Assessments on the Potential Use of Rhyolite Filler as a Soil Remineralizer in Agroecological Practices in the Fourth Colony of Italian Immigration, Rio Grande do Sul, Brazil
Abstract
1. Introduction
- Assess whether the chemical and mineralogical composition of the rhyolite filler, sourced from a quarry in Itaara, Rio Grande do Sul, near the Fourth Colony, complies with the criteria established by NI No. 05/2016 [18];
- Conduct an eight-month incubation experiment using crops grown by agroecological farmers (red pigeon pea and elephant grass);
- Analyze the weathering processes, nutrient leaching, and nutrient release from the rock throughout the incubation period;
- Evaluate the market feasibility of this potential remineralizer as a viable tool for supporting small-scale agroecological producers.
2. Materials and Methods
2.1. Geological Context of the Study Area
2.2. Agroecological Initiatives in the Fourth Colony of Italian Immigration
2.3. Study Area
2.4. Analytical Methods
3. Results
3.1. Rock Filler Characterization
3.2. Analysis of Potentially Toxic Elements
3.3. Morphology of Filler Mineral Grains
3.4. Plant Development in the Incubation Experiment
3.5. Analysis of the Nutritional Adequacy of the Filler
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmidt, M. Scarcity and Environmental Impact of Mineral Resources—An Old and Never-Ending Discussion. Resources 2019, 8, 2. [Google Scholar] [CrossRef]
- Nobre, A.G.; Martínez, J.A.E.; Florêncio, O. Mineral Nanotechnology in Circular Economy. In Smart Innovation, Systems and Technologies; Iano, Y., Saotome, O., Kemper, G., de Seixas, A.C.M., de Oliveira, G.G., Eds.; Springer: Cham, Switzerland, 2021; pp. 220–226. [Google Scholar] [CrossRef]
- Leng, J.; Sha, W.; Wang, B.; Zheng, P.; Zhuang, C.; Liu, Q.; Wuest, T.; Mourtzis, D.; Wang, L. Industry 5.0: Prospect and retrospect. J. Manuf. Syst. 2022, 65, 279–295. [Google Scholar] [CrossRef]
- Nobre, A.G.; da Silva, L.P.N.; de Andrade, F.R.D. Graphene Geology and the Fourth Industrial Revolution. In Smart Innovation, Systems and Technologies; Iano, Y., Saotome, O., Vásquez, G.L.K., Pezzuto, C.C., Arthur, R., de Oliveira, G.G., Eds.; Springer: Cham, Switzerland, 2023; pp. 342–348. [Google Scholar] [CrossRef]
- Mallmann, L.L.; Nobre, A.G.; Chemale, F., Jr.; Netto, R.G.; Paim, P.S.G.; Oliveira, R.F.G. Unveiling CCS Potential of the Rio Bonito Formation, Paraná Basin, southern Brazil: The Dawsonite Discovery. Mineral. Petrol. 2024, 118, 501–512. [Google Scholar] [CrossRef]
- Leonardos, O.; Theodoro, S.; Assad, M. A tropical perspective from a Brazilian viewpoint. Nutr. Cycl. Agroecosyst. 2000, 56, 3–9. [Google Scholar] [CrossRef]
- Theodoro, S.H.; Medeiros, F.M.; Ianniruberto, M.; Jacobson, T.K.B. Soil remineralization and recovery of degraded areas: An experience in the tropical region. J. South Am. Earth Sci. 2021, 107, 103014. [Google Scholar] [CrossRef]
- Nobre, A.G.; Andrade, F.R.D.; Salazar-Naranjo, A.F.; Rigue, J.N.; Silva, R.B.; Vlach, S.R.F.; Ando, R.A. Electrical Resistance Evolution of Graphite and Talc Geological Heterostructures under Progressive Metamorphism. C 2023, 9, 75. [Google Scholar] [CrossRef]
- Swoboda, P.; Doring, T.F.; Hamer, M. Remineralizing soils? The agricultural usage of silicate rock powders: A review. Sci. Total Environ. 2022, 807, 150976. [Google Scholar] [CrossRef]
- Burbano, D.F.M.; Theodoro, S.H.; Carvalho, A.M.X.; Ramos, C.G. Crushed Volcanic Rock as Soil Remineralizer: A Strategy to Overcome the Global Fertilizer Crisis. Nat. Resour. Res. 2022, 31, 2197–2210. [Google Scholar] [CrossRef]
- Terán-Samaniego, K.; Robles-Parra, J.M.; Vargas-Arispuro, I.; Martínez-Téllez, M.A.; Garza-Lagler, M.C.; Félix-Gurrlola, D.; Maycotte-de la Peña, M.L.; Tafolla-Arellano, J.C.; García-Figueroa, J.A.; Espinoza-López, P.C. Agroecology and Sustainable Agriculture: Conceptual Challenges and Opportunities—A Systematic Literature Review. Sustainability 2025, 17, 1805. [Google Scholar] [CrossRef]
- Lei 10.831/2003. Dispõe Sobre a Agricultura Orgânica e dá Outras Providências. Available online: https://www.planalto.gov.br/ccivil_03/leis/2003/l10.831.htm (accessed on 30 June 2025).
- Kpienbaareh, D.; Kerr, R.B.; Nyantaki-Frimpong, H.; Iverson, A.; Luginaah, I.; Lupafya, E.; Dakishoni, L.; Shumba, L. Ecosystem service demand and supply dynamics under different farming systems: A participatory GIS assessment in Malawi. Appl. Geogr. 2024, 171, 103372. [Google Scholar] [CrossRef]
- Goswami, K.; Deka, N.; Sandilya, J.; Thapa, D.B. From value chain to value networks: Inferences for local development from the Kiwifruit sector in Eastern Himalayan Region, India. Appl. Geogr. 2025, 181, 103683. [Google Scholar] [CrossRef]
- Ministério da Agricultura, Pecuária e Abastecimento O Secretaria de Defesa Agropecuária. Instrução Normativa SDA nº 27, de 5 de Junho de 2006. Dispõe Sobre Regulamentação da Lei nº 6.894, de 16 de Dezembro de 1980. Available online: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-sda-27-de-05-06-2006-alterada-pela-in-sda-07-de-12-4-16-republicada-em-2-5-16.pdf (accessed on 30 June 2025).
- Straaten, P. Distribution of agromineral resources in space and time—A global geological perspective. Pesqui. Agropecuária Bras. 2022, 57, e01453. [Google Scholar] [CrossRef]
- Benevides Filho, P.R.R.; Blaskowski, A.E.; Ramos, M.N.; Lessa, L.G.F.; Zamunér Filho, A.N.; Abreu-Junior, C.H.; Jani, A.D.; Capra, G.F.; Nogueira, T.A.R. Potential Soil Remineralizers from Silicate Rock Powders (SRP) as Alternative Sources of Nutrients for Agricultural Production (Amazon Region). Minerals 2023, 13, 1255. [Google Scholar] [CrossRef]
- Decreto nº 4.954/2004, Que Dispõe Sobre as Regras, Definições, Classificação, Especificações e Garantias, Tolerâncias, Registro, Embalagem, Rotulagem e Propaganda dos Remineralizadores e Substratos Para Plantas, Destinados à Agricultura. Available online: https://www.planalto.gov.br/ccivil_03/_ato2004-2006/2004/decreto/d4954.htm (accessed on 30 June 2025).
- Ministério da Agricultura, Pecuária e Abastecimento o Secretaria de Defesa Agropecuária. Instrução Normativa SDA nº 35, de 4 de Julho de 2006. Dispõe Sobre Especificações e Garantias, Tolerâncias, Registro, Embalagem e Rotulagem de Corretivos e Condicionadores de Solo Destinados à Agricultura. Available online: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-35-de-4-7-2006-corretivos.pdf/view (accessed on 30 June 2025).
- Fontanetti, A.; Bonfanti, L.; Balduino, B.C.G.; Bigaton, A.D.; Salgado, G.C.; Gallo, A.S. Nitrogen dynamics, plant growth and maize grain yield in intercropping systems with legumes in organic agriculture. Biol. Agric. Hortic. 2024, 41, 2. [Google Scholar] [CrossRef]
- Wezel, A.; Herren, B.G.; Kerr, R.B.; Barrios, E.; Gonçalves, A.L.R.; Sinclair, F. Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agron. Sustain. Dev. 2020, 40, 40. [Google Scholar] [CrossRef]
- Basu, A.; Chalasani, D.; Sarma, P.V.S.R.N.; Uikey, S.; Ranganatha Chenna, V.; Choudhari, P.L.; Podile, A.R. Influence of genotype, nodule position, and edaphic factors on microbial diversity and assembly of pigeonpea (Cajanus cajan) root nodules in Indian soils. Environ. Microbiome 2025, 20, 41. [Google Scholar] [CrossRef]
- Pegoraro, R.F.; Mistura, C.; Wendling, B.; Fonseca, D.M.; Fagundes, J.L. Water and nitrogen management in the cultivation of elephant grass. Ciências Agrárias 2009, 33, 461–467. [Google Scholar] [CrossRef]
- Olivo, C.J.; Agnolin, C.A.; Aguirre, P.F.; de Bem, C.M.; Araújo, T.L.R.; Diehl, M.S.; Meinerz, G.R. Forage mass and stocking rate of elephant grass pastures managed under agroecological and conventional systems. Rev. Bras. De Zootec. 2014, 46, 289–295. [Google Scholar] [CrossRef]
- Seibt, D.C.; Olivo, C.J.; Alessio, V.; Sauter, C.P.; Bratz, V.F.; Aguirre, P.F. Forage mass and nutritional value of elephant grass intercropped with forage legumes. Rev. Ceres 2021, 68, 429–440. [Google Scholar] [CrossRef]
- Family Farming. Available online: https://www.ibge.gov.br/apps/atlasrural/pdfs/11_00_Texto.pdf (accessed on 30 July 2025).
- Frank, H.T.; Gomes, M.E.B.; Formoso, M.L.L. Review of the areal extent and the volume of the Serra Geral Formation, Paraná Basin, South America. Pesqui. Em Geociências 2009, 36, 49–57. [Google Scholar] [CrossRef]
- Rossetti, L.; Lima, E.F.; Waichel, B.L.; Hole, M.J.; Simões, M.S.; Scherer, C.M.S. Lithostratigraphy and volcanology of the Serra Geral Group, Paraná-Etendeka Igneous Province in Southern Brazil: Towards a formal stratigraphical framework. J. Volcanol. Geotherm. Res. 2018, 355, 98–114. [Google Scholar] [CrossRef]
- Pinto, V.M.; Hartmann, L.A.; Santos, J.O.S.; McNaughton, N.J.; Wildner, W. Zircon U–Pb geochronology from the Paraná bimodal volcanic province support a brief eruptive cycle at ~135 Ma. Chem. Geol. 2011, 281, 93–102. [Google Scholar] [CrossRef]
- Hartmann, L.A.; Johner, M.; Queiroga, G.N. Geochemistry of coarse quartz sinter overlying an Early Cretaceous Serra Geral quartz andesite flow, Fronteira Oeste Rift, Rio Grande do Sul, Brazil. Braz. J. Geol. 2023, 53, e20220042. [Google Scholar] [CrossRef]
- Martins, L.C.; Wildner, W.; Hartmann, L.A. Estratigrafia dos derrames da Província Vulcânica Paraná na região oeste do Rio Grande do Sul, Brasil, com base em sondagem, perfilagem gamaespectrométrica e geologia de campo. Pesqui. Em Geociências 2011, 38, 15–27. [Google Scholar] [CrossRef]
- Hartmann, L.A.; Arena, K.R.; Duarte, S.K.; Pertille, J. Long-distance lava correlation in the Paraná volcanic province along the Serra Geral cuesta, southeastern Brazil. Int. J. Earth Sci. 2013, 102, 1655–16669. [Google Scholar] [CrossRef]
- Bergmann, M.; Hoff, R.; Theodoro, S.M.C.H. Rochagem: Viabilizando o uso sustentável dos descartes de mineração no Distrito Mineiro de Ametista do Sul (DMAS), RS, Brasil. In Proceedings of the Congresso Brasileiro De Rochagem, Brasil (2009), Brasília, Brazil, 21–25 September 2009. [Google Scholar]
- Bergmann, M.; Juchen, P.L.; Petrolli, L.; Sander, A. Caracterização Litoquímica e Petrográfica de Riodacitos Vítreos Mineralizados com Ametista no RS: Possíveis Fontes de Potássio e Multinutrientes para Remineralização de Solos. In Ações Aplicadas à Cadeia Produtiva de Gemas e Joias do Rio Grande do Sul; Donato, M., Duarte, L.C., Vilasbôas, F., Eds.; IGEO/UFRGS: Porto Alegre, Brazil, 2017; pp. 26–35. [Google Scholar]
- Gilg, H.A.; Morteani, G.; Kostitsyn, Y.; Preinfalk, C.; Gatter, I.; Strieder, A.J. Genesis of amethyst geodes in basaltic rocks of the Serra Geral Formation (Ametista do Sul, Rio Grande do Sul, Brazil): A fluid inclusion, REE, oxygen, carbon, and Sr isotope study on basalt, quartz, and calcite. Miner. Depos. 2003, 38, 1009–1025. [Google Scholar] [CrossRef]
- Cardozo, E.; Pinto, V.; Nadaleti, W.; Thue, P.; dos Santos, M.; Gomes, C.; Ribeiro, A.; Silva, A.C.; Vieira, B. Sustainable agricultural practices: Volcanic rock potential for soil remineralization. J. Clean. Prod. 2024, 466, 142876. [Google Scholar] [CrossRef]
- Cardozo, E.S.; Souza, E.G.; Romani, R.F.; Escobar, C.C.; Nadaleti, W.C.; Vieira, B.M.; Pinto, V.M. The potential of volcanic rocks from the Serra Geral Group to soil remineralization. Rev. De Geociências Do Nordeste 2024, 10, 229–236. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Cao, Q.; Yang, L.; Jiang, W. Revealing ecological restoration process and disturbances of mineral concentration areas based on multiscale and multisource data. Appl. Geogr. 2024, 162, 103155. [Google Scholar] [CrossRef]
- Knabben, V.M. A extraordinária história de vida de Ana Maria Primavesi. Estud. Avançados 2019, 33, 459–476. [Google Scholar] [CrossRef]
- Ceccato, H.D.; Nobre, A.G.; Nummer, A.V.; Pinheiro, R.J.B.; da Silva, R.B.; Rigue, J.N. Micrometric and Nanometric Characterization of Rock Aggregates Using AIMS, AFM, and SEM to Further Discussions on Geotechnical Roughness Classification Systems. Mater. Res. 2025, 25, e20250117. [Google Scholar] [CrossRef]
- Medeiros, D.S.; Sanchotene, D.M.; Ramos, C.G.; Oliveira, L.F.S.; Sampaio, C.H.; Kautzmann, R.M. Soybean crops cultivated with dacite rock by-product: A proof of a cleaner technology to soil remineralization. J. Environ. Chem. Eng. 2021, 9, 106742. [Google Scholar] [CrossRef]
- Azam, F.; Mahmood, T.; Malik, K.A. Inmobilization-remineralization of NO3-N and total N balance during the decomposition of glucose, sucrose and cellulose in soil incubated at different moisture regimes. Plant Soil 1988, 107, 159–163. [Google Scholar] [CrossRef]
- Cunha, G.O.M.; Almeida, J.A. Agronomic potential of four rock powders, pure or mixed, as soil remineralizers. Res. Soc. Dev. 2021, 10, e169101724828. [Google Scholar] [CrossRef]
- Theodoro, S.H.; Sander, A.; Burbano, D.F.M.; Almeida, G.R. Rochas basálticas para rejuvenescer solos intemperizados. Rev. Lib. 2021, 22, 45–58. [Google Scholar] [CrossRef]
- Oliveira, C.F.; Silva, G.N.; Marcante, N.C.; Vasconcelos, V.; Mandro, M.A.E.; Santos, E.F. Assessing the agronomic efficiency of rock dust as a nutrient source in agriculture. Rev. Ciên. Agron. 2025, 56, e202392639. [Google Scholar] [CrossRef]
- Hallek, F.; Ouaja, M.; Hallek, T.; Amiri, A.; Inoubli, M.H.; Gallala, W. Upper Neogene climate change in northern Africa based on chemical weathering indices and clay mineralogy: A case study of southeastern Tunisia (Gulf of Gabès). J. Sediment. Environ. 2024, 9, 317–336. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, X.; Zhang, G.; Mackenzie, L.L.; Chen, B. Sedimentological and geochemical characteristics of sediments and their potential correlations to the processes of desertification along the Keriya River in the Taklamakan Desert, western China. Geomorphology 2021, 375, 107560. [Google Scholar] [CrossRef]
- Christian, B.A.; Dhinwa, P.S. Long term monitoring and assessment of desertification processes using medium & high resolution satellite data. Appl. Geogr. 2018, 97, 10–24. [Google Scholar] [CrossRef]
- Lourenço, E.R.O.; Souza, B.I.S.; D’Andrea, A.F.; Souza, J.J.L.L. Temporal variation of soil CO2 emission in different land uses in the Caatinga. Appl. Geogr. 2022, 140, 102661. [Google Scholar] [CrossRef]
- Khanamani, A.; Fathizad, H.; Karimi, H.; Shojaei, S. Assessing desertification by using soil indices. Arab J. Geosci. 2017, 10, 287. [Google Scholar] [CrossRef]
- Streckeisen, A. Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks IUGS Subcommission on the Systematics of Igneous Rocks. Geol. Rundsch. 1980, 69, 194–207. [Google Scholar] [CrossRef]
- Le Maitre, R.W. A proposal by the IUGS Subcommission on the Systematics of Igneous Rocks for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram. Aust. J. Earth Sci. 2007, 31, 243–255. [Google Scholar] [CrossRef]
- Rajendran, S.; Al Kuwari, H.S.; Sadooni, F.N.; Nasir, S.; Govil, H.; Ghrefat, H. Remote sensing of desertification and study of temporal variability of aeolian deposits in parts of the Arabian Desert for sustainable development in an arid environment. Environ. Res. 2023, 232, 116279. [Google Scholar] [CrossRef] [PubMed]
- Silveira, R.T.G.; Campos, J.E.G.; Matos, D.R. Uso de fosforitos do Grupo Bambuí como remineralizadores e análise dos seus beneficios socio-ambientais. Rev. Políticas Públicas Cid. 2025, 14, e1393. [Google Scholar] [CrossRef]
- Theodoro, S.H.; Leonardos, O.H. The use of rocks to improve Family agriculture in Brazil. An. Da Acad. Bras. De Ciências 2006, 78, 721–730. [Google Scholar] [CrossRef]
- Theodoro, S.H.; Leonardos, O.H. Stonemeal: Principles, potential and perspective from Brazil. In Geotherapy: Innovative Methods of Soil Fertility Restoration, Carbon Sequestration and Reversing CO2 Increase; Goreau, T.J., Larson, R.W., Campe, J., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 403–418. [Google Scholar]
Test ID | Number of Pots | Substrate Composition | Plant Culture |
---|---|---|---|
F1 | 2 | Rock filler + poultry litter | Pigeon pea |
F2 | 2 | Rock filler | Pigeon pea |
F3 | 2 | Rock filler + poultry litter | Elephant grass |
F4 | 2 | Rock filler | Elephant grass |
F5 | 1 | Rock filler + poultry litter | No plant |
F6 | 1 | Rock filler | No plant |
Element | LIMIT (ppm) | Sample F6 (µg/g) | Sample F3 (µg/g) | Sample F1 (µg/g) | Conformity |
---|---|---|---|---|---|
Cadmium (Cd) | 10 | <1 | <1 | <1 | Approved |
Arsenic (As) | 15 | <2 | <2 | <2 | Approved |
Lead (Pb) | 200 | <2 | 3.9 | 2.5 | Approved |
Element | Atomic Number (Z) | Normalized Mass (%) |
---|---|---|
O | 8 | 58.66 |
Si | 14 | 25.83 |
Al | 13 | 5.83 |
K | 19 | 3.13 |
Fe | 26 | 2.29 |
Na | 11 | 2.18 |
Ca | 20 | 1.45 |
Mg | 12 | 0.56 |
Mn | 25 | 0.07 |
Sum | 100.00 |
Element | Atomic Number (Z) | Normalized Mass (%) |
---|---|---|
O | 8 | 53.76 |
Si | 14 | 26.14 |
Al | 13 | 7.82 |
K | 19 | 3.82 |
Na | 11 | 2.81 |
Ca | 20 | 1.90 |
Fe | 26 | 1.68 |
N | 7 | 1.56 |
Mg | 12 | 0.54 |
Sum | 100.00 |
Oxide | Sample F6 | Sample F1 |
---|---|---|
K2O (%) | 7.54 | 9.20 |
CaO (%) | 2.03 | 2.66 |
MgO (%) | 0.95 | 0.90 |
Base sum (%) | 10.51 | 12.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foletto, J.P.; Nobre, A. Assessments on the Potential Use of Rhyolite Filler as a Soil Remineralizer in Agroecological Practices in the Fourth Colony of Italian Immigration, Rio Grande do Sul, Brazil. Sustainability 2025, 17, 8955. https://doi.org/10.3390/su17198955
Foletto JP, Nobre A. Assessments on the Potential Use of Rhyolite Filler as a Soil Remineralizer in Agroecological Practices in the Fourth Colony of Italian Immigration, Rio Grande do Sul, Brazil. Sustainability. 2025; 17(19):8955. https://doi.org/10.3390/su17198955
Chicago/Turabian StyleFoletto, João Pedro, and Augusto Nobre. 2025. "Assessments on the Potential Use of Rhyolite Filler as a Soil Remineralizer in Agroecological Practices in the Fourth Colony of Italian Immigration, Rio Grande do Sul, Brazil" Sustainability 17, no. 19: 8955. https://doi.org/10.3390/su17198955
APA StyleFoletto, J. P., & Nobre, A. (2025). Assessments on the Potential Use of Rhyolite Filler as a Soil Remineralizer in Agroecological Practices in the Fourth Colony of Italian Immigration, Rio Grande do Sul, Brazil. Sustainability, 17(19), 8955. https://doi.org/10.3390/su17198955