Cost-Effective Carbon Dioxide Removal via CaO/Ca(OH)2-Based Mineralization with Concurrent Recovery of Value-Added Calcite Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
2.1. Process Description for CO2 Mineralization and Byproduct Valorization
2.2. Characterization
3. Results
3.1. Powder X-Ray Diffraction
3.2. Transmission Electron Microscopy
4. Discussion
4.1. Process Control for Calcite Nanoparticle Formation
4.2. Characteristics and High-Value Application Potential of Synthesized Calcite Nanoparticles
4.3. Integrated Techno-Economic Assessment: Building a Multi-Revenue Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Power, I.M.; Harrison, A.L.; Dipple, G.M.; Wilson, S.; Kelemen, P.B.; Hitch, M.; Southam, G. Carbon Mineralization: From Natural Analogues to Engineered Systems. Rev. Mineral. Geochem. 2013, 77, 305–360. [Google Scholar] [CrossRef]
- Kelemen, P.; Benson, S.M.; Pilorgé, H.; Psarras, P.; Wilcox, J. An Overview of the Status and Challenges of CO2 Storage in Minerals and Geological Formations. Front. Clim. 2019, 1, 9. [Google Scholar] [CrossRef]
- Wu, Y.; Li, P. The Potential of Coupled Carbon Storage and Geothermal Extraction in a CO2-Enhanced Geothermal System: A Review. Geotherm. Energy 2020, 8, 19. [Google Scholar] [CrossRef]
- Menefee, A.H.; Schwartz, B.A. Quantifying the Value of Geologic Carbon Mineralization for Project Risk Management in Carbon Capture and Removal Pathways. Energy Fuels 2024, 38, 5365–5373. [Google Scholar] [CrossRef]
- Romanov, V.; Soong, Y.; Carney, C.; Rush, G.E.; Nielsen, B.; O’Connor, W. Mineralization of Carbon Dioxide: A Literature Review. ChemBioEng Rev. 2015, 2, 231–256. [Google Scholar] [CrossRef]
- Niu, Y.-Q.; Liu, J.-H.; Aymonier, C.; Fermani, S.; Kralj, D.; Falini, G.; Zhou, C.-H. Calcium Carbonate: Controlled Synthesis, Surface Functionalization, and Nanostructured Materials. Chem. Soc. Rev. 2022, 51, 7883–7943. [Google Scholar] [CrossRef]
- Luo, Y.; He, D. Research Status and Future Challenge for CO2 Sequestration by Mineral Carbonation Strategy Using Iron and Steel Slag. Environ. Sci. Pollut. Res. 2021, 28, 49383–49409. [Google Scholar] [CrossRef]
- Barhoum, A.; Rahier, H.; Abou-Zaied, R.E.; Rehan, M.; Dufour, T.; Hill, G.; Dufresne, A. Effect of Cationic and Anionic Surfactants on the Application of Calcium Carbonate Nanoparticles in Paper Coating. ACS Appl. Mater. Interfaces 2014, 6, 2734–2744. [Google Scholar] [CrossRef]
- Zhao, P.; Tian, Y.; You, J.; Hu, X.; Liu, Y. Recent Advances of Calcium Carbonate Nanoparticles for Biomedical Applications. Bioengineering 2022, 9, 691. [Google Scholar] [CrossRef]
- Yadav, V.K.; Yadav, K.K.; Cabral-Pinto, M.M.S.; Choudhary, N.; Gnanamoorthy, G.; Tirth, V.; Prasad, S.; Khan, A.H.; Islam, S.; Khan, N.A. The Processing of Calcium Rich Agricultural and Industrial Waste for Recovery of Calcium Carbonate and Calcium Oxide and Their Application for Environmental Cleanup: A Review. Appl. Sci. 2021, 11, 4212. [Google Scholar] [CrossRef]
- Maleki Dizaj, S.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K.; Lotfipour, F. Calcium Carbonate Nanoparticles as Cancer Drug Delivery System. Expert Opin. Drug Deliv. 2015, 12, 1649–1660. [Google Scholar] [CrossRef]
- Thenepalli, T.; Jun, A.Y.; Han, C.; Ramakrishna, C.; Ahn, J.W. A Strategy of Precipitated Calcium Carbonate (CaCO3) Fillers for Enhancing the Mechanical Properties of Polypropylene Polymers. Korean J. Chem. Eng. 2015, 32, 1009–1022. [Google Scholar] [CrossRef]
- Li, W.; Huang, Y.; Wang, T.; Fang, M.; Li, Y. Preparation of Calcium Carbonate Nanoparticles from Waste Carbide Slag Based on CO2 Mineralization. J. Clean. Prod. 2022, 363, 132463. [Google Scholar] [CrossRef]
- Lee, S.; Xu, H. Using Complementary Methods of Synchrotron Radiation Powder Diffraction and Pair Distribution Function to Refine Crystal Structures with High Quality Parameters—A Review. Minerals 2020, 10, 124. [Google Scholar] [CrossRef]
- Markgraf, S.A.; Reeder, R.J. High-Temperature Structure Refinements of Calcite and Magnesite. Am. Mineral. 1985, 70, 590–600. [Google Scholar]
- Duffy, D.M. Coherent Nanoparticles in Calcite. Science 2017, 358, 1254–1255. [Google Scholar] [CrossRef]
- Biradar, S.; Ravichandran, P.; Gopikrishnan, R.; Goornavar, V.; Hall, J.C.; Ramesh, V.; Baluchamy, S.; Jeffers, R.B.; Ramesh, G.T. Calcium Carbonate Nanoparticles: Synthesis, Characterization and Biocompatibility. J. Nanosci. Nanotechnol. 2011, 11, 6868–6874. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Ryu, K.H.; Ha, H.Y.; Jung, K.-D.; Lee, J.H. Techno-Economic and Environmental Evaluation of Nano Calcium Carbonate Production Utilizing the Steel Slag. J. CO2 Util. 2020, 37, 113–121. [Google Scholar] [CrossRef]
- Jiang, L.; Cheng, L.; Zhang, Y.; Liu, G.; Sun, J. A Review on CO2 Sequestration via Mineralization of Coal Fly Ash. Energies 2023, 16, 6241. [Google Scholar] [CrossRef]
- Lee, A.Y.; Erdemir, D.; Myerson, A.S. Crystals and Crystal Growth. In Handbook of Industrial Crystallization; Lee, A.Y., Myerson, A.S., Erdemir, D., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 32–75. ISBN 978-0-521-19618-5. [Google Scholar]
- Vinoba, M.; Bhagiyalakshmi, M.; Choi, S.Y.; Park, K.T.; Kim, H.J.; Jeong, S.K. Harvesting CaCO3 Polymorphs from In Situ CO2 Capture Process. J. Phys. Chem. C 2014, 118, 17556–17566. [Google Scholar] [CrossRef]
- Bots, P.; Benning, L.G.; Rodriguez-Blanco, J.-D.; Roncal-Herrero, T.; Shaw, S. Mechanistic Insights into the Crystallization of Amorphous Calcium Carbonate (ACC). Cryst. Growth Des. 2012, 12, 3806–3814. [Google Scholar] [CrossRef]
- Diego Rodriguez-Blanco, J.; Shaw, S.; Benning, L.G. The Kinetics and Mechanisms of Amorphous Calcium Carbonate (ACC) Crystallization to Calcite, via Vaterite. Nanoscale 2011, 3, 265–271. [Google Scholar] [CrossRef]
- Wang, N.; Feng, Y.; Guo, X.; van Duin, A.C.T. Insights into the Role of H2O in the Carbonation of CaO Nanoparticle with CO2. J. Phys. Chem. C 2018, 122, 21401–21410. [Google Scholar] [CrossRef]
- Álvarez Criado, Y.; Alonso, M.; Abanades, J.C. Composite Material for Thermochemical Energy Storage Using CaO/Ca(OH)2. Ind. Eng. Chem. Res. 2015, 54, 9314–9327. [Google Scholar] [CrossRef]
- De Yoreo, J.J.; Gilbert, P.U.P.A.; Sommerdijk, N.A.J.M.; Penn, R.L.; Whitelam, S.; Joester, D.; Zhang, H.; Rimer, J.D.; Navrotsky, A.; Banfield, J.F.; et al. Crystallization by Particle Attachment in Synthetic, Biogenic, and Geologic Environments. Science 2015, 349, aaa6760. [Google Scholar] [CrossRef]
- Li, D.; Nielsen, M.H.; Lee, J.R.I.; Frandsen, C.; Banfield, J.F.; De Yoreo, J.J. Direction-Specific Interactions Control Crystal Growth by Oriented Attachment. Science 2012, 336, 1014–1018. [Google Scholar] [CrossRef]
- Chang, R.; Kim, S.; Lee, S.; Choi, S.; Kim, M.; Park, Y. Calcium Carbonate Precipitation for CO2 Storage and Utilization: A Review of the Carbonate Crystallization and Polymorphism. Front. Energy Res. 2017, 5, 17. [Google Scholar] [CrossRef]
- Meldrum, F.C.; Cölfen, H. Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems. Chem. Rev. 2008, 108, 4332–4432. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Xu, H. Size-Dependent Phase Map and Phase Transformation Kinetics for Nanometric Iron(III) Oxides (γ → ε → α Pathway). J. Phys. Chem. C 2016, 120, 13316–13322. [Google Scholar] [CrossRef]
- Ranjan, R.; Narnaware, S.D.; Patil, N.V. A Novel Technique for Synthesis of Calcium Carbonate Nanoparticles. Natl. Acad. Sci. Lett. 2018, 41, 403–406. [Google Scholar] [CrossRef]
- Lee, S.; Xu, H. The Crystal Structure and Gibbs Free Energy of Formation of Chukanovite as an Oxidation Product of Carbon Steel in Human Liver. Chem. Geol. 2018, 488, 180–188. [Google Scholar] [CrossRef]
- Ulusoy, U. A Review of Particle Shape Effects on Material Properties for Various Engineering Applications: From Macro to Nanoscale. Minerals 2023, 13, 91. [Google Scholar] [CrossRef]
- Agnolucci, P.; Fischer, C.; Heine, D.; Montes de Oca Leon, M.; Pryor, J.; Patroni, K.; Hallegatte, S. Measuring Total Carbon Pricing. World Bank Res. Obs. 2024, 39, 227–258. [Google Scholar] [CrossRef]
- Al-Abdulqader, K.S.; Ibrahim, A.-J.; Ong, J.; Khalifa, A.A. Does Carbon Pricing Matter? Evidence from a Global Sample. Energies 2025, 18, 1030. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Rodríguez-Galán, M.; Vega, F.; Alonso-Fariñas, B.; Vilches Arenas, L.F.; Navarrete, B. Carbon Capture and Utilization Technologies: A Literature Review and Recent Advances. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 1403–1433. [Google Scholar] [CrossRef]
- Lee, S.; Xu, H.; Xu, W.; Sun, X. The structure and crystal chemistry of vernadite in ferromanganese crusts. Struct. Sci. 2019, 75, 591–598. [Google Scholar] [CrossRef]
Parameter | Primary Influence | Optimal Condition | Potential Negative Effects |
---|---|---|---|
Reaction temperature | Controls carbonation kinetics & CO2 solubility; affects nucleation rate | 30–50 °C → balanced kinetics & controlled crystal growth | High T → uncontrolled growth and particle coarsening; Low T→ slow reaction |
CO2 injection rate | Governs gas–liquid mass transfer & local supersaturation | Moderate flow → efficient nucleation without uncontrolled precipitation | High rate → pH gradients, amorphous phases, agglomeration |
pH control | Regulates carbonate speciation & stability of intermediate phases | pH 8.5–9.5 → stabilizes nuclei & controls growth | Large pH swings → premature aggregation, phase transformation |
CaO precursor characteristics | Determines reactive surface area & nucleation sites | Fine particle size, high surface area, high purity | Impurities → disrupt nucleation; ultrafine particles→ prone to early agglomeration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Rhee, C.W.; Yoo, G. Cost-Effective Carbon Dioxide Removal via CaO/Ca(OH)2-Based Mineralization with Concurrent Recovery of Value-Added Calcite Nanoparticles. Sustainability 2025, 17, 8875. https://doi.org/10.3390/su17198875
Lee S, Rhee CW, Yoo G. Cost-Effective Carbon Dioxide Removal via CaO/Ca(OH)2-Based Mineralization with Concurrent Recovery of Value-Added Calcite Nanoparticles. Sustainability. 2025; 17(19):8875. https://doi.org/10.3390/su17198875
Chicago/Turabian StyleLee, Seungyeol, Chul Woo Rhee, and Gyujae Yoo. 2025. "Cost-Effective Carbon Dioxide Removal via CaO/Ca(OH)2-Based Mineralization with Concurrent Recovery of Value-Added Calcite Nanoparticles" Sustainability 17, no. 19: 8875. https://doi.org/10.3390/su17198875
APA StyleLee, S., Rhee, C. W., & Yoo, G. (2025). Cost-Effective Carbon Dioxide Removal via CaO/Ca(OH)2-Based Mineralization with Concurrent Recovery of Value-Added Calcite Nanoparticles. Sustainability, 17(19), 8875. https://doi.org/10.3390/su17198875