle configuration can be optimized to improve the bottom hole flow field. The research results provide important theoretical guidance and technical support for the personalized design of drill bits in the later stage of water injection development. Full article
(This article belongs to the Topic Advanced Technology for Oil and Nature Gas Exploration)
Show Figures

Figure 1

14 pages, 294 KB  
Article
Harnessing and Evaluating Almond Hulls and Shells for Bio-Based Products
by Ana T. Caeiro, Ricardo A. Costa, Duarte M. Neiva, Jéssica Silva, Rosalina Marrão, Albino Bento, Nuno Saraiva, Francisco Marques, Jorge Rebelo, André Encarnação and Jorge Gominho
Environments 2025, 12(10), 369; https://doi.org/10.3390/environments12100369 - 9 Oct 2025
Abstract
Almond hulls and shells, the byproducts of the almond industry, were analyzed to assess their potential valorization pathways. Shells showed a higher content in lignin and polysaccharides, but very low levels of extractives and inorganics. Hull’s high polar extractives fraction showed poor phenolic [...] Read more.
Almond hulls and shells, the byproducts of the almond industry, were analyzed to assess their potential valorization pathways. Shells showed a higher content in lignin and polysaccharides, but very low levels of extractives and inorganics. Hull’s high polar extractives fraction showed poor phenolic preponderance and antioxidant activity, but high sugar and mineral contents, and its lipophilic extracts were highly enriched in triterpenes (from 73.5% to 91.3%), while shells presented more fatty acids (27.4% to 34.2%) and sterols (17.4% to 29.1%). Shells exhibited much higher S/G ratio (syringyl to guaiacyl units) in their lignin polymer (1.0 to 1.4), compared to hulls (0.5 to 0.6). After mineral analyses, hulls showed high amounts of potassium (3.7–4.9%). Fixed carbon content was similar for both materials, but shells showed a higher energetic content, ~20 MJ/kg. Finally, both hulls and pellets increased the water holding capacity (WHC) of the soil by 50%, when added in weight percentages of 6.25% (hulls) and 25% (pellets). With these results, the range of possibilities for these waste materials is exciting: shells could be used to obtain hemicellulose oligosaccharides, while hulls could be used in sugar extraction for biotransformation or as a soil amendment. Full article
Show Figures

Graphical abstract

15 pages, 1706 KB  
Article
Microwave-Induced Deep Oxidation of Brilliant Green Using Carbon Nanotube-Supported Bismuth Ferrite
by Haoran Liu, Hongzhe Chen, Yan Xue, Qiang Zhong and Shaogui Yang
Catalysts 2025, 15(10), 964; https://doi.org/10.3390/catal15100964 - 8 Oct 2025
Abstract
Microwave-induced oxidation has emerged as an effective approach for water purification. In this study, bismuth ferrite-supporting carbon nanotubes with strong microwave absorption and magnetism were successfully fabricated for the degradation of brilliant green. The reactivity of bismuth ferrite in microwave fields and the [...] Read more.
Microwave-induced oxidation has emerged as an effective approach for water purification. In this study, bismuth ferrite-supporting carbon nanotubes with strong microwave absorption and magnetism were successfully fabricated for the degradation of brilliant green. The reactivity of bismuth ferrite in microwave fields and the role of carbon nanotubes was revealed by systematic characterization methods. Our results demonstrated that the addition of bismuth ferrite in microwave-induced system can enhance the ability of microwave-induced absorption and further induce the degradation and mineralization of brilliant green within 10 min, significantly surpassing conventional heating methods. The brilliant green decomposition by bismuth ferrite in microwave-induced process is a heterogeneous process. Its excellent performance achieved by active species-trap experiments can be attributed to microwave-induced holes. Overall, this study presented a promising material for microwave-induced elimination of brilliant green and other dyes in aqueous media, which can provide the basis for the environmental application of microwave radiation to water purification and wastewater treatment. Full article
Show Figures

Figure 1

21 pages, 8591 KB  
Article
Simulation of Compaction Process of Tight Sandstone in Xiashihezi Formation, North Ordos Basin: Insights from SEM, EDS and MIP
by Hongxiang Jin, Feiyang Wang, Chong Han, Chunpu Wang, Yi Wu and Yang Hu
Processes 2025, 13(10), 3191; https://doi.org/10.3390/pr13103191 - 8 Oct 2025
Viewed by 87
Abstract
The Permian Xiashihezi Formation in the Ordos Basin is a typical tight sandstone gas reservoir, which is characterized by low porosity and strong heterogeneity. Diagenesis plays a crucial role in controlling reservoir quality. However, the multiple phases and types of diagenetic processes throughout [...] Read more.
The Permian Xiashihezi Formation in the Ordos Basin is a typical tight sandstone gas reservoir, which is characterized by low porosity and strong heterogeneity. Diagenesis plays a crucial role in controlling reservoir quality. However, the multiple phases and types of diagenetic processes throughout geological history make the compaction mechanisms highly complex. This study employed a high-temperature and high-pressure diagenesis simulation system to conduct geological simulation experiments. Typical reservoir samples from the 2nd Member of the Permian Xiashihezi Formation were selected for these simulations. The experiments replicated the diagenetic evolution of the reservoirs under various temperature, pressure, and fluid conditions, successfully reproducing the diagenetic sequences. The diagenetic sequence included early-stage porosity reduction through compaction, early carbonate cementation, quartz overgrowth, chlorite rim formation, feldspar dissolution, and late-stage illite and quartz cementation. Mechanical compaction is the primary factor reducing reservoir porosity, exhibiting a distinct four-stage porosity reduction pattern: (1) continuous burial stage (>4000 m); (2) stagnation stage of burial (3900 m–4100 m); (3) the secondary continuous burial stage (>5000 m); (4) tectonic uplift stage (3600 m). The experiments confirmed that the formation of various authigenic minerals is strictly controlled by temperature, pressure, and fluid chemistry. Chlorite rims formed in an alkaline environment enriched with Fe2+ and Mg2+ (simulated temperatures of 280–295 °C), effectively inhibiting quartz overgrowth. Illite appeared at higher temperatures (>300 °C) in platy or fibrous forms. Feldspar dissolution was noticeable upon injection of acidic fluids (simulated organic acids), providing material for authigenic quartz and kaolinite. The key mineral composition significantly impacts reservoir diagenesis. The dissolution released Mg2+ and Fe2+ ions, crucial for forming early chlorite rims in the overlying sandstones, confirming the importance of inter-strata interactions in “source-facies coupling.” Through physical simulation methods, this study deepened the understanding of the diagenetic evolution and compaction mechanisms of tight sandstones. This provides significant experimental evidence and theoretical support for predicting “sweet spot” reservoirs in the area. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

30 pages, 3410 KB  
Review
Application of Rejuvenators in Asphalt Binders: Classification and Micro- and Macro-Properties
by Chengwei Xing, Weichao Zhou, Bohan Zhu, Haozongyang Li and Shixian Tang
Coatings 2025, 15(10), 1177; https://doi.org/10.3390/coatings15101177 - 8 Oct 2025
Viewed by 49
Abstract
Rejuvenating aged asphalt is critical for sustainable road construction and resource utilization. This paper systematically reviews the current research on rejuvenators, focusing on their classification and the micro-, and macro-properties of rejuvenated asphalt. Rejuvenators are categorized into mineral oil-based, bio-based, and compound types. [...] Read more.
Rejuvenating aged asphalt is critical for sustainable road construction and resource utilization. This paper systematically reviews the current research on rejuvenators, focusing on their classification and the micro-, and macro-properties of rejuvenated asphalt. Rejuvenators are categorized into mineral oil-based, bio-based, and compound types. Each type offers distinct advantages in recovering the performance of aged asphalt. Mineral oil-based rejuvenators primarily enhance low-temperature cracking resistance through physical dilution, while bio-based rejuvenators demonstrate superior environmental sustainability and stability. Compound rejuvenators, particularly those incorporating reactive compounds, show the best results in repairing degraded polymer modifiers and improving both low- and high-temperature properties of aged, modified asphalt. Atomic Force Microscopy (AFM), Fluorescence Microscopy (FM), and Scanning Electron Microscopy (SEM) have been applied to analyze the micro-properties of rejuvenated asphalt. These techniques have revealed that rejuvenators can restore the microstructure of aged asphalt by dispersing agglomerated asphaltenes and promoting molecular mobility. Functional groups and molecular weight changes, characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Gel Permeation Chromatography (GPC), indicate that rejuvenators effectively reduce oxidation products and molecular weight of aged asphalt, restoring its physicochemical properties. Macro-property evaluations show that rejuvenators significantly improve penetration, ductility, and fatigue resistance. Finally, this review identifies the key characteristics and challenges associated with rejuvenator applications and provides an outlook on future research directions. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Graphical abstract

17 pages, 9190 KB  
Article
Mineralogical and Gemological Characteristics and Color Genesis of Zibai Jade
by Linhui Song, Mingyue He, Ziyun Zhang and Ling Yang
Crystals 2025, 15(10), 871; https://doi.org/10.3390/cryst15100871 - 8 Oct 2025
Viewed by 61
Abstract
Zibai Jade is a recently identified hydrogrossular-dominant jade originating from Shaanxi Province, China. It constitutes a polymineralic aggregate composed predominantly of hydrogrossular, with minor proportions of vesuvianite, diopside, chlorite, uvarovite, and calcite. A multi-method analytical approach was employed to characterize this jade, incorporating [...] Read more.
Zibai Jade is a recently identified hydrogrossular-dominant jade originating from Shaanxi Province, China. It constitutes a polymineralic aggregate composed predominantly of hydrogrossular, with minor proportions of vesuvianite, diopside, chlorite, uvarovite, and calcite. A multi-method analytical approach was employed to characterize this jade, incorporating conventional gemological testing, polarizing microscopy, SEM, XRD, BSE, XRF, and EPMA, as well as UV-Vis and infrared (IR). These techniques enabled a detailed examination of its mineralogy, surface features, and color origin. The stone displays a heterogeneous color distribution, featuring a base hue of light green to yellowish-green, accompanied by distinct occurrences of emerald-green spots, dark green spots, mossy green inclusions, white patches, white veinlets, and a black dot with a green ring. Microanalytical results indicate that the emerald-green spots are principally composed of uvarovite; the dark green spots are dominated by hydrogrossular, diopside, and chlorite; fibrous green inclusions consist mainly of chlorite and Cr-bearing grossular; white patches and veinlets are primarily composed of calcite; and the black dot with a green ring predominantly comprises chromite and uvarovite. Coloration is attributed to the combined influence of Fe and Cr3+. The formation of Zibai Jade involved three mineralization stages: deposition of a carbonate protolith, high-temperature metasomatism, and retrograde alteration. The metasomatism was driven by hydrothermal fluids derived from granodioritic and ultramafic rocks, which provided Si, Al, and the essential Cr, respectively. The interplay of these processes resulted in the development of Zibai Jade, which exhibits a dense texture and attractive coloration. Full article
Show Figures

Figure 1

30 pages, 10955 KB  
Article
Experimental Study on the Anti-Erosion of the Exterior Walls of Ancient Rammed-Earth Houses in Yangjiatang Village, Lishui
by Yujun Zheng, Junxin Song, Xiaohan Zhang, Yake Hu, Ruihang Chen and Shuai Yang
Coatings 2025, 15(10), 1173; https://doi.org/10.3390/coatings15101173 - 7 Oct 2025
Viewed by 86
Abstract
Yangjiatang Village traces its origins to the late Ming and early Qing dynasties. It has evolved over more than 400 years of history. There are 78 rammed-earth buildings left, making it one of the most complete and largest rammed-earth building complexes in East [...] Read more.
Yangjiatang Village traces its origins to the late Ming and early Qing dynasties. It has evolved over more than 400 years of history. There are 78 rammed-earth buildings left, making it one of the most complete and largest rammed-earth building complexes in East China. This study investigated the traditional rammed-earth houses in Yangjiatang Village, Songyang County, Zhejiang Province. By combining field investigation, microscopic characterization, and experimental simulation, we systematically revealed the erosion resistance of rammed earth in a subtropical humid climate was systematically revealed. Using a combination of advanced techniques including drone aerial photography, X-ray diffraction (XRD), microbial community analysis, scanning electron microscopy (SEM), and soil leaching simulations, we systematically revealed the anti-erosion mechanisms of rammed-earth surfaces in Yangjiatang Village. The study found that (1) rammed-earth walls are primarily composed of Quartz, Mullite, lepidocrocite, and Nontronite, with quartz and lepidocrocite being the dominant minerals across all orientations. (2) Regulating the community structure of specific functional microorganisms enhanced the erosion resistance of rammed-earth buildings. (3) The surface degradation of rammed-earth walls is mainly caused by four factors: structural cracks, surface erosion, biological erosion and roof damage. These factors work together to cause surface cracking and peeling (depth up to 3–5 cm). (4) This study indicates that the microbial communities in rammed-earth building walls show significant differences in various orientations. Microorganisms play a dual role in the preservation and deterioration of rammed-earth buildings: they can slow down weathering by forming protective biofilms or accelerating erosion through acid production. Full article
Show Figures

Figure 1

21 pages, 1008 KB  
Article
Nutritional Characterization of Annual and Perennial Glassworts from the Apulia Region (Italy)
by Luigi Giuseppe Duri, Lucia Botticella, Corrado Lazzizera, Enrico Vito Perrino, Angelica Giancaspro, Anna Rita Bernadette Cammerino, Anna Bonasia, Antonio Elia and Giulia Conversa
Foods 2025, 14(19), 3433; https://doi.org/10.3390/foods14193433 - 7 Oct 2025
Viewed by 223
Abstract
Halophytes are increasingly recognized as sustainable crops that offer a wide range of nutrients. This study provides a nutritional characterization of annual (Salicornia europaea) and perennial (Sarcocornia fruticosa, Arthrocaulon macrostachyum) species of glasswort, collected from different coastal habitats in [...] Read more.
Halophytes are increasingly recognized as sustainable crops that offer a wide range of nutrients. This study provides a nutritional characterization of annual (Salicornia europaea) and perennial (Sarcocornia fruticosa, Arthrocaulon macrostachyum) species of glasswort, collected from different coastal habitats in southern Italy. S. europaea was also cultivated under non-saline conditions. Results showed differences in mineral content, and bioactive compounds among genotypes, but they were modulated by environmental conditions, leading to significant site-specific variation. S. europaea, regardless of the collecting sites, exhibited the highest concentration of minerals (K, Ca, and Mg), chlorophylls, carotenoids, and phenolic compounds as well as antioxidant activity. A. macrostachyum stood out for its high flavonoid and sterol content, exhibiting other nutritional traits comparable to S. europaea when collected in a more arid site. A. macrostachyum and S. fruticosa displayed similar compositional features, showing the highest anthocyanin and iodine (187.8 µg 100 g−1 FW, on average) content. Sodium and potassium—critical for hypertension management—varied, exceeding the recommended Na/K ratio (1) for human consumption, especially in A. macrostachyum grown close to the sea. The most promising result was observed in non-saline S. europaea and in an A. macrostachyum sample (1.7, on average). Overall findings confirm the potential of both annual and perennial glassworts as nutritionally rich, sustainable crops for marginal environments. Full article
Show Figures

Figure 1

15 pages, 6275 KB  
Article
The Influence of Mineralized Microorganisms on the Mechanics and Pore Structure of Marine Sandy Formation
by Shaojun Zheng, Chengxiang Tang, Tianle Liu, Shunbo Qin, Zihang Wang and Hourun Lai
J. Mar. Sci. Eng. 2025, 13(10), 1917; https://doi.org/10.3390/jmse13101917 - 6 Oct 2025
Viewed by 184
Abstract
Well cementing is an important step in oil and gas development. It uses cement to seal the formation and the casing, preventing fluid leakage. However, when conducting offshore oil well cementing operations, deep-water formations are usually weakly consolidated soils, and it is difficult [...] Read more.
Well cementing is an important step in oil and gas development. It uses cement to seal the formation and the casing, preventing fluid leakage. However, when conducting offshore oil well cementing operations, deep-water formations are usually weakly consolidated soils, and it is difficult to form a good cementation between the cement and formation. Therefore, enhancing the strength of the formation is one of the effective measures. This study uses the microbial-induced carbonate precipitation technology to cement sandy formations containing clay minerals. The triaxial tests were conducted to evaluate the consolidation effectiveness in the presence of three clay minerals: montmorillonite, illite, and kaolinite. X-ray computed tomography was utilized to characterize microscopic pore parameters, while thermogravimetric analysis, X-ray diffraction, and surface potential measurements were applied to analyze the mechanisms of clay minerals affecting microbial consolidation. The results showed that microbial mineralization mainly affects the cohesion of the samples. The cohesion of the montmorillonite sample increased from 20 kPa to 65.4 kPa, an increase of up to 3.27 times. The other two samples (illite and kaolinite) had increases of only 0.33 times and 1.82 times. Although the strength of the montmorillonite sample increased the most, unexpected large pores appeared with a diameter of over 120 µm, accounting for 7.1%. This is mainly attributed to the mineral expansion property. The expansion of the minerals will trap more microorganisms in the sample, thereby generating more calcium carbonate. And it also reduced the gaps between sand particles, creating favorable conditions for the connection of calcium carbonate. Although the surface charge of the minerals also affects the attachment of microorganisms, all three minerals have negative charges and a difference of no more than 0.84 mV (pH = 9). Therefore, the expansion property of the minerals is the dominant factor affecting the mechanical and microstructure of the sample. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 2535 KB  
Article
Chemical Characterization of Red Pigments Used in Funerary Practices in Northeastern Patagonia (Chubut, Argentina) During the Late Holocene
by Celeste Gurin, Marcia Mazzuca, Julieta Gómez Otero and Marta S. Maier
Minerals 2025, 15(10), 1055; https://doi.org/10.3390/min15101055 - 5 Oct 2025
Viewed by 187
Abstract
In this study, we present the chemical characterization of red pigment samples and their associated sediments that were collected from three human burial sites in Northeastern Patagonia. Regarding their chronology, the La Azucena 1 site (880 14C years BP) corresponds to the [...] Read more.
In this study, we present the chemical characterization of red pigment samples and their associated sediments that were collected from three human burial sites in Northeastern Patagonia. Regarding their chronology, the La Azucena 1 site (880 14C years BP) corresponds to the period prior to European contact while the Loma Torta and Rawson sites date to periods following contact. These burials were discovered fortuitously. In the case of the La Azucena 1 site it was due to the impact of environmental conditions typical of this region, such as sparse vegetation and the effects of rain and wind, while for the Rawson and Loma Torta sites the burials suffered severe anthropic impact. Analysis of the red pigments and their sediments by a combination of analytical techniques using XRF, XRD, and ATR-FTIR revealed hematite as the chromophore responsible for the red color, together with large amounts of quartz in all the samples. The diffractogram of the red pigment from the La Azucena I site showed notable differences compared to those from the Loma Torta and Rawson sites, with calcite (CaCO3) and anorthite (Na0.45Ca0.56)(Al1.55Si21.5O8) as accompanying minerals and the presence of cristobalite, a high-temperature polymorph of silica (SiO2), which were not identified in the sediment sample. This suggests that minerals identified in this sample are characteristic of the pigment material rather than of the sediment where the bone remains were found. Full article
Show Figures

Graphical abstract

15 pages, 1023 KB  
Article
Clay-Based Cosmetic Formulations: Mineralogical Properties and Short-Term Effects on Sebum Regulation and Skin Biomechanics
by Fernanda Daud Sarruf, Michele Georges Issa, Maria Valéria Robles Velasco, Catarina Rosado and André Rolim Baby
Cosmetics 2025, 12(5), 219; https://doi.org/10.3390/cosmetics12050219 - 4 Oct 2025
Viewed by 324
Abstract
The growing demand for dermocosmetics with ingredients of natural origin reflects the pivotal role of cutaneous health and appearance in consumer self-esteem. Under this context, clays have attracted attention for their potential applications in dermatological care. Our research work aimed to increase knowledge [...] Read more.
The growing demand for dermocosmetics with ingredients of natural origin reflects the pivotal role of cutaneous health and appearance in consumer self-esteem. Under this context, clays have attracted attention for their potential applications in dermatological care. Our research work aimed to increase knowledge on the short-term impact of cosmetic formulations containing a blend of red, green, and black clays, assessing their effects on sebum regulation and in cutaneous biomechanical behavior (firmness/elasticity). Unlike daily skincare products, clay masks are used infrequently and for short durations; thus, an in vivo assessment was conducted after a 2-h application to reflect typical consumer use. The mineralogical and physicochemical properties of the different clays were characterized. Mineralogical analysis revealed distinct compositions among the clays: black clay exhibited a simpler mineral profile, lower density, and smaller particle size; green clay contained expandable smectite and was the densest; and red clay displayed the largest average particle size and highest iron content. Thermal analysis identified two major transitions: dehydration and kaolinite dehydroxylation. In vivo studies conducted in participants showed a significant reduction in skin oiliness across all clay-based formulations compared to baseline, control, and placebo following a 2-h application, and the rebound sebum production was dependent on clay concentration. Cutometry measurements did not reveal statistically significant improvements in skin firmness or elasticity compared to the control and placebo. The findings suggested that while clay-based formulations effectively reduced skin oiliness in the short term, their impact on sebum regulation and on skin biomechanical properties was limited after such a short product application period. Additional studies are warranted to elucidate the distinct effects of each clay, assess their behavior in different formulation bases, and evaluate their efficacy after repeated use. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

14 pages, 2887 KB  
Article
Cost-Effective Carbon Dioxide Removal via CaO/Ca(OH)2-Based Mineralization with Concurrent Recovery of Value-Added Calcite Nanoparticles
by Seungyeol Lee, Chul Woo Rhee and Gyujae Yoo
Sustainability 2025, 17(19), 8875; https://doi.org/10.3390/su17198875 - 4 Oct 2025
Viewed by 327
Abstract
The rapid rise in atmospheric CO2 concentrations has intensified the need for scalable, sustainable, and economically viable carbon sequestration technologies. This study introduces a cost-effective CaO/Ca(OH)2-based mineralization process that not only enables efficient CO2 removal but also allows the [...] Read more.
The rapid rise in atmospheric CO2 concentrations has intensified the need for scalable, sustainable, and economically viable carbon sequestration technologies. This study introduces a cost-effective CaO/Ca(OH)2-based mineralization process that not only enables efficient CO2 removal but also allows the simultaneous recovery of high-purity calcite nanoparticles as value-added products. The process involves hydrating CaO, followed by controlled carbonation under optimized CO2 flow rates, temperature conditions, and and additive use, yielding nanocrystalline calcite with an average particle size of approximately 100 nm. Comprehensive characterization using X-ray diffraction, transmission electron microscopy, and energy-dispersive X-ray spectroscopy confirmed a polycrystalline structure with exceptional chemical purity (99.9%) and rhombohedral morphology. Techno-economic analysis further demonstrated that coupling CO2 sequestration with nanoparticle production can markedly improve profitability, particularly when utilizing CaO/Ca(OH)2-rich industrial residues such as steel slags or lime sludge as feedstock. This hybrid, multi-revenue strategy—integrating carbon credits, nanoparticle sales, and waste valorization—offers a scalable pathway aligned with circular economy principles, enhancing both environmental and economic performance. Moreover, the proposed system can be applied to CO2-emitting plants and facilities, enabling not only effective carbon dioxide removal and the generation of carbon credits, but also the production of calcite nanoparticles for diverse applications in agriculture, manufacturing, and environmental remediation. These findings highlight the potential of CaO/Ca(OH)2-based mineralization to evolve from a carbon management technology into a platform for advanced materials manufacturing, thereby contributing to global decarbonization efforts. Full article
Show Figures

Graphical abstract

Back to TopTop